Course Details

Elasticity and Plasticity

Academic Year 2024/25

NDA015 course is part of 3 study plans

NPA-SIS Winter Semester 1st year

NKC-SIS Winter Semester 1st year

NPC-SIS Winter Semester 1st year

Course Guarantor


Language of instruction

Czech, English


5 credits



Forms and criteria of assessment

course-unit credit and examination

Offered to foreign students

To offer to students of all faculties

Course on BUT site


13 weeks, 2 hours/week, elective


1. A brief historical reference of the theory of elasticity. Fields in the theory of the continua and the definition of state variables. 2. Basic equations of elasticity. The derivation of geometric equations and physics equations. The properties of the strain and stress tensors. The equilibrium conditions and compatibility conditions. 3. Analysis of stress and strain in point. Plane stress and plane strain. Levy condition. Airy‘s stress function. Procedure for solving plane stress. 4. Axisymmetric problems - basic equations of plane problem in polar coordinates. Rheological models of material. 5. The deformation of non-force effects. Display of stress (Becker-Westergard, Mohr). 6. The potential energy of deformation and strain of work. Energy principles. The principle of virtual work and variational methods in continuum mechanics. 7. Theory of plates. Types of plates, boundary conditions. Special types of plates. 8. Analytical solution of plates in a rectangular coordinate system. Approximate solution of plates. 9. Introduction to the theory of shells. Membrane and bending state of stress. Internal forces with shells. 10. Cylindrical shells - basic equations of the bending theory of cylindrical shells. Flat shell. 11. Static solution of foundations. Models of soil. 12. Basics elastic-plastic analysis. The physical equations for elastic-plastic material with hardening. 13. Analysis of elastic-plastic state. The limit state plastic bearing capacity of beam structures.


13 weeks, 2 hours/week, compulsory


1. The calculation of stress and strain using equations of elasticity - the relationship between stress and strain. 2. The principal stresses (stress invariants), the calculation for different cases of stress. 3. Strength and plasticity criteria - calculation of equivalent stress by various theories. 4. The graphical representation of stress. The Mohr’s method. 5. Determining the work of external forces. Application of Lagrange and Castigliano's theorem. Calculation the strain energy. 6. Analytical solutions of wall – Airy stress function. 7. Principle of virtual work. Practical use of Castigliano‘s method. 8. Approximations of the line deflection of the beam by Ritz's method. 9. Application of the Galerkin method for solving simple problems of elasticity 10. Classical solutions of plates - method of an infinite series. 11. Calculation graph of internal forces of a cylindrical shell. 12. Determination a limit plastic resistance of the beam and plate. 13. Analysis of the formation of plastic hinges on a simple frame structure.