Course Details
CAD in Transportation Structures
Academic Year 2023/24
VNC002 course is part of 2 study plans
BPC-VP Summer Semester 1st year
BPC-VP Winter Semester 1st year
Introduction into the problems. 2-D programming systems, basic characteristics of programming products from firms Intergraph, Bentley and AutoDesk. 3-D programming systems, basic characteristics of programming products from firms Intergraph, Bentley and AutoDesk.
Scanning and filtration of data. Vectorisation of mapping data. Digital model of terrain, input, formation, depiction.
Design of a horizontal alignment, stationing, significant points, description, free alignment of the line, equalisation. Longitudinal profile, vertical alignment. Methods of terrain equalisation, characteristic cross sections and slopes.
Pitching and super elevation – methods. Methods of line structure design, cubage, records, imports and exports,
Definition of a route, modeller, depiction, crossing design, design and layout of turnouts. CAD software InRoad/InRail, MxRoad/MxRail.
Introduction into modelling problems of constructions. Basic characteristics of programming products for calculations of FEM, basic phases of a model design. Basic types of tasks.
Scanning and filtration of data. Vectorisation of mapping data. Digital model of terrain, input, formation, depiction.
Design of a horizontal alignment, stationing, significant points, description, free alignment of the line, equalisation. Longitudinal profile, vertical alignment. Methods of terrain equalisation, characteristic cross sections and slopes.
Pitching and super elevation – methods. Methods of line structure design, cubage, records, imports and exports,
Definition of a route, modeller, depiction, crossing design, design and layout of turnouts. CAD software InRoad/InRail, MxRoad/MxRail.
Introduction into modelling problems of constructions. Basic characteristics of programming products for calculations of FEM, basic phases of a model design. Basic types of tasks.
Course Guarantor
Institute
Objective
The objective of the subject is to introduce students to the problems of design of transport structures in CAD software, modelling of structures and to practise acquires knowledge and skills.
Knowledge
A student acquires skills in design of transport structures in CAD software, modelling of structures.
Syllabus
1. Introduction into the problems. 2-D programming systems.
2. Basic characteristics of programming products from firms Intergraph, Bentley and AutoDesk. 3-D programming systems.
3. Basic characteristics of programming products from firms Intergraph, Bentley and AutoDesk.
4. Scanning and filtration of data. Vectorisation of mapping data.
5. Digital model of terrain, input, formation, depiction.
6. Design of a horizontal alignment, stationing, significant points, description, free alignment of the line, equalisation.
7. Longitudinal profile, vertical alignment.
8. Methods of terrain equalisation, characteristic cross sections and slopes.
9. Pitching and super elevation – methods.
10. Methods of line structure design, cubage, records, imports and exports,
11. Definition of a route, modeller, depiction, crossing design, design and layout of turnouts. CAD software InRoad/InRail, MxRoad/MxRail.
12. Introduction into modelling problems of constructions.
13. Basic characteristics of programming products for calculations of FEM, basic phases of a model design. Basic types of tasks.
2. Basic characteristics of programming products from firms Intergraph, Bentley and AutoDesk. 3-D programming systems.
3. Basic characteristics of programming products from firms Intergraph, Bentley and AutoDesk.
4. Scanning and filtration of data. Vectorisation of mapping data.
5. Digital model of terrain, input, formation, depiction.
6. Design of a horizontal alignment, stationing, significant points, description, free alignment of the line, equalisation.
7. Longitudinal profile, vertical alignment.
8. Methods of terrain equalisation, characteristic cross sections and slopes.
9. Pitching and super elevation – methods.
10. Methods of line structure design, cubage, records, imports and exports,
11. Definition of a route, modeller, depiction, crossing design, design and layout of turnouts. CAD software InRoad/InRail, MxRoad/MxRail.
12. Introduction into modelling problems of constructions.
13. Basic characteristics of programming products for calculations of FEM, basic phases of a model design. Basic types of tasks.
Prerequisites
Basic work in CAD, the average knowledge of information technology. The basic design elements of line structures.
Language of instruction
Czech
Credits
2 credits
Semester
summer
Forms and criteria of assessment
course-unit credit
Specification of controlled instruction, the form of instruction, and the form of compensation of the absences
Extent and forms are specified by guarantor’s regulation updated for every academic year.
Offered to foreign students
Not to offer
Course on BUT site
Lecture
13 weeks, 1 hours/week, elective
Syllabus
1. Introduction into the problems. 2-D programming systems.
2. Basic characteristics of programming products from firms Intergraph, Bentley and AutoDesk. 3-D programming systems.
3. Basic characteristics of programming products from firms Intergraph, Bentley and AutoDesk.
4. Scanning and filtration of data. Vectorisation of mapping data.
5. Digital model of terrain, input, formation, depiction.
6. Design of a horizontal alignment, stationing, significant points, description, free alignment of the line, equalisation.
7. Longitudinal profile, vertical alignment.
8. Methods of terrain equalisation, characteristic cross sections and slopes.
9. Pitching and super elevation – methods.
10. Methods of line structure design, cubage, records, imports and exports,
11. Definition of a route, modeller, depiction, crossing design, design and layout of turnouts. CAD software InRoad/InRail, MxRoad/MxRail.
12. Introduction into modelling problems of constructions.
13. Basic characteristics of programming products for calculations of FEM, basic phases of a model design. Basic types of tasks.
Exercise
13 weeks, 2 hours/week, compulsory
Syllabus
The following exercises are practiced teaching tasks:
1. Digital model of terrain, input, formation, depiction.
2. Design of a horizontal alignment, stationing, significant points, description, free alignment of the line, equalisation.
3. Longitudinal profile, vertical alignment.
4. Methods of terrain equalisation, characteristic cross sections and slopes.
5. Pitching and super elevation – methods.
6. Methods of line structure design, cubage, records, imports and exports,
7. Definition of way, modeler of the way, view.
8. Expanding of the way, climbing lanes.
9. Location of switches.
10. Settlement (regression) direction and height points, curvature diagram.
11. Creating excavation, landfill, etc. in a digital model.
12. Solving basic geodetic tasks (methods of alignment)