Detail předmětu
Pružnost a plasticita
Akademický rok 2022/23
BDA008 předmět zařazen v 1 studijním plánu
BPC-SI / K letní semestr 3. ročník
Základní rovnice teorie pružnosti, analýza napjatosti a deformace v bodě, rovinná napjatost a rovinná deformace, rotačně symetrické úlohy, dualita postupu řešení, energetické principy, variační metody, teorie tlustých a tenkých desek, úvod do teorie skořepin, statické řešení základových konstrukcí, modely podloží, základy pružnoplastické analýzy, fyzikální rovnice pro pružnoplastický materiál se zpevněním, analýza pružně-plastického stavu konstrukcí, mezní plastická únosnost.
Kredity
4 kredity
Jazyk studia
čeština
semestr
letní
Garant předmětu
Zajišťuje ústav
Způsob a kritéria hodnocení
zápočet a zkouška
Vstupní znalosti
Po ukončení kurzu student bude znát základní rovnice pružnosti popisující lineární chování tělesa. Bude umět použít princip virtuálních prací pro řešení jednoduchých úloh pružnosti. Je seznámen s Ritzovou metodou. Student dovede modelovat konstrukci jako 2-D úlohu pružnosti (rovinná napjatost, deformace) a zná teorii desek. Okrajově je informován o teorii skořepin. Zná principy MKP a zásady odvození jednotlivých typů konečných prvků. Znalosti metody konečných prvků (MKP) jsou postačující pro pochopení prakticky využitelných programů na bázi MKP.
Učební cíle
Během kursu student získá přehled o základních veličinách pružnosti a vztazích mezi nimi pro těleso, prut, stěnu a desku. Dále se seznámí se základními principy mechaniky - principem virtuálních prací a principem minima potenciální energie - a variačními metodami - Rizovou metodou a metodou konečných prvků a získá zkušenosti s jejich aplikací. Po skončení kursu bude schopen odvodit matice tuhosti prvků v metodě konečných prvků pro zmíněné typy konstrukcí a prakticky pracovat s výpočetními programy založenými na metodě konečných prvků.
Osnova
1. Historická zmínka o teorii pružnosti. Pole v teorii kontinua a definice stavových veličin.
2. Základní rovnice pružnosti. Odvození geometrických rovnic a fyzikální rovnic. Vlastnosti tenzorů deformace a napětí. Podmínky rovnováhy a podmínky kompatibility.
3. Analýza napjatosti a deformace v bodě. Rovinná napjatost a rovinná deformace.
Lévyho podmínka. Airyova funkce napětí. Princip řešení stěnového nosníku.
4. Rotačně symetrické úlohy – základní rovnice rovinného problému v polárních souřadnicích. Reologické modely materiálu.
5. Vliv deformace od nesilových účinků. Zobrazení napjatosti (Beckerovo-Westergaardovo, Mohrovo).
6. Potenciální energie deformace a přetvárná práce. Energetické principy. Princip virtuálních prací a variační metody v mechanice kontinua.
7. Teorie desek. Typy desek, okrajové podmínky. Zvláštní typy desek.
8. Analytické řešení desek v pravoúhlé soustavě souřadnic. Přibližné postupy řešení ohýbaných desek.
9. Úvod do teorie skořepin. Membránový a ohybový stav. Vnitřní síly u skořepin. Ploché skořepiny.
10. Statické řešení základových konstrukcí. Modely podloží.
11. Základy pružnoplastické analýzy, fyzikální rovnice pro pružnoplastický materiál se zpevněním.
12. Analýza pružně-plastického stavu a mezní plastická únosnost prutových konstrukcí.
2. Základní rovnice pružnosti. Odvození geometrických rovnic a fyzikální rovnic. Vlastnosti tenzorů deformace a napětí. Podmínky rovnováhy a podmínky kompatibility.
3. Analýza napjatosti a deformace v bodě. Rovinná napjatost a rovinná deformace.
Lévyho podmínka. Airyova funkce napětí. Princip řešení stěnového nosníku.
4. Rotačně symetrické úlohy – základní rovnice rovinného problému v polárních souřadnicích. Reologické modely materiálu.
5. Vliv deformace od nesilových účinků. Zobrazení napjatosti (Beckerovo-Westergaardovo, Mohrovo).
6. Potenciální energie deformace a přetvárná práce. Energetické principy. Princip virtuálních prací a variační metody v mechanice kontinua.
7. Teorie desek. Typy desek, okrajové podmínky. Zvláštní typy desek.
8. Analytické řešení desek v pravoúhlé soustavě souřadnic. Přibližné postupy řešení ohýbaných desek.
9. Úvod do teorie skořepin. Membránový a ohybový stav. Vnitřní síly u skořepin. Ploché skořepiny.
10. Statické řešení základových konstrukcí. Modely podloží.
11. Základy pružnoplastické analýzy, fyzikální rovnice pro pružnoplastický materiál se zpevněním.
12. Analýza pružně-plastického stavu a mezní plastická únosnost prutových konstrukcí.
Prerekvizity
Průběhy vnitřních sil na prutu, pojem napětí, deformace a přemístění, Hookův zákon, podmínky rovnováhy pro prut, fyzikální a geometrické rovnice pro prut. Napjatostní stavy prutu a jejich kombinace. Výpočet staticky neurčitých prutových soustav silovou a deformační metodou. Maticový zápis řešení.
