Course Details

Technical Thermodynamics

Academic Year 2022/23

BJA020 course is part of 1 study plan

BPC-SI Summer Semester 1st year

The course covers the fundamentals and development of applied thermodynamics and its importance in the thermal processes of building materials production. The laws of thermodynamics, fluid flow, heat sharing, vapor thermodynamics, moist air thermodynamics, i-x diagram of moist air, drying process, fundamentals of combustion, heat balance of furnaces and an overview of furnace units in building materials production. Last but not least, the energetics of building materials production.

Course Guarantor

Ing. Lenka Nevřivová, Ph.D.

Institute

Institute of Technology of Building Materials and Components

Objective

Complete overview about the importance of heat techniques in decisive technological processes of building materials production, especially of production economy and ecological aspects. Basic outlook in national and worldwide balance of energetic resources, mastery of heat balances and of tasks connected wit heat savings solution especially in energetically most demanding processes of drying and burning, environmental responsibility improvement of building materials manufacturers to produce sustain ecologically acceptable products.

Knowledge

The student will gain knowledge about the importance of thermal technology in the crucial technological processes of production of building materials, both in terms of process quality and production, and especially the economics of production and ecological aspects. The student will gain a basic orientation in the national and global balance of energy resources. Strengthen the awareness of the ecological responsibility of manufacturers of construction materials as sustainable environmentally sound products.

The graduate of the course is able to:
Utilize the first and second laws of thermodynamics in calculations of heat and work for all characteristic processes of an ideal gas.
Explain and apply the i-x diagram of water vapor.
Explain and apply the i-x diagram of moist air.
Determine the heat and material balance of a theoretical and actual dryer.
Describe the different types of drying and dryers, characterize their advantages and disadvantages in terms of thermal energy consumption.
Determine the heat and material balance of a tunnel kiln.

 

Prerequisites

Basic knowledge of physics, knowledge of technological processes for binders and ceramic products production, especially drying and burning processes.Furthermore, knowledge of the physics of building materials.

 

 

Language of instruction

Czech

Credits

5 credits

Semester

summer

Forms and criteria of assessment

course-unit credit and examination

Specification of controlled instruction, the form of instruction, and the form of compensation of the absences

Extent and forms are specified by guarantor’s regulation updated for every academic year.

Offered to foreign students

Not to offer

Course on BUT site

https://www.vut.cz/en/students/courses/detail/254916

Lecture

13 weeks, 2 hours/week, elective

Syllabus

1.Thermodynamic laws, state and technological quantities, volume work and technical work, cyclic processes.
2.Heat diagrams, entropy, irreversibility of processes in practice.
3. Flow of liquids, terminology, energetic balance, flow loss in real systems of building materials.
4. Thermodynamics of vapours, real gases and vapours, heat diagrams.
5. Diagrams application, the state of vapours and their changes, mixing of vapours and of vapour with water.
6. Thermodynamics of humid air, state variables, state equations.
7. Molliere i-x diagram and its applications, state transformations, mixing of air flows.
8. Heat transmission and mass transfer, principles of the drying process, statics of drying, balances, type of dryers.
9. Solid, liquid and gaseous fuels, components of fuels, possibilities of alternative fuels, predictions concerning the securing of primary energy sources.
10. Fundamentals of combustion, combustion statics, quantity of air and of combustion gases.
11. Principles of kilns heat balance, survey of kiln units for the production of building materials, burners.

Exercise

13 weeks, 2 hours/week, compulsory

Syllabus

The seminar focuses on theory and calculations. Students are required to have a calculator, ruler and pencil.

  1. The three basic processes of ideal gas, temperature measurement, thermal expansion.
  2. First law of thermodynamics and its application in the four basic processes, calculations of heat and work.
  3. Second law of thermodynamics, entropy, reversile and irreversible processes, the Carnot cycle (first part).
  4. Second law of thermodynamics, entropy, reversible and irreversible processes, the Carnot cycle (second part).
  5. Damp steam, saturated steam, superheated steam, basic terminology, credit test I.
  6. Damp steam, saturated steam, superheated steam, calculations.
  7. Thermodynamics of humid air, terminology concerning heat diagram of humid air, simple calculations.
  8. Thermodynamics of humid air, heat balance of dryers.
  9. Heat exchange, heat balance of tunel kiln (first part).
  10. Heat balance of tunel kiln (second part).
  11. Credit test II.