Detail předmětu
Matematika
Akademický rok 2023/24
AA001 předmět zařazen v 1 studijním plánu
B-P-C-APS (N) / APS zimní semestr 1. ročník
Základní pojmy lineární algebry (matice, determinanty, soustavy lineárních algebraických rovnic). Některé pojmy vektorové algebry a jejich použití v analytické geometrii. Pojem funkce jedné reálné proměnné, limita, spojitost a derivace funkce. Některé elementární funkce, Taylorův polynom. Základy integrálního počtu funkce jedné reálné proměnné. Pravděpodobnost. Náhodné veličiny, jejich zákony rozdělení, číselné charakteristiky a základní typy rozdělení nahodných veličin. Statistické soubory, náhodný výběr, zpracování statistického materiálu.
Kredity
3 kredity
Jazyk studia
čeština
semestr
zimní
Garant předmětu
Zajišťuje ústav
Způsob a kritéria hodnocení
zápočet a zkouška
Vstupní znalosti
Základní znalosti z matematiky v rozsahu střední školy. Grafy základních elementárních funkcí (mocniny a odmocniny, kvadratická funkce, přímá a nepřímá úměra, absolutní hodnota, goniometrické funkce) a základní vlastnosti těchto funkcí. Umět provádět úpravy algebraických výrazů. Znát pojem geometrického vektoru a základy analytické geometrie ve třírozměrném euklidovském prostoru.
Učební cíle
Seznámit studenty se základy lineární algebry, řešení soustav lineárních rovnic, diferenciálního a integrálního počtu, teorie pravděpodobnosti a statistiky.
Student získá stručný přehled o metodách vyšší matematiky (maticový počet, vektorova algebra, diferenciální a integrální počet funkce jedné proměnné, diferenciální počet funkcí více proměnných, pravděpodobnost a statistika).
Student získá stručný přehled o metodách vyšší matematiky (maticový počet, vektorova algebra, diferenciální a integrální počet funkce jedné proměnné, diferenciální počet funkcí více proměnných, pravděpodobnost a statistika).
Základní literatura
Larson R., Hostetler R.P., Edwards B.H.: Calculus (with analytic geometry). Brooks Cole, 2005 (en)
NOVOTNÝ, Jiří: Matematika I, Modul 1, Základy lineární algebry, Akademické nakladatelství CERM, s.r.o., Brno 2004. ISBN: 978-80-7204-748-2 (CS) (cs)
TRYHUK, Václav, DLOUHÝ, Oldřich: Matematika I, Modul GA01–M01, Vybrané části a aplikace vektorového počtu, Akademické nakladatelství CERM, s.r.o., Brno 2004. ISBN: 978-80-7204-526-6 (CS) (cs)
DLOUHÝ, Oldřich, TRYHUK, Václav: Matematika I, Diferenciální počet funkce jedné reálné proměnné}, Akademické nakladatelství CERM, s.r.o., Brno 2008. ISBN: 978-80-7204-982-0 (CS) (cs)
DANĚČEK, Josef, DLOUHÝ, Oldřich, PŘIBYL, Oto: Matematika I, Modul 7, Neurčitý integrál, Fakulta stavební VUT, Akademické nakladatelství CERM, Brno 2007. ISBN: 978-80-7204-524-2 (CS) (cs)
DANĚČEK, Josef, DLOUHÝ, Oldřich, PŘIBYL, Oto: Matematika I, Modul 8, Určitý integrál, Fakulta stavební VUT, Akademické nakladatelství CERM, Brno 2007. ISBN: 978-80-7204-525-9 (CS) (cs)
TRYHUK, Václav, DLOUHÝ, Oldřich: Matematika I, Diferenciální počet funkcí více reálných proměnných, Akademické nakladatelství CERM, s.r.o., Brno 2004. ISBN: 80-214-2776-0 (CS) (cs)
KOUTKOVÁ, Helena, Mill, Ivo: Základy pravděpodobnosti, Akademické nakladatelství CERM, s.r.o., Brno 2008. ISBN: 978-80-7204-574-7 (CS) (cs)