Vymezení kontrolované výuky a způsob jejího provádění a formy nahrazování zameškané výuky
Vymezení kontrolované výuky a způsob jejího provádění stanoví každoročně aktualizovaná vyhláška garanta předmětu.
Nabízet zahraničním studentům
Nenabízet
Předmět na webu VUT
Přednáška
13 týdnů, 2 hod./týden, nepovinné
Osnova
1. Historická zmínka o teorii pružnosti. Pole v teorii kontinua a definice stavových veličin.
2. Základní rovnice pružnosti. Odvození geometrických rovnic a fyzikální rovnic. Vlastnosti tenzorů deformace a napětí. Podmínky rovnováhy a podmínky kompatibility.
3. Analýza napjatosti a deformace v bodě. Rovinná napjatost a rovinná deformace.
Lévyho podmínka. Airyova funkce napětí. Princip řešení stěnového nosníku.
4. Rotačně symetrické úlohy – základní rovnice rovinného problému v polárních souřadnicích. Reologické modely materiálu.
5. Vliv deformace od nesilových účinků. Zobrazení napjatosti (Beckerovo-Westergaardovo, Mohrovo).
6. Potenciální energie deformace a přetvárná práce. Energetické principy. Princip virtuálních prací a variační metody v mechanice kontinua.
7. Teorie desek. Typy desek, okrajové podmínky. Zvláštní typy desek.
8. Analytické řešení desek v pravoúhlé soustavě souřadnic. Přibližné postupy řešení ohýbaných desek.
9. Úvod do teorie skořepin. Membránový a ohybový stav. Vnitřní síly u skořepin. Ploché skořepiny.
10. Statické řešení základových konstrukcí. Modely podloží.
11. Základy pružnoplastické analýzy, fyzikální rovnice pro pružnoplastický materiál se zpevněním.
12. Analýza pružně-plastického stavu a mezní plastická únosnost prutových konstrukcí.
2. Základní rovnice pružnosti. Odvození geometrických rovnic a fyzikální rovnic. Vlastnosti tenzorů deformace a napětí. Podmínky rovnováhy a podmínky kompatibility.
3. Analýza napjatosti a deformace v bodě. Rovinná napjatost a rovinná deformace.
Lévyho podmínka. Airyova funkce napětí. Princip řešení stěnového nosníku.
4. Rotačně symetrické úlohy – základní rovnice rovinného problému v polárních souřadnicích. Reologické modely materiálu.
5. Vliv deformace od nesilových účinků. Zobrazení napjatosti (Beckerovo-Westergaardovo, Mohrovo).
6. Potenciální energie deformace a přetvárná práce. Energetické principy. Princip virtuálních prací a variační metody v mechanice kontinua.
7. Teorie desek. Typy desek, okrajové podmínky. Zvláštní typy desek.
8. Analytické řešení desek v pravoúhlé soustavě souřadnic. Přibližné postupy řešení ohýbaných desek.
9. Úvod do teorie skořepin. Membránový a ohybový stav. Vnitřní síly u skořepin. Ploché skořepiny.
10. Statické řešení základových konstrukcí. Modely podloží.
11. Základy pružnoplastické analýzy, fyzikální rovnice pro pružnoplastický materiál se zpevněním.
12. Analýza pružně-plastického stavu a mezní plastická únosnost prutových konstrukcí.
Cvičení
13 týdnů, 2 hod./týden, povinné
Osnova
1. Výpočet napětí a deformace s využitím rovnic pružnosti – vztah mezi napětím a přetvořením.
2. Hlavní napětí (invarianty napjatosti), výpočet pro různé případy napjatosti.
3. Kritéria pevnosti a plasticity – výpočet ekvivalentních napětí dle různých teorií.
4. Zobrazování napjatosti. Mohrova metoda
5. Určování práce vnějších sil. Aplikace Lagrangeovy a Castiglianovy teorému. Výpočet deformační energie.
6. Analytické řešení stěny – Airyova funkce napětí.
7. Princip virtuálních prací. Praktické využití Castiglianovy metody.
8. Aproximace průhybové čáry nosníku Ritzovou metodou. Aplikace Galerkinovy metody při řešení jednoduché úlohy pružnosti.
9. Klasické řešení desek – metody nekonečných řad.
10. Výpočet průběhů vnitřních sil u válcové skořepiny.
11. Stanovení mezní plastické únosnosti prutu a desky.
12. Analýza vzniku plastických kloubů u jednoduché rámové konstrukce.
2. Hlavní napětí (invarianty napjatosti), výpočet pro různé případy napjatosti.
3. Kritéria pevnosti a plasticity – výpočet ekvivalentních napětí dle různých teorií.
4. Zobrazování napjatosti. Mohrova metoda
5. Určování práce vnějších sil. Aplikace Lagrangeovy a Castiglianovy teorému. Výpočet deformační energie.
6. Analytické řešení stěny – Airyova funkce napětí.
7. Princip virtuálních prací. Praktické využití Castiglianovy metody.
8. Aproximace průhybové čáry nosníku Ritzovou metodou. Aplikace Galerkinovy metody při řešení jednoduché úlohy pružnosti.
9. Klasické řešení desek – metody nekonečných řad.
10. Výpočet průběhů vnitřních sil u válcové skořepiny.
11. Stanovení mezní plastické únosnosti prutu a desky.
12. Analýza vzniku plastických kloubů u jednoduché rámové konstrukce.