Course Details

# Structural Analysis 2

BD004 course is part of 6 study plans

B-P-C-SI (N) Winter Semester 1st year

B-P-C-SI (N) Winter Semester 1st year

B-K-C-SI (N) Winter Semester 1st year

B-K-C-SI (N) Winter Semester 1st year

B-P-E-SI (N) Winter Semester 1st year

B-P-E-SI (N) Winter Semester 1st year

Principle of deflection methods and its variant. Calculation model and degree of kinematic indeterminacy. Deflection method for planar structures. Analysis of straight bar with variable cross-section. Local values, primary vector and stiffness matrix. Bar connected by joints, cantilever. Bar with constant cross-section. Geometric transformation, global matrix of bar. Analysis of bar systems, compilation of equations, localization. Determination of ended forces and diagram of components of internal forces at bars. Determination of reactions and controlling of solution. Another variants for building equations up.
Solution of rectangular frames and continuous girders. Temperature influences, shift of supports. Truss girder is solved by deflection method. Bar with variable cross-section with height linear ramping, determination of deflection coefficient. Solution of spatial frames using deflection method. Calculation model for simplified deflection method.

Course Guarantor

doc. Ing. Jiří Kytýr, CSc.

Institute

Institute of Structural Mechanics

Objective

Introduction to the stiffness Method for analysis of the statically indeterminate of planar bar systems. Simplification to the stiffness method and deflection method for analysis of planar bar systems, plane trusses. Influence of the beam haunch.

Knowledge

The student will learn the structural analysis of the statically indeterminate planar bar systems by the stiffness method, namely plane frames and plane trusses, including the temperature effects and shifts of the supports.

Syllabus

1. Introduction, content and outline of the subject. Meaning of deflection method, creation and development of this method, variants of deflection method. Calculation model and degree of kinematic indeterminacy.
2. General deflection method for planar frame structures. Equilibrium of conditions, parameters of deflection, bounded nodes. Scalar and matrix form.
3. Analysis of straight bar with variable cross-section: primary and secondary state.
4. Local values, primary vector and the stiffness matrix. Bar connected by joints, cantilever.
5. Bar with constant cross-section. Geometric transformation, global matrix of bar.
6. Analysis of the frame system, compilation of the system of equations, code number and localization.
7. Completion of solution of bars – calculation of internal forces and deflection at bars. Determination of reactions and controlling of the solution. Errors during the solution of frames by using deflection method. Another variant for assembly of equations.
8. Speciality of solution of rectangular frames and continuous girders. Temperature influences, shift of supports.
9. Truss girder is solved by using deflection method.
10. Bar with variable cross-section, height linear ramping, determination of deflection coefficients (analytic solution, numerical integration)
11. Solution of spatial frames solved by general deflection method.
12. Calculation model for simplified deflection method in scalar form.
13. End moments, internal forces. Joint and storey equation.

Prerequisites

Static analysis of planar statically determinate truss systems, straight and cranked girders. Principle of virtual work and theorem of virtual work reciprocity and calculation of deflection of frame systems by using method of unit forces. Solution of planar frame structures using force method.

Language of instruction

Czech, English

Credits

4 credits

Semester

winter

Forms and criteria of assessment

course-unit credit and examination

Specification of controlled instruction, the form of instruction, and the form of compensation of the absences

Extent and forms are specified by guarantor’s regulation updated for every academic year.

Offered to foreign students

Not to offer

Course on BUT site

https://www.vut.cz/en/students/courses/detail/252830

Lecture

13 weeks, 2 hours/week, elective

Syllabus

1. Introduction, content and outline of the subject. Meaning of deflection method, creation and development of this method, variants of deflection method. Calculation model and degree of kinematic indeterminacy.
2. General deflection method for planar frame structures. Equilibrium of conditions, parameters of deflection, bounded nodes. Scalar and matrix form.
3. Analysis of straight bar with variable cross-section: primary and secondary state.
4. Local values, primary vector and the stiffness matrix. Bar connected by joints, cantilever.
5. Bar with constant cross-section. Geometric transformation, global matrix of bar.
6. Analysis of the frame system, compilation of the system of equations, code number and localization.
7. Completion of solution of bars – calculation of internal forces and deflection at bars. Determination of reactions and controlling of the solution. Errors during the solution of frames by using deflection method. Another variant for assembly of equations.
8. Speciality of solution of rectangular frames and continuous girders. Temperature influences, shift of supports.
9. Truss girder is solved by using deflection method.
10. Bar with variable cross-section, height linear ramping, determination of deflection coefficients (analytic solution, numerical integration)
11. Solution of spatial frames solved by general deflection method.
12. Calculation model for simplified deflection method in scalar form.
13. End moments, internal forces. Joint and storey equation.

Exercise

13 weeks, 2 hours/week, compulsory

Syllabus

1. Revision of solution of elementary statically indeterminate systems using deflection method. Diagrams of internal forces. Analysis of statically and kinematic determinacy of frame systems.
2. Calculation models of frame structures for deflection method, analysis of kinematic indeterminacy. Solution of cranked statically determinate girder with forces loading using general deflection method.
3. Completion of solution of cranked statically determinate girder with force loading, ending forces, diagram of internal forces and reactions.
4. Solution of continuous girder with force loading using general deflection method.
5. Solution of more complicated statically indeterminate frames using general deflection method.
6. Completion of solution of more complicated frames – equation system, ending forces, diagram of internal forces and reactions. Control test 1.