Detail předmětu
Matematika (APS)
Akademický rok 2024/25
BAA014 předmět zařazen v 1 studijním plánu
BPC-APS zimní semestr 1. ročník
Základní pojmy lineární algebry (matice, determinanty, soustavy lineárních algebraických rovnic). Některé pojmy vektorové algebry a jejich použití v analytické geometrii. Pojem funkce jedné reálné proměnné, limita, spojitost a derivace funkce. Některé elementární funkce, Taylorův polynom. Základy integrálního počtu funkce jedné reálné proměnné. Pravděpodobnost. Náhodné veličiny, jejich zákony rozdělení, číselné charakteristiky a základní typy rozdělení nahodných veličin. Statistické soubory, náhodný výběr, zpracování statistického materiálu.
Kredity
3 kredity
Jazyk studia
čeština
semestr
zimní
Garant předmětu
Zajišťuje ústav
Způsob a kritéria hodnocení
zápočet a zkouška
Vstupní znalosti
Základní znalosti z matematiky v rozsahu střední školy. Grafy základních elementárních funkcí (mocniny a odmocniny, kvadratická funkce, přímá a nepřímá úměra, absolutní hodnota, goniometrické funkce) a základní vlastnosti těchto funkcí. Umět provádět úpravy algebraických výrazů. Znát pojem geometrického vektoru a základy analytické geometrie ve třírozměrném euklidovském prostoru.
Učební cíle
Seznámit studenty se základy lineární algebry, řešení soustav lineárních rovnic, diferenciálního a integrálního počtu, teorie pravděpodobnosti a statistiky.
Student získá stručný přehled o metodách vyšší matematiky (maticový počet, vektorova algebra, diferenciální a integrální počet funkce jedné proměnné, diferenciální počet funkcí více proměnných, pravděpodobnost a statistika).
Student získá stručný přehled o metodách vyšší matematiky (maticový počet, vektorova algebra, diferenciální a integrální počet funkce jedné proměnné, diferenciální počet funkcí více proměnných, pravděpodobnost a statistika).
Základní literatura
LARSON, Ron, HOSTETLER, Rober, EDWARDS Bruce: Calculus With Analytic Geometry, 8th edition, Brooks Cole, 2005. ISBN: 978-0618502981 (en)
NOVOTNÝ, Jiří: Matematika I, Modul 1, Základy lineární algebry, Akademické nakladatelství CERM, s.r.o., Brno 2004. ISBN: 978-80-7204-748-2 (cs)
TRYHUK, Václav, DLOUHÝ, Oldřich: Matematika I, Modul GA01–M01, Vybrané části a aplikace vektorového počtu, Akademické nakladatelství CERM, s.r.o., Brno 2004. ISBN: 978-80-7204-526-6 (cs)
DLOUHÝ, Oldřich, TRYHUK, Václav: Matematika I, Diferenciální počet funkce jedné reálné proměnné}, Akademické nakladatelství CERM, s.r.o., Brno 2008. ISBN: 978-80-7204-982-0 (cs)
DANĚČEK, Josef, DLOUHÝ, Oldřich, PŘIBYL, Oto: Matematika I, Modul 7, Neurčitý integrál, Fakulta stavební VUT, Akademické nakladatelství CERM, Brno 2007. ISBN: 978-80-7204-524-2 (cs)
DANĚČEK, Josef, DLOUHÝ, Oldřich, PŘIBYL, Oto: Matematika I, Modul 8, Určitý integrál, Fakulta stavební VUT, Akademické nakladatelství CERM, Brno 2007. ISBN: 978-80-7204-525-9 (cs)
TRYHUK, Václav, DLOUHÝ, Oldřich: Matematika I, Diferenciální počet funkcí více reálných proměnných, Akademické nakladatelství CERM, s.r.o., Brno 2004. ISBN: 80-214-2776-0 (cs)
