Detail předmětu

Základy variačního počtu

Akademický rok 2023/24

NAB018 předmět zařazen v 1 studijním plánu

NPC-SIV letní semestr 1. ročník

Základy variačních metod, aplikace na řešení diferenciálních rovnic.

Kredity

5 kreditů

Jazyk studia

čeština

semestr

letní

Garant předmětu

Zajišťuje ústav

Způsob a kritéria hodnocení

zápočet a zkouška

Vstupní znalosti

Základní kurzy matematiky v BSP.

Učební cíle

Seznámit studenty se základními pojmy funkcionální analýzy, které jsou potřebné pro pochopení základních principů variačního počtu a numerického řešení počátečních a okrajových úloh.
Studenti získají přehled o pokročilých metodách analýzy (základy funkcionální analýzy, derivace funkcionálu, věty o pevných bodech),
metodách variačního počtu a o některých metodách numerického řešení úloh pro parciální diferenciální rovnice.

Základní literatura

BOUCHALA J.: Variační metody. VŠB-TU Ostrava 2012 (cs)

Osnova

1. Lineární metrické, normované a unitární prostory. Věty o pevném bodu.
2. Lineární operátory. Pojem funkcionálu. Speciální prostory funkcí.
3. Diferenciální operátory. Počáteční a okrajové úlohy pro diferenciální rovnice.
4. První derivace funkcionálu. Potenciály některých okrajových úloh. Eulerovy nutné podmínky pro existenci lokálního extrému.
5. Druhá derivace funkcionálu. Lagrangeovy podmínky.
6. Konvexní funkcionály. Silná a slabá konvergence.
7. Klasická, minimizační a variační formulace diferenciálních problémů.
8. Primární, duální a smíšená formulace – příklady z mechaniky stavebních konstrukcí.
9. Numerické řešení počátečních úloh. Diskretizační schémata.
10. Numerické řešení okrajových úloh. Ritzova a Galerkinova metoda.
11. Metoda konečných prvků, srovnání s metodou sítí.
12. Kačanovova metoda, metoda kontrakce, metoda největšího spádu.
13. Numerické řešení obecných evolučních úloh. Plná diskretizace a semidiskretizace. Metoda přímek. Rotheho metoda časové diskretizace.
14. Přehled dalších metod: metoda hraničních prvků, metoda konečných objemů, bezsíťové přístupy. Variační nerovnosti.

Prerekvizity

Základní kurzy matematiky v BSP.

Vymezení kontrolované výuky a způsob jejího provádění a formy nahrazování zameškané výuky

Vymezení kontrolované výuky a způsob jejího provádění stanoví každoročně aktualizovaná vyhláška garanta předmětu.

Nabízet zahraničním studentům

Nenabízet

Předmět na webu VUT

Přednáška

13 týdnů, 2 hod./týden, nepovinné

Osnova

1. Lineární metrické, normované a unitární prostory. Věty o pevném bodu.
2. Lineární operátory. Pojem funkcionálu. Speciální prostory funkcí.
3. Diferenciální operátory. Počáteční a okrajové úlohy pro diferenciální rovnice.
4. První derivace funkcionálu. Potenciály některých okrajových úloh. Eulerovy nutné podmínky pro existenci lokálního extrému.
5. Druhá derivace funkcionálu. Lagrangeovy podmínky.
6. Konvexní funkcionály. Silná a slabá konvergence.
7. Klasická, minimizační a variační formulace diferenciálních problémů.
8. Primární, duální a smíšená formulace – příklady z mechaniky stavebních konstrukcí.
9. Numerické řešení počátečních úloh. Diskretizační schémata.
10. Numerické řešení okrajových úloh. Ritzova a Galerkinova metoda.
11. Metoda konečných prvků, srovnání s metodou sítí.
12. Kačanovova metoda, metoda kontrakce, metoda největšího spádu.
13. Numerické řešení obecných evolučních úloh. Plná diskretizace a semidiskretizace. Metoda přímek. Rotheho metoda časové diskretizace.
14. Přehled dalších metod: metoda hraničních prvků, metoda konečných objemů, bezsíťové přístupy. Variační nerovnosti.

Cvičení

13 týdnů, 2 hod./týden, povinné

Osnova

Navazuje přímo na jednotlivé přednášky.
1. Lineární metrické, normované a unitární prostory. Věty o pevném bodu.
2. Lineární operátory. Pojem funkcionálu. Speciální prostory funkcí.
3. Diferenciální operátory. Počáteční a okrajové úlohy pro diferenciální rovnice.
4. První derivace funkcionálu. Potenciály některých okrajových úloh. Eulerovy nutné podmínky pro existenci lokálního extrému.
5. Druhá derivace funkcionálu. Lagrangeovy podmínky.
6. Konvexní funkcionály. Silná a slabá konvergence.
7. Klasická, minimizační a variační formulace diferenciálních problémů.
8. Primární, duální a smíšená formulace – příklady z mechaniky stavebních konstrukcí.
9. Numerické řešení počátečních úloh. Diskretizační schémata.
10. Numerické řešení okrajových úloh. Ritzova a Galerkinova metoda.
11. Metoda konečných prvků, srovnání s metodou sítí.
12. Kačanovova metoda, metoda kontrakce, metoda největšího spádu.
13. Numerické řešení obecných evolučních úloh. Plná diskretizace a semidiskretizace. Metoda přímek. Rotheho metoda časové diskretizace.
14. Přehled dalších metod: metoda hraničních prvků, metoda konečných objemů, bezsíťové přístupy. Variační nerovnosti.