Course Details

Selected Chapters of Concrete Structures 2 (K)

Academic Year 2023/24

NLB038 course is part of 1 study plan

NPC-SIK Winter Semester 2nd year

Non-linear material models of plain and reinforced concrete and their application in some commercial programming systems of FEM (finite element method).
Modelling of concrete members sections behaviour (linear and non-linear analysis) using the FEM analysis, Non-linear analysis of reinforced concrete sections.
Solution of state of stress effected by temperature load.

Course Guarantor

Institute

Objective

Analysis of linear and non-linear behaviour of concrete structures sections.
Non-linear static analysis of concrete structures and their parts.

Knowledge

A student gains these knowledge and skills:
• Analysis of linear and non-linear behaviour of concrete structures sections.
• Non-linear static analysis of concrete structures and their parts.

Syllabus

1. Modelling of cross-section behaviour of concrete members, linear and non-linear analysis. General formulation of the problem as physically non-linear task.
2. Solution of the conditions of equilibrium. Iterative methods. Control of loadd-bearing capacity.
3. Non-linear material models of concrete and reinforced concrete.
4. Cracks, cracks localization, fracture energy, modelling of concrete in tension.
5. Plane state of stress, concrete crushing. Methods of solution of non-linear equations system.
6. Methods of non-linear task solution: layered, integral.
7. Non-linear modelling of flat concrete structures.
8. Non-linear analysis of prestressed concrete sections. Optimisation of reinforcement design into a section.
9. Non-linear material models of concrete and reinforced concrete in some comercial software of FEM systems.
10. Temperature effects on concrete – calculation of temperature stress acting on structures.

Prerequisites

structural mechanics, numerical methods, concrete structures, prestressed concrete

Language of instruction

Czech

Credits

5 credits

Semester

winter

Forms and criteria of assessment

course-unit credit and examination

Specification of controlled instruction, the form of instruction, and the form of compensation of the absences

Extent and forms are specified by guarantor’s regulation updated for every academic year.

Offered to foreign students

Not to offer

Course on BUT site

Lecture

13 weeks, 2 hours/week, elective

Syllabus

1. Modelling of cross-section behaviour of concrete members, linear and non-linear analysis. General formulation of the problem as physically non-linear task. 2. Solution of the conditions of equilibrium. Iterative methods. Control of loadd-bearing capacity. 3. Non-linear material models of concrete and reinforced concrete. 4. Cracks, cracks localization, fracture energy, modelling of concrete in tension. 5. Plane state of stress, concrete crushing. Methods of solution of non-linear equations system. 6. Methods of non-linear task solution: layered, integral. 7. Non-linear modelling of flat concrete structures. 8. Non-linear analysis of prestressed concrete sections. Optimisation of reinforcement design into a section. 9. Non-linear material models of concrete and reinforced concrete in some comercial software of FEM systems. 10. Temperature effects on concrete – calculation of temperature stress acting on structures.

Exercise

13 weeks, 1 hours/week, compulsory

Syllabus

1.–3. Calculation analysis of the cross section bearing capacity loaded by combination of bending moment and normal force – physical non-linearity of the concrete and steel. Cross section layer model for compression part. Algorithm development of the calculation with help of Microsoft Excel program. 4. Correction. 5.–6. Deflection computation of the two way slab within Scia Engineer computing program with the help of non-linear calculation. 7. Correction. 8.–9. Deflection computation of the two way slab within Scia Engineer computing program with help of linear iterative computation – non-linear behaviour is taken into account by modification of the stiffness matrix within every iterative step. 10. Tasks submission. Credit.