Course Details
Concrete Structures (S)
Academic Year 2022/23
NLA022 course is part of 3 study plans
NPC-SIS Winter Semester 1st year
NPA-SIS Winter Semester 1st year
NKC-SIS Winter Semester 1st year
Principle of prestressing. Basic concept of pretensioning and post-tensioning. Material properties. Pretensioning operations, technology. Post-tensioning operations, technology. Losses of prestressing. Equivalent load method, statically determinate and indeterminate structures. Response of structures subjected to prestressing, decompression state. Resistance of against cracks. Tensile stresses in the concrete after cracking. Control of crack width and deflection. Ultimate limit state, full stress-strain response, shear resistance. Design of prestressed concrete structural members and structural systems, analysis and detailing. Design of concrete structures exposed to fire. Methods and static analysis of strengthening of concrete and masonry structures.
Course Guarantor
Institute
Objective
Understanding of the behaviour of prestressed concrete structures. Design of prestressed concrete structural members and structural systems, analysis and detailing.
Knowledge
A student gains these knowledge and skills:
• Understanding of the behaviour of prestressed concrete structures.
• Design of prestressed concrete structural members and structural systems, analysis and detailing.
Syllabus
1. Introduction, basic concept of prestressing. Behaviour of non-prestressed and prestressed concrete beams. Material properties, manufacturing.
2. Prestressing technology, basic terminology. Pre- and post-tensioning prestressed concrete, prestressing systems.
3. Prestressing and its changes.
4. Effects of prestressing on concrete members and structures. Equivalent load method. Design of prestressing using the load balancing method. Influence of the construction metod on design of prestressed structures.
5. General principles of prestress members dimensioning. Ultimate limit state (ULS) of prestressed members loaded by axial force and bending moment, decompression state, initial stress-state of the cross-section. Prestressed members loaded in shear and torsion, stress analysis, proportioning.
6. Analysis of the anchorage zone - stress, calculation model, check of resistance, reinforcement. Serviceability limit states (SLS). Limitation of stress, crack resistence, calculation of crack width. Control of deflection.
7.–8. Design and realisation of selected prestressed structures of building and engineering constructions.
9. Design of concrete structures exposed to fire. The effect of the fire to the structure. Determination of fire resistance.
10.–11. The behaviour of materials during effects of fire. Design approaches. Simplified computational methods.
12. Principles of structural approach to the reconstruction of concrete and masonry structures and foundations, methods of strengthening.
13. Strengthening of concrete and masonry structures by prestressing – methods of strengthening, realisation, structural analysis.
Prerequisites
structural mechanics, theory of elasticity and plasticity, design of concrete members, design of concrete and masonry structures
Language of instruction
Czech, English
Credits
5 credits
Semester
winter
Forms and criteria of assessment
course-unit credit and examination
Specification of controlled instruction, the form of instruction, and the form of compensation of the absences
Extent and forms are specified by guarantor’s regulation updated for every academic year.
Offered to foreign students
To offer to students of all faculties
Course on BUT site
Lecture
13 weeks, 2 hours/week, elective
Syllabus
1. Introduction, basic concept of prestressing. Behaviour of non-prestressed and prestressed concrete beams. Material properties, manufacturing.
2. Prestressing technology, basic terminology. Pre- and post-tensioning prestressed concrete, prestressing systems.
3. Prestressing and its changes.
4. Effects of prestressing on concrete members and structures. Equivalent load method. Design of prestressing using the load balancing method. Influence of the construction metod on design of prestressed structures.
5. General principles of prestress members dimensioning. Ultimate limit state (ULS) of prestressed members loaded by axial force and bending moment, decompression state, initial stress-state of the cross-section. Prestressed members loaded in shear and torsion, stress analysis, proportioning.
6. Analysis of the anchorage zone - stress, calculation model, check of resistance, reinforcement. Serviceability limit states (SLS). Limitation of stress, crack resistence, calculation of crack width. Control of deflection.
7.–8. Design and realisation of selected prestressed structures of building and engineering constructions.
9. Design of concrete structures exposed to fire. The effect of the fire to the structure. Determination of fire resistance.
10.–11. The behaviour of materials during effects of fire. Design approaches. Simplified computational methods.
12. Principles of structural approach to the reconstruction of concrete and masonry structures and foundations, methods of strengthening.
13. Strengthening of concrete and masonry structures by prestressing – methods of strengthening, realisation, structural analysis.
Exercise
13 weeks, 2 hours/week, compulsory
Syllabus
1. Effect of prestressing on statically determinate structures. Students are to solved tasks individually.
2. Project: Design and assessment of prestressed roof girder. Action and combination of loads, design of cross-section, characteristics of materials, types of prestressing steels, structural requirements.
3.–4. Continuation of project. Design of eccentricity and magnitude of prestressing force, design of amount of prestressed strands.
5.–6. Continuation of project. Immediate (short-term) losses of prestressing. Long-term (time dependent) losses of prestressing.
7. Continuation of project. Verification of design by serviceability limit state – stress limitation, crack control.
8.–9. Continuation of project. Verification of design by ultimate limit state – bending moment.
10. Continuation of project. Scheme of girder reinforcement by prestressing strands.
11.–12. Design of concrete structures exposed to fire.
13. Project and tasks submission. Credit.