Detail předmětu

Pružnost a plasticita

Akademický rok 2025/26

NDA015 předmět zařazen ve 3 studijních plánech

NPA-SIS zimní semestr 1. ročník

NPC-SIS zimní semestr 1. ročník

NKC-SIS zimní semestr 1. ročník

Základní rovnice teorie pružnosti, analýza napjatosti a deformace v bodě, rovinná napjatost a rovinná deformace, rotačně symetrické úlohy, dualita postupu řešení, energetické principy, variační metody, teorie tlustých a tenkých desek, úvod do teorie skořepin, statické řešení základových konstrukcí, modely podloží, základy pružnoplastické analýzy, fyzikální rovnice pro pružnoplastický materiál se zpevněním, analýza pružně-plastického stavu konstrukcí, mezní plastická únosnost.

Kredity

5 kreditů

Jazyk studia

čeština, angličtina

semestr

zimní

Garant předmětu

Zajišťuje ústav

Způsob a kritéria hodnocení

zápočet a zkouška

Vstupní znalosti

Průběhy vnitřních sil na prutu, pojem napětí, deformace a přemístění, Hookův zákon, podmínky rovnováhy pro prut, fyzikální a geometrické rovnice pro prut. Napjatostní stavy prutu a jejich kombinace. Výpočet staticky neurčitých prutových soustav silovou a deformační metodou. Maticový zápis řešení.

Učební cíle

Během kursu student získá přehled o základních veličinách pružnosti a vztazích mezi nimi pro těleso, prut, stěnu a desku. Dále se seznámí se základními principy mechaniky - principem virtuálních prací a principem minima potenciální energie - a variačními metodami - Rizovou metodou a metodou konečných prvků a získá zkušenosti s jejich aplikací. Po skončení kursu bude schopen odvodit matice tuhosti prvků v metodě konečných prvků pro zmíněné typy konstrukcí a prakticky pracovat s výpočetními programy založenými na metodě konečných prvků.
Po ukončení kurzu student bude znát základní rovnice pružnosti popisující lineární chování tělesa. Bude umět použít princip virtuálních prací pro řešení jednoduchých úloh pružnosti. Je seznámen s Ritzovou metodou. Student dovede modelovat konstrukci jako 2-D úlohu pružnosti (rovinná napjatost, deformace) a zná teorii desek. Okrajově je informován o teorii skořepin. Zná principy MKP a zásady odvození jednotlivých typů konečných prvků. Znalosti metody konečných prvků (MKP) jsou postačující pro pochopení prakticky využitelných programů na bázi MKP.

Základní literatura

http://www.zbynekvlk.cz/cepri/CD03.html (cs)
Teplý, B., Šmiřák, S., Pružnost a plasticita II. Nakladatelství VUT Brno, 1993. (cs)

Doporučená literatura

Dický, J., Mistríková, Z., Sumec, J., Pružnosť a plasticita v stavebníctve 2, Slovenská technická univerzita v Bratislavě, 2006. (sk)
Bittnar, Z., Šejnoha, J. Numerické metody mechaniky, ČVUT, Praha, 1992 (cs)
Helena, H. J. Theory of Elasticity and Plasticity, 2017, ISBN-978-81-203-5283-4  (en)
Dixit, P. M. Plasticity: Fundamentals and Applications, Crc Press, 2025, ISBN-9781032383996  (en)
Molotnikov, V., Molotnikova, A. Theory of Elasticity and Plasticity, A Textbook of Solid Body Mechanics, Springer, 2021, ISBN 978-3-030-66621-7, ISBN 978-3-030-66622-4 (eBook), https://doi.org/10.1007/978-3-030-66622-4 (en)

Nabízet zahraničním studentům

Nabízet studentům všech fakult

Předmět na webu VUT

Přednáška

13 týdnů, 2 hod./týden, nepovinné

Osnova

  • 1. Historická zmínka o teorii pružnosti. Pole v teorii kontinua a definice stavových veličin.
  • 2. Základní rovnice pružnosti. Odvození geometrických rovnic a fyzikální rovnic. Vlastnosti tenzorů deformace a napětí. Podmínky rovnováhy a podmínky kompatibility.
  • 3. Analýza napjatosti a deformace v bodě. Rovinná napjatost a rovinná deformace. Lévyho podmínka. Airyova funkce napětí. Princip řešení stěny.
  • 4. Rotačně symetrické úlohy – základní rovnice rovinného problému v polárních souřadnicích. Reologické modely materiálu.
  • 5. Deformace od nesilových účinků. Zobrazení napjatosti (Beckerovo-Westergardovo, Mohrovo).
  • 6. Potenciální energie deformace a přetvárná práce. Energetické principy. Princip virtuálních prací a variační metody v mechanice kontinua.
  • 7. Teorie desek. Typy desek, okrajové podmínky. Zvláštní typy desek.
  • 8. Analytické řešení desek v pravoúhlé soustavě souřadnic. Přibližné postupy řešení desek.
  • 9. Úvod do teorie skořepin. Membránový a ohybový stav napětí. Vnitřní síly u skořepin.
  • 10. Válcové skořepiny – základní rovnice ohybové teorie válcových skořepin. Ploché skořepiny.
  • 11. Statické řešení základových konstrukcí. Modely podloží.
  • 12. Základy pružnoplastické analýzy. Fyzikální rovnice pro pružnoplastický materiál se zpevněním.
  • 13. Analýza pružně-plastického stavu a mezní plastická únosnost prutových konstrukcí.

Cvičení

13 týdnů, 2 hod./týden, povinné

Osnova

  • 1. Výpočet napětí a deformace s využitím rovnic pružnosti – vztah mezi napětím a přetvořením.
  • 2. Hlavní napětí (invarianty napjatosti), výpočet pro různé případy napjatosti.
  • 3. Kritéria pevnosti a plasticity – výpočet ekvivalentních napětí dle různých teorií.
  • 4. Zobrazování napjatosti. Mohrova metoda
  • 5. Určování práce vnějších sil. Aplikace Lagrangeovy a Castiglianovy teorému. Výpočet deformační energie.
  • 6. Analytické řešení stěny – Airyova funkce napětí.
  • 7. Princip virtuálních prací. Praktické využití Castiglianovy metody.
  • 8. Aproximace průhybové čáry nosníku Ritzovou metodou.
  • 9. Aplikace Galerkinovy metody při řešení jednoduché úlohy pružnosti.
  • 10. Klasické řešení desek – metody nekonečných řad.
  • 11. Výpočet průběhů vnitřních sil u válcové skořepiny.
  • 12. Stanovení mezní plastické únosnosti prutu a desky.
  • 13. Analýza vzniku plastických kloubů u jednoduché rámové konstrukce.