Course Details
Applied physics
Academic Year 2022/23
DB62 course is part of 4 study plans
D-K-E-SI (N) Summer Semester 1st year
D-K-C-SI (N) Summer Semester 1st year
D-P-E-SI (N) Summer Semester 1st year
D-P-C-SI (N) Summer Semester 1st year
Selected problems from heat conduction. Hydrodynamic a thermokinetic similarity. Heat transfer from a moving heat-carrying medium. Selected problems from heat radiation. Combined transfer of heat.
Course Guarantor
Institute
Objective
Mastering advanced knowledge from building thermodynamics. Accent is put on the current research results. Illustrations will have the form of excerpts from journal papers which enables students to acquire basic formal skills necessary for presentation of research results in scientific journals.
Knowledge
Mastering advanced knowledge from building thermodynamics. Accent is put on the current research results. Illustrations will have the form of excerpts from journal papers which enables students to acquire basic formal skills necessary for presentation of research results in scientific journals.
Syllabus
1.Overview of basic notions of heat conduction.
2.Steady state heat conduction through a sandwich cylinder structure.
3.Heat transfer through heterogeneous interphases.
4.Estimation of surface coefficients of heat transfer using the
principle of physical similarity.
5.Overview of basic notions of heat convection.
6.Hydrodynamic and thermokinetic similarity.
7.Heat transfer from a moving heat-carrying medium.
8.Overview of basic notions of heat radiation.
9.Kirchhoff laws of radiating field.
10.Radiation of absolute black bodies and gray bodies.
11.Heat exchange between two planes.
12.Radiation within closed air cavities inside building structures.
13.Combined heat transfer.
Prerequisites
Basic knowledge from physical and mathematical courses of bachelor and master studies.
Language of instruction
Czech
Credits
8 credits
Semester
summer
Forms and criteria of assessment
examination
Specification of controlled instruction, the form of instruction, and the form of compensation of the absences
Extent and forms are specified by guarantor’s regulation updated for every academic year.
Offered to foreign students
Not to offer
Course on BUT site
Lecture
13 weeks, 3 hours/week, elective
Syllabus
1.Overview of basic notions of heat conduction.
2.Steady state heat conduction through a sandwich cylinder structure.
3.Heat transfer through heterogeneous interphases.
4.Estimation of surface coefficients of heat transfer using the
principle of physical similarity.
5.Overview of basic notions of heat convection.
6.Hydrodynamic and thermokinetic similarity.
7.Heat transfer from a moving heat-carrying medium.
8.Overview of basic notions of heat radiation.
9.Kirchhoff laws of radiating field.
10.Radiation of absolute black bodies and gray bodies.
11.Heat exchange between two planes.
12.Radiation within closed air cavities inside building structures.
13.Combined heat transfer.