Course Details
Railway Constructions I
Academic Year 2022/23
CN001 course is part of 1 study plan
N-P-C-SI (N) / K Winter Semester 1st year
Wheel – rail interface, wheelset and track dimensions, equivalent conicity, lateral movement of wheelset on straight track
Wheel – rail contact stresses, Hertz theory, adhesion and adhesion force, train resistances
Vehicle in curve, Vogel theory, Heumann theory, forces on wheelset, derailment condition
Track loads, vertical, lateral and longitudinal forces, influence of higher operation speed
Static track design, rail stresses, sleeper stresses, vertical stresses on ballast bed and formation, computer models
The rail, manufacturing, welding, testing and acceptance, rail failures, rail grinding
Theory of continuous welded rail. Longitudinal forces, stability of continuous welded rail.
Modern railway track structures.
Dynamic track design. Principles, simple dynamic model of track wheel interaction. Dynamic models of track, critical train velocity, dynamic response on vehicle, wheelset, transfer of vibrations between wheel and rail.
Switches and crossing, types, turnout parts. Geometry of set of switches and common crossings. Manufactured types and notation.
The single turnout, stock rail, switch rail (blade), common and crossings, sleepers, fastenings systems. Operating and locking systems. Crossings and slip points.
Turnout collections. Cross overs, junctions, sets of turnouts. Turnouts in curves.
High speed turnouts, development of new turnouts structures.
Wheel – rail contact stresses, Hertz theory, adhesion and adhesion force, train resistances
Vehicle in curve, Vogel theory, Heumann theory, forces on wheelset, derailment condition
Track loads, vertical, lateral and longitudinal forces, influence of higher operation speed
Static track design, rail stresses, sleeper stresses, vertical stresses on ballast bed and formation, computer models
The rail, manufacturing, welding, testing and acceptance, rail failures, rail grinding
Theory of continuous welded rail. Longitudinal forces, stability of continuous welded rail.
Modern railway track structures.
Dynamic track design. Principles, simple dynamic model of track wheel interaction. Dynamic models of track, critical train velocity, dynamic response on vehicle, wheelset, transfer of vibrations between wheel and rail.
Switches and crossing, types, turnout parts. Geometry of set of switches and common crossings. Manufactured types and notation.
The single turnout, stock rail, switch rail (blade), common and crossings, sleepers, fastenings systems. Operating and locking systems. Crossings and slip points.
Turnout collections. Cross overs, junctions, sets of turnouts. Turnouts in curves.
High speed turnouts, development of new turnouts structures.
Credits
4 credits
Language of instruction
Czech
Semester
winter
Course Guarantor
Institute
Forms and criteria of assessment
course-unit credit and examination
Entry Knowledge
A student acquires skills in interaction between railway vehicle and track, static track design, switches, crossings and turnouts.
Aims
The objective of the subject is to introduce students to the problems of interaction between railway vehicle and track, static track design, switches, crossings and turnouts and to practise acquires knowledge and skills.
Basic Literature
PLÁŠEK, Otto, Pavel ZVĚŘINA, Richard SVOBODA a Milan MOCKOVČIAK. Železniční stavby: Železniční spodek a svršek. Brno: Akademické nakladatelství CERM, 2004. ISBN 80-214-2621-7. (cs)
IŽVOLT, Libor, Janka ŠESTÁKOVÁ a Michal ŠMALO. Železničné staviteľstvo 2: Diagnostika, mechanizácia prác a technologické postupy údržby železničnej jazdnej dráhy. Žilina: EDIS, 2015. ISBN 978-80-554-1169-9. (sk)
ESVELD, Coenraad. Modern railway track. 2nd ed. Zaltbommel: MRT-Productions, c2001. ISBN 90-800-3243-3. (en)
LICHTBERGER, Bernhard. Track compendium: track system, substructure, maintenance, economics. 2. Hamburg: DVV Media Group, 2011. ISBN 978-3-7771-0421-8. (en)
IŽVOLT, Libor, Janka ŠESTÁKOVÁ a Michal ŠMALO. Železničné staviteľstvo 2: Diagnostika, mechanizácia prác a technologické postupy údržby železničnej jazdnej dráhy. Žilina: EDIS, 2015. ISBN 978-80-554-1169-9. (sk)
ESVELD, Coenraad. Modern railway track. 2nd ed. Zaltbommel: MRT-Productions, c2001. ISBN 90-800-3243-3. (en)
LICHTBERGER, Bernhard. Track compendium: track system, substructure, maintenance, economics. 2. Hamburg: DVV Media Group, 2011. ISBN 978-3-7771-0421-8. (en)
Recommended Reading
FRÝBA, Ladislav. Dynamika železničních mostů. Praha: Academia, 1992, 326 s. ISBN 80-200-0262-6. (cs)
Syllabus
1. Turnout collections, labelling. Single crossover in curve. High speed turnouts, development of new turnouts structures.
2. The single turnout, stock rail, switch rail (blade), common and crossings, bearers, locking device, fastenings systems. Sets of turnouts.
3. Wheel – rail interface, wheelset and track dimensions, equivalent conicity, lateral movement of wheelset on straight track.
