Course Details

# Mathematics 3

BAA003 course is part of 4 study plans

BPC-SI / VS Winter Semester 2nd year

BPC-EVB Winter Semester 2nd year

BKC-SI Winter Semester 2nd year

BPA-SI Winter Semester 2nd year

Course Guarantor

Institute

Language of instruction

Czech, English

Credits

5 credits

Semester

winter

Forms and criteria of assessment

course-unit credit and examination

Offered to foreign students

To offer to students of all faculties

Course on BUT site

Lecture

13 weeks, 2 hours/week, elective

Syllabus

1. Definition of double integral, basic properties and calculation. 2. Transformations and applications of double integral. 3. Definition of triple integral, basic properties and calculation. 4. Transformations and applications of triple integral. 5. Notion of a curve. Curvilinear integral in a scalar field and its applications. 6. Vector field. Divergence and rotation of a vector field. Curvilinear integral in a vector field and its applications. 7. Green`s theorem and its application. 8. Independence of a curvilinear integral on the integration path. 9. Basics of ordinary differential equations. 10. First order differential equations - separable, linear, exact equations. 11. N-th order homogeneous linear differential equations with constant coefficients. 12. Solutions to non-homogeneous linear differential equations. 13. Variation-of-constants method. Applications in technology.

Exercise

13 weeks, 2 hours/week, compulsory

Syllabus

1. Quadrics and integration revision. 2. Double integral calculation. 3. Double integral transformations. 4. Double integral applications. 5. Triple integral calculation. 6. Transformations and applications of triple integral. 7. Curvilinear integral in a scalar field and its applications. 8. Curvilinear integral in a vector field and its applications. 9. Green`s theorem. Independence of a curvilinear integral on the integration path. Potential. 10. First order differential equations - separable, linear. 11. Exact equation. N-th order homogeneous linear differential equations with constant coefficients. 12. Solutions to non-homogeneous linear differential equations with special-type right-hand sides. 13. Variation-of-constants method. Seminar evaluation.