Course Details
Applications of mathematical methods in economics
Academic Year 2024/25
DA67 course is part of 7 study plans
D-K-C-SI (N) / VHS Winter Semester 2nd year
D-K-C-SI (N) / MGS Winter Semester 2nd year
D-K-C-SI (N) / PST Winter Semester 2nd year
D-K-C-SI (N) / FMI Winter Semester 2nd year
D-K-C-SI (N) / KDS Winter Semester 2nd year
D-K-C-GK / GAK Winter Semester 2nd year
D-K-E-SI (N) / PST Winter Semester 2nd year
Basics of graph theory, finding optimum graph solutions.
Finding the minimum spanning tree of a graph.
Finding the shortest path in a graph.
Determining the maximum flow in a network.
NP-complete problems.
Travelling salesman problem.
Linear programming.
Transport prpoblem.
Integer programming.
Basics of the theory of games.
Credits
10 credits
Language of instruction
Czech
Semester
Course Guarantor
Institute
Forms and criteria of assessment
Entry Knowledge
Aims
Teach the students the basics of the theory of graphs necessary to formulate combinatorial problems on graphs. Teach them how to solve the most frequently occurring problems using efficient algorithms. Make them familiar with some heuristic approaches to intractable problems. Teach them the basics of linear programming and the theory of games and their applications in business.
The students will know the basics of the theory of graphs necessary to formulate combinatorial problems on graphs. They will be able to solve the most frequently occurring problems using efficient algorithms. They will also be familiar with some heuristic approaches to intractable problems. They will learn the basics of linear programming and the theory of games and their applications in business.
Basic Literature
Švrček J., Lineární programování v úlohách, Skriptum UP Olomouc 2003, ISBN 80-744-0705-1 (cs)
Recommended Reading
Nešetřil, J. - Teorie grafů, SNTL 1979 (cs)
Offered to foreign students
Course on BUT site
Lecture
13 weeks, 3 hours/week, elective
Syllabus
1. Basics of graph theory I 2. Basics of graph theory II. 3. Finding the minimum soanning tree in a graph. 4. Finding the shortest path in a graph. 5. Determining a maximum flow in a network I. 6. Determining a maximum flow in a network II. 7. NP-complete problems. 8. Travelling salesman problem. 9. Travelling salesman problem, heuristic methods. 10. Linear programming, theoretical basis. 11. Simplex method. 12. Integer programming. 13. Matrix games, solutions in mixed strategies.