4. Wheel – rail contact stresses, Hertz theory, adhesion and adhesion force, train resistances. Vogel theory, Heumann theory, forces on wheelset, derailment condition.
5. Static track design. Vertical stresses on ballast bed and formation and its deformation resistance. Climatic conditions.
6. Static track design, rail stresses, sleeper stresses.
7. Theory of continuous welded rail. Longitudinal forces, stability of continuous welded rail.
8. Dynamic track design.
9. Principles, simple dynamic model of track wheel interaction.
10. Dynamic models of track, critical train velocity, dynamic response on vehicle, wheelset, transfer of vibrations between wheel and rail.
11. The rail, assessment, defects and failures , grinding.
12. Permanent way on bridges. Continuous welded rail on bridges.
13. Railway temporary bridges.
2. The single turnout, stock rail, switch rail (blade), common and crossings, bearers, locking device, fastenings systems. Sets of turnouts.
3. Wheel – rail interface, wheelset and track dimensions, equivalent conicity, lateral movement of wheelset on straight track.
4. Wheel – rail contact stresses, Hertz theory, adhesion and adhesion force, train resistances. Vogel theory, Heumann theory, forces on wheelset, derailment condition.
5. Static track design. Vertical stresses on ballast bed and formation and its deformation resistance. Climatic conditions.
6. Static track design, rail stresses, sleeper stresses.
7. Theory of continuous welded rail. Longitudinal forces, stability of continuous welded rail.
8. Dynamic track design.
9. Principles, simple dynamic model of track wheel interaction.
10. Dynamic models of track, critical train velocity, dynamic response on vehicle, wheelset, transfer of vibrations between wheel and rail.
11. The rail, assessment, defects and failures , grinding.
12. Permanent way on bridges. Continuous welded rail on bridges.
13. Railway temporary bridges.
Prerequisites
Track alignment design parameters and its spatial positions, railway track design.
Railway substructure, subdivision and construction of rail substructure and its construction layers, construction and shape of earth formation
Railway superstructure and modern railway structure design
Railway substructure, subdivision and construction of rail substructure and its construction layers, construction and shape of earth formation
Railway superstructure and modern railway structure design
Specification of controlled instruction, the form of instruction, and the form of compensation of the absences
Extent and forms are specified by guarantor’s regulation updated for every academic year.
Offered to foreign students
Not to offer
Course on BUT site
Lecture
13 weeks, 2 hours/week, elective
Syllabus
1. Turnout collections, labelling. Single crossover in curve. High speed turnouts, development of new turnouts structures.
2. The single turnout, stock rail, switch rail (blade), common and crossings, bearers, locking device, fastenings systems. Sets of turnouts.
3. Wheel – rail interface, wheelset and track dimensions, equivalent conicity, lateral movement of wheelset on straight track.
4. Wheel – rail contact stresses, Hertz theory, adhesion and adhesion force, train resistances. Vogel theory, Heumann theory, forces on wheelset, derailment condition.
5. Static track design. Vertical stresses on ballast bed and formation and its deformation resistance. Climatic conditions.
6. Static track design, rail stresses, sleeper stresses.
7. Theory of continuous welded rail. Longitudinal forces, stability of continuous welded rail.
8. Dynamic track design.
9. Principles, simple dynamic model of track wheel interaction.
10. Dynamic models of track, critical train velocity, dynamic response on vehicle, wheelset, transfer of vibrations between wheel and rail.
11. The rail, assessment, defects and failures , grinding.
12. Permanent way on bridges. Continuous welded rail on bridges.
13. Railway temporary bridges.
2. The single turnout, stock rail, switch rail (blade), common and crossings, bearers, locking device, fastenings systems. Sets of turnouts.
3. Wheel – rail interface, wheelset and track dimensions, equivalent conicity, lateral movement of wheelset on straight track.
4. Wheel – rail contact stresses, Hertz theory, adhesion and adhesion force, train resistances. Vogel theory, Heumann theory, forces on wheelset, derailment condition.
5. Static track design. Vertical stresses on ballast bed and formation and its deformation resistance. Climatic conditions.
6. Static track design, rail stresses, sleeper stresses.
7. Theory of continuous welded rail. Longitudinal forces, stability of continuous welded rail.
8. Dynamic track design.
9. Principles, simple dynamic model of track wheel interaction.
10. Dynamic models of track, critical train velocity, dynamic response on vehicle, wheelset, transfer of vibrations between wheel and rail.
11. The rail, assessment, defects and failures , grinding.
12. Permanent way on bridges. Continuous welded rail on bridges.
13. Railway temporary bridges.
Exercise
13 weeks, 1 hours/week, compulsory
Syllabus
1. Crossover in curve
2. Turnouts and crossings assembly
3. Vehicle in curve, Vogel theory, Heumann theory, forces on wheelset, derailment condition.
4. Static track design,
5. Stability of continuous railway track
6. Permanent way on bridges
7. Submitting of calculations and project, credit.
2. Turnouts and crossings assembly
3. Vehicle in curve, Vogel theory, Heumann theory, forces on wheelset, derailment condition.
4. Static track design,
5. Stability of continuous railway track
6. Permanent way on bridges
7. Submitting of calculations and project, credit.