KOUTKOVÁ, Helena, Mill, Ivo: Základy pravděpodobnosti, Akademické nakladatelství CERM, s.r.o., Brno 2008. ISBN: 978-80-7204-574-7 (cs)
NOVOTNÝ, Jiří: Matematika I, Modul 1, Základy lineární algebry, Akademické nakladatelství CERM, s.r.o., Brno 2004. ISBN: 978-80-7204-748-2 (cs)
TRYHUK, Václav, DLOUHÝ, Oldřich: Matematika I, Modul GA01–M01, Vybrané části a aplikace vektorového počtu, Akademické nakladatelství CERM, s.r.o., Brno 2004. ISBN: 978-80-7204-526-6 (cs)
DLOUHÝ, Oldřich, TRYHUK, Václav: Matematika I, Diferenciální počet funkce jedné reálné proměnné}, Akademické nakladatelství CERM, s.r.o., Brno 2008. ISBN: 978-80-7204-982-0 (cs)
DANĚČEK, Josef, DLOUHÝ, Oldřich, PŘIBYL, Oto: Matematika I, Modul 7, Neurčitý integrál, Fakulta stavební VUT, Akademické nakladatelství CERM, Brno 2007. ISBN: 978-80-7204-524-2 (cs)
DANĚČEK, Josef, DLOUHÝ, Oldřich, PŘIBYL, Oto: Matematika I, Modul 8, Určitý integrál, Fakulta stavební VUT, Akademické nakladatelství CERM, Brno 2007. ISBN: 978-80-7204-525-9 (cs)
TRYHUK, Václav, DLOUHÝ, Oldřich: Matematika I, Diferenciální počet funkcí více reálných proměnných, Akademické nakladatelství CERM, s.r.o., Brno 2004. ISBN: 80-214-2776-0 (cs)
KOUTKOVÁ, Helena, Mill, Ivo: Základy pravděpodobnosti, Akademické nakladatelství CERM, s.r.o., Brno 2008. ISBN: 978-80-7204-574-7 (cs)
Nabízet zahraničním studentům
Nenabízet
Předmět na webu VUT
Přednáška
13 týdnů, 2 hod./týden, nepovinné
Osnova
- 1. Matice, základní operace s maticemi, elementární úpravy matic.
- 2. Soustavy lineárních algebraických rovnic, Gaussova eliminační metoda.
- 3. Základy vektorové algebry, skalární, vektorový a smíšený součin.
- 4. Funkce jedné reálné proměnné. Limita, spojitost a derivace funkce.
- 5. Některé elementární funkce, jejich vlastnosti, aproximace Taylorovým polynomem.
- 6. Primitivní funkce, neurčitý integrál. Newtonův integrál.
- 7. Určitý Riemannův integrál a jeho výpočet, některé geometrické a fyzikální aplikace.
- 8. Numerický výpočet určitého integrálu.
- 9. Funkce dvou a více proměnných, parciální derivace a jejich použití.
- 10. Pravděpodobnost, náhodné veličiny.
- 11. Číselné charakteristiky náhodné veličiny.
- 12. Základní typy rozdělení.
- 13. Náhodný výběr, realizace náhodného výběru. Výběrové statistiky.
Cvičení
13 týdnů, 1 hod./týden, povinné
Osnova
- 1. Matice, základní operace s maticemi, elementární úpravy matic.
- 2. Soustavy lineárních algebraických rovnic, Gaussova eliminační metoda.
- 3. Základy vektorové algebry, skalární, vektorový a smíšený součin.
- 4. Funkce jedné reálné proměnné. Limita, spojitost a derivace funkce.
- 5. Některé elementární funkce, jejich vlastnosti, aproximace Taylorovým polynomem.
- 6. Primitivní funkce, neurčitý integrál. Newtonův integrál.
- 7. Určitý Riemannův integrál a jeho výpočet, některé geometrické a fyzikální aplikace.
- 8. Numerický výpočet určitého integrálu.
- 9. Funkce dvou a více proměnných, parciální derivace a jejich použití.
- 10. Pravděpodobnost, náhodné veličiny.
- 11. Číselné charakteristiky náhodné veličiny.
- 12. Základní typy rozdělení.
- 13. Náhodný výběr, realizace náhodného výběru. Výběrové statistiky.