NOVOTNÝ, Jiří: Matematika I, Modul 1, Základy lineární algebry, Akademické nakladatelství CERM, s.r.o., Brno 2004. ISBN: 978-80-7204-748-2 (CS) (cs)
TRYHUK, Václav, DLOUHÝ, Oldřich: Matematika I, Modul GA01–M01, Vybrané části a aplikace vektorového počtu, Akademické nakladatelství CERM, s.r.o., Brno 2004. ISBN: 978-80-7204-526-6 (CS) (cs)
DLOUHÝ, Oldřich, TRYHUK, Václav: Matematika I, Diferenciální počet funkce jedné reálné proměnné}, Akademické nakladatelství CERM, s.r.o., Brno 2008. ISBN: 978-80-7204-982-0 (CS) (cs)
DANĚČEK, Josef, DLOUHÝ, Oldřich, PŘIBYL, Oto: Matematika I, Modul 7, Neurčitý integrál, Fakulta stavební VUT, Akademické nakladatelství CERM, Brno 2007. ISBN: 978-80-7204-524-2 (CS) (cs)
DANĚČEK, Josef, DLOUHÝ, Oldřich, PŘIBYL, Oto: Matematika I, Modul 8, Určitý integrál, Fakulta stavební VUT, Akademické nakladatelství CERM, Brno 2007. ISBN: 978-80-7204-525-9 (CS) (cs)
TRYHUK, Václav, DLOUHÝ, Oldřich: Matematika I, Diferenciální počet funkcí více reálných proměnných, Akademické nakladatelství CERM, s.r.o., Brno 2004. ISBN: 80-214-2776-0 (CS) (cs)
KOUTKOVÁ, Helena, Mill, Ivo: Základy pravděpodobnosti, Akademické nakladatelství CERM, s.r.o., Brno 2008. ISBN: 978-80-7204-574-7 (CS) (cs)
Osnova
1. Matice, základní operace s maticemi, elementární úpravy matic.
2. Soustavy lineárních algebraických rovnic, Gaussova eliminační metoda.
3. Základy vektorové algebry, skalární, vektorový a smíšený součin.
4. Funkce jedné reálné proměnné. Limita, spojitost a derivace funkce.
5. Některé elementární funkce, jejich vlastnosti, aproximace Taylorovým polynomem.
6. Primitivní funkce, neurčitý integrál. Newtonův integrál.
7. Určitý Riemannův integrál a jeho výpočet, některé geometrické a fyzikální aplikace.
8. Numerický výpočet určitého integrálu.
9. Funkce dvou a více proměnných, parciální derivace a jejich použití.
10. Pravděpodobnost, náhodné veličiny.
11. Číselné charakteristiky náhodné veličiny.
12. Základní typy rozdělení.
13. Náhodný výběr, realizace náhodného výběru. Výběrové statistiky.
2. Soustavy lineárních algebraických rovnic, Gaussova eliminační metoda.
3. Základy vektorové algebry, skalární, vektorový a smíšený součin.
4. Funkce jedné reálné proměnné. Limita, spojitost a derivace funkce.
5. Některé elementární funkce, jejich vlastnosti, aproximace Taylorovým polynomem.
6. Primitivní funkce, neurčitý integrál. Newtonův integrál.
7. Určitý Riemannův integrál a jeho výpočet, některé geometrické a fyzikální aplikace.
8. Numerický výpočet určitého integrálu.
9. Funkce dvou a více proměnných, parciální derivace a jejich použití.
10. Pravděpodobnost, náhodné veličiny.
11. Číselné charakteristiky náhodné veličiny.
12. Základní typy rozdělení.
13. Náhodný výběr, realizace náhodného výběru. Výběrové statistiky.
Prerekvizity
Základní znalosti z matematiky v rozsahu střední školy. Grafy základních elementárních funkcí (mocniny a odmocniny, kvadratická funkce, přímá a nepřímá úměra, absolutní hodnota, goniometrické funkce) a základní vlastnosti těchto funkcí. Umět provádět úpravy algebraických výrazů. Znát pojem geometrického vektoru a základy analytické geometrie ve třírozměrném euklidovském prostoru.
