Detail předmětu

Pravděpodobnost a matematická statistika

Akademický rok 2024/25

DAB031 předmět zařazen v 20 studijních plánech

DKA-E letní semestr 1. ročník

DKA-K letní semestr 1. ročník

DKA-M letní semestr 1. ročník

DKA-S letní semestr 1. ročník

DKA-V letní semestr 1. ročník

DPA-E letní semestr 1. ročník

DPA-K letní semestr 1. ročník

DPA-M letní semestr 1. ročník

DPA-S letní semestr 1. ročník

DPA-V letní semestr 1. ročník

DKC-E letní semestr 1. ročník

DKC-K letní semestr 1. ročník

DKC-M letní semestr 1. ročník

DKC-S letní semestr 1. ročník

DKC-V letní semestr 1. ročník

DPC-E letní semestr 1. ročník

DPC-K letní semestr 1. ročník

DPC-M letní semestr 1. ročník

DPC-S letní semestr 1. ročník

DPC-V letní semestr 1. ročník

Zopakování a prohloubení základních pojmů z teorie pravděpodobnosti (pravděpodobnost, náhodná veličina a náhodný vektor, distribuční funkce, rozdělovací funkce, nezávislost, číselné charakteristiky náhodných veličin), transformace náhodných veličin a vektorů, číselné charakteristiky náhodných vektorů, podmíněná rozdělovací funkce a podmíněná střední hodnota, speciální zákony rozdělení.
Náhodný výběr, bodové a intervalové odhady parametrů a jejich funkcí – podstata, vlastnosti, jejich konstrukce, odhady kovarianční a korelační matice, testování statistických hypotéz – princip a podstata, jednovýběrové a dvouvýběrové testy, testy dobré shody. Průběžná informace o možnosti využití statistického software při aplikacích probírané látky.

Kredity

4 kredity

Jazyk studia

čeština

semestr

letní

Garant předmětu

Zajišťuje ústav

Způsob a kritéria hodnocení

zápočet

Vstupní znalosti

Základy lineární algebry, derivování a integrování.

Učební cíle

Správné pochopení základních pojmů a umění interpretace statistických výsledků.

Základní literatura

ANDĚl, J. Statistické metody. 3. vyd. Praha: MatFyzPress, 2019. 300 s. ISBN: 978-80-7378-381-5.  (cs)
WALPOLE, R.E., MYERS, R.H. Probability and Statistics for Engineers and Scientists. 8th ed. London: Prentice Hall, Pearson education LTD, 2007. 823 p. ISBN 0-13-204767-5.  (en)
HRON, A., KUNDEROVÁ, P. Základy počtu pravděpodobnosti a metod matematické statistiky. 2. vyd. Olomouc: UPOL, 2015. 364 s. ISBN 978-80-244-4774-2. (cs)

Doporučená literatura

KOUTKOVÁ, H., MOLL, I. Základy pravděpodobnosti. Brno: CERM, 2011.127 s. ISBN 978-80-7204-738-3.  (cs)
KOUTKOVÁ, H. Základy teorie odhadu. Brno: CERM, 2007.51 s. ISBN 978-80-7204-527-3.  (cs)
KOUTKOVÁ, H. Základy testování hypotéz. Brno: CERM, 2007. 52 s. ISBN 978-80-7204-528-0. (cs)

Nabízet zahraničním studentům

Nenabízet

Předmět na webu VUT

Přednáška

13 týdnů, 3 hod./týden, nepovinné

Osnova

  • 1.–8. Zopakování a prohloubení základních pojmů z teorie pravděpodobnosti (pravděpodobnost, náhodná veličina a náhodný vektor, distribuční funkce, rozdělovací funkce, nezávislost, číselné charakteristiky náhodných veličin), transformace náhodných veličin a vektorů, číselné charakteristiky náhodných vektorů, podmíněná rozdělovací funkce a podmíněná střední hodnota, speciální zákony rozdělení.
  • 9.–13. Náhodný výběr, bodové a intervalové odhady parametrů a jejich funkcí – podstata, vlastnosti, jejich konstrukce, odhady kovarianční a korelační matice, testování statistických hypotéz – princip a podstata, jednovýběrové a dvouvýběrové testy, testy dobré shody.