Course Details
Models of regression
Academic Year 2023/24
DA64 course is part of 12 study plans
D-P-C-SI (N) / PST Winter Semester 2nd year
D-P-C-SI (N) / FMI Winter Semester 2nd year
D-P-C-SI (N) / KDS Winter Semester 2nd year
D-P-C-SI (N) / MGS Winter Semester 2nd year
D-P-C-SI (N) / VHS Winter Semester 2nd year
D-K-C-SI (N) / VHS Winter Semester 2nd year
D-K-C-SI (N) / MGS Winter Semester 2nd year
D-K-C-SI (N) / PST Winter Semester 2nd year
D-K-C-SI (N) / FMI Winter Semester 2nd year
D-K-C-SI (N) / KDS Winter Semester 2nd year
D-K-C-GK / GAK Winter Semester 2nd year
D-K-E-SI (N) / PST Winter Semester 2nd year
regression function
linear regression model
nonlinear regression model
analysis of variance
factor analysis
The use of statistical system STATISTICA and EXCEL for regression analysis.
Credits
10 credits
Language of instruction
Czech
Semester
Course Guarantor
Institute
Forms and criteria of assessment
Entry Knowledge
Basics of the theory of probability, mathematical statistics and linear algebra - the normal distribution law, numeric characteristics of random variables and vectors and their point and interval estimates, principles of the testing of statistical hypotheses, solving a system of linear equations, inverse to a matrix.
Aims
Basic Literature
ANDĚL, J. Statistické metody. Praha: MatFyzPress, 2007, 299 s. ISBN 80-7378-003-8. (cs)
WALPOLE, R.E., MYERS, R.H. Probability and Statistics for Engineers and Scientists. 8th ed. London: Prentice Hall, Pearson education LTD, 2007, 823 p. ISBN 0-13-204767-5. (en)
Recommended Reading
MELOUN, M., MILITKÝ, J.: Statistické zpracování experimentálních dat. Praha: PLUS, 1994, 839 s. ISBN 80-85297-56-6. (cs)
HEBÁK, P., HUSTOPECKÝ, J. Vícerozměrné statistické metody 1. Praha: Informatorium, 2007. 253 s. ISBN 8-07-3330356-9. (cs)
Syllabus
2. Regression function.
3. - 5. Linear regression model.
5.-7. General linear regression model.
8. Singular linear regression model.
9.-10. Analysis of variance.
11.-12.Factor analysis.
13. Nonlinear regression model.
Prerequisites
Basics of the theory of probability, mathematical statistics and linear algebra - the normal distribution law, numeric characteristics of random variables and vectors and their point and interval estimates, principles of the testing of statistical hypotheses, solving a system of linear equations, inverse to a matrix.
Specification of controlled instruction, the form of instruction, and the form of compensation of the absences
Offered to foreign students
Course on BUT site
Lecture
13 weeks, 3 hours/week, elective
Syllabus
2. Regression function.
3. - 5. Linear regression model.
5.-7. General linear regression model.
8. Singular linear regression model.
9.-10. Analysis of variance.
11.-12.Factor analysis.
13. Nonlinear regression model.