Vymezení kontrolované výuky a způsob jejího provádění a formy nahrazování zameškané výuky
Vymezení kontrolované výuky a způsob jejího provádění stanoví každoročně aktualizovaná vyhláška garanta předmětu.
Nabízet zahraničním studentům
Nenabízet
Předmět na webu VUT
Přednáška
13 týdnů, 2 hod./týden, nepovinné
Osnova
1. Matice, základní operace s maticemi, elementární úpravy matic.
2. Soustavy lineárních algebraických rovnic, Gaussova eliminační metoda.
3. Základy vektorové algebry, skalární, vektorový a smíšený součin.
4. Funkce jedné reálné proměnné. Limita, spojitost a derivace funkce.
5. Některé elementární funkce, jejich vlastnosti, aproximace Taylorovým polynomem.
6. Primitivní funkce, neurčitý integrál. Newtonův integrál.
7. Určitý Riemannův integrál a jeho výpočet, některé geometrické a fyzikální aplikace.
8. Numerický výpočet určitého integrálu.
9. Funkce dvou a více proměnných, parciální derivace a jejich použití.
10. Pravděpodobnost, náhodné veličiny.
11. Číselné charakteristiky náhodné veličiny.
12. Základní typy rozdělení.
13. Náhodný výběr, realizace náhodného výběru. Výběrové statistiky.
2. Soustavy lineárních algebraických rovnic, Gaussova eliminační metoda.
3. Základy vektorové algebry, skalární, vektorový a smíšený součin.
4. Funkce jedné reálné proměnné. Limita, spojitost a derivace funkce.
5. Některé elementární funkce, jejich vlastnosti, aproximace Taylorovým polynomem.
6. Primitivní funkce, neurčitý integrál. Newtonův integrál.
7. Určitý Riemannův integrál a jeho výpočet, některé geometrické a fyzikální aplikace.
8. Numerický výpočet určitého integrálu.
9. Funkce dvou a více proměnných, parciální derivace a jejich použití.
10. Pravděpodobnost, náhodné veličiny.
11. Číselné charakteristiky náhodné veličiny.
12. Základní typy rozdělení.
13. Náhodný výběr, realizace náhodného výběru. Výběrové statistiky.
Cvičení
13 týdnů, 1 hod./týden, povinné
Osnova
1. Matice, základní operace s maticemi, elementární úpravy matic.
2. Soustavy lineárních algebraických rovnic, Gaussova eliminační metoda.
3. Základy vektorové algebry, skalární, vektorový a smíšený součin.
4. Funkce jedné reálné proměnné. Limita, spojitost a derivace funkce.
5. Některé elementární funkce, jejich vlastnosti, aproximace Taylorovým polynomem.
6. Primitivní funkce, neurčitý integrál. Newtonův integrál.
7. Určitý Riemannův integrál a jeho výpočet, některé geometrické a fyzikální aplikace.
8. Numerický výpočet určitého integrálu.
9. Funkce dvou a více proměnných, parciální derivace a jejich použití.
10. Pravděpodobnost, náhodné veličiny.
11. Číselné charakteristiky náhodné veličiny.
12. Základní typy rozdělení.
13. Náhodný výběr, realizace náhodného výběru. Výběrové statistiky.
2. Soustavy lineárních algebraických rovnic, Gaussova eliminační metoda.
3. Základy vektorové algebry, skalární, vektorový a smíšený součin.
4. Funkce jedné reálné proměnné. Limita, spojitost a derivace funkce.
5. Některé elementární funkce, jejich vlastnosti, aproximace Taylorovým polynomem.
6. Primitivní funkce, neurčitý integrál. Newtonův integrál.
7. Určitý Riemannův integrál a jeho výpočet, některé geometrické a fyzikální aplikace.
8. Numerický výpočet určitého integrálu.
9. Funkce dvou a více proměnných, parciální derivace a jejich použití.
10. Pravděpodobnost, náhodné veličiny.
11. Číselné charakteristiky náhodné veličiny.
12. Základní typy rozdělení.
13. Náhodný výběr, realizace náhodného výběru. Výběrové statistiky.