Course Details
Mathematics
Academic Year 2023/24
BAA014 course is part of 1 study plan
BPC-APS Winter Semester 1st year
Credits
3 credits
Language of instruction
Czech
Semester
Course Guarantor
Institute
Forms and criteria of assessment
Entry Knowledge
Aims
Students will have a short overview on methods of higher mathematics(operations with matrices, algebra of vectors, differential and integral calculus of functions of one variable, differential calculus of functions of several variables, probability and statistics).
Basic Literature
NOVOTNÝ, Jiří: Matematika I, Modul 1, Základy lineární algebry, Akademické nakladatelství CERM, s.r.o., Brno 2004. ISBN: 978-80-7204-748-2 (cs)
TRYHUK, Václav, DLOUHÝ, Oldřich: Matematika I, Modul GA01–M01, Vybrané části a aplikace vektorového počtu, Akademické nakladatelství CERM, s.r.o., Brno 2004. ISBN: 978-80-7204-526-6 (cs)
DLOUHÝ, Oldřich, TRYHUK, Václav: Matematika I, Diferenciální počet funkce jedné reálné proměnné}, Akademické nakladatelství CERM, s.r.o., Brno 2008. ISBN: 978-80-7204-982-0 (cs)
DANĚČEK, Josef, DLOUHÝ, Oldřich, PŘIBYL, Oto: Matematika I, Modul 7, Neurčitý integrál, Fakulta stavební VUT, Akademické nakladatelství CERM, Brno 2007. ISBN: 978-80-7204-524-2 (cs)
DANĚČEK, Josef, DLOUHÝ, Oldřich, PŘIBYL, Oto: Matematika I, Modul 8, Určitý integrál, Fakulta stavební VUT, Akademické nakladatelství CERM, Brno 2007. ISBN: 978-80-7204-525-9 (cs)
TRYHUK, Václav, DLOUHÝ, Oldřich: Matematika I, Diferenciální počet funkcí více reálných proměnných, Akademické nakladatelství CERM, s.r.o., Brno 2004. ISBN: 80-214-2776-0 (cs)
KOUTKOVÁ, Helena, Mill, Ivo: Základy pravděpodobnosti, Akademické nakladatelství CERM, s.r.o., Brno 2008. ISBN: 978-80-7204-574-7 (cs)
Syllabus
1. Matrices, basic operations.
2. Systems of linear algebraic equations, Gauss elimination method.
3. Basics of vector algebra, dot, cross, and scalar triple product.
4. Functions of one variable. Limit, continuity and derivative of a function.
5. Some elementary functions, their properties, approximation by Taylor polynomial.
6. Antiderivative and indefinite integral, Newton integral.
7. Riemann’s integral and its calculation, some applications in geometry and physics.
8. Numeric calculation of a definite integral.
9. Two- and more-functions, partial derivative and its use.
10. Probability, random variables.
11. Numerical characteritics of a random variable.
12. Basic distributions.
13. Random sampling, statistics
Prerequisites
Specification of controlled instruction, the form of instruction, and the form of compensation of the absences
Offered to foreign students
Course on BUT site
Lecture
13 weeks, 2 hours/week, elective
Syllabus
1. Matrices, basic operations.
2. Systems of linear algebraic equations, Gauss elimination method.
3. Basics of vector algebra, dot, cross, and scalar triple product.
4. Functions of one variable. Limit, continuity and derivative of a function.
5. Some elementary functions, their properties, approximation by Taylor polynomial.
6. Antiderivative and indefinite integral, Newton integral.
7. Riemann’s integral and its calculation, some applications in geometry and physics.
8. Numeric calculation of a definite integral.
9. Two- and more-functions, partial derivative and its use.
10. Probability, random variables.
11. Numerical characteritics of a random variable.
12. Basic distributions.
13. Random sampling, statistics
Exercise
13 weeks, 1 hours/week, compulsory
Syllabus
1. Matrices, basic operations.
2. Systems of linear algebraic equations, Gauss elimination method.
3. Basics of vector algebra, dot, cross, and scalar triple product.
4. Functions of one variable. Limit, continuity and derivative of a function.
5. Some elementary functions, their properties, approximation by Taylor polynomial.
6. Antiderivative and indefinite integral, Newton integral.
7. Riemann’s integral and its calculation, some applications in geometry and physics.
8. Numeric calculation of a definite integral.
9. Two- and more-functions, partial derivative and its use.
10. Probability, random variables.
11. Numerical characteritics of a random variable.
12. Basic distributions.
13. Random sampling, statistics