EVALUATION OF PAIRWISE DISTANCES AMONG POINTS FORMING A REGULAR ORTHOGONAL GRID IN A HYPERCUBE

Václav SADÍLEK, Miroslav VOŘECHOVSKÝ*

Institute of Structural Mechanics, Faculty of Civil Engineering, Brno University of Technology, Czech Republic

Received 22 March 2018; accepted 19 June 2018

Abstract. Cartesian grid is a basic arrangement of points that form a regular orthogonal grid (ROG). In some applications, it is needed to evaluate all pairwise distances among ROG points. This paper focuses on ROG discretization of a unit hypercube of arbitrary dimension. A method for the fast enumeration of all pairwise distances and their counts for a high number of points arranged into high-dimensional ROG is presented. The proposed method exploits the regular and collapsible pattern of ROG to reduce the number of evaluated distances. The number of unique distances is identified and frequencies are determined using combinatorial rules. The measured computational speed-up compared to a naïve approach corresponds to the presented theoretical analysis. The proposed method and algorithm may find applications in various fields. The paper shows application focused on the behaviour of various distance measures with the motivation to find the lower bounds on the criteria of point distribution uniformity in Monte Carlo integration.

Keywords: full factorial design, design of experiments, pairwise distances, Audze-Eglãjs criterion, optimization, periodic space.

Introduction

The measuring of distances is fundamental to geospatial analysis (Tobler 1970). It is closely related to the concept of route. For example, the package gdistance (van Etten 2012) was designed to determine grid-based distances and routes, and to be used in combination with other packages available within R (R Core Team 2016). Another application of distance distributions between points in spatial processes can be found when modelling connectivity in wireless mobile systems such as cellular, ad-hoc and sensor networks. Since connectivity can be expressed as a function of the distance between nodes, distance distributions between points in spatial processes are of special importance (Moltchanov 2012).

The study of point distribution is also very relevant to the field of design of experiments (DoE) and statistical sampling for Monte Carlo integration. The present paper primarily concerns the distribution of points relevant to statistical sampling for computer experiments (Iman, Conover 1980; Morris, Mitchell 1995), where the optimal placement of sampling points is an as yet unsolved problem.

In computer experimentation (Sacks et al. 1989), which is a powerful tool for the investigation of problems encompassing the randomness of observed phenomena, the task is to prepare a plan of the simulations that should be performed, i.e. what is known as the Design of Experiments (DoE) should be carried out. A similar task is included in the response surface method first introduced by Box (1954) and since then improved and adapted in various ways (e.g. Bucher, Bourgund 1990; Gupta, Manohar 2004; Hamzah et al. 2017), where training points have to be placed appropriately.

In Monte Carlo integration it is desirable to minimize the number of simulations (point count N_{sim}) while making sure statistical estimates remain of high quality. This is achieved by the uniform filling of the design domain, which is a unit N_{var}-dimensional hypercube (N_{var} is the number of input random variables), and the appropriate transformation of points of such a sampling plan in accordance with the required probability distribution and mutual dependencies among the inputs. Individual simulations are then represented by design points placed within the hypercube. Designs for the placement of points inside the design domain that supposedly distribute the points uniformly are known as space filling designs (see e.g. Damblin et al. 2013).
Designs with a general N_{sim} and N_{var} that are supposed to fill the hypercube uniformly are usually sought for via heuristic optimization (Morris, Mitchell 1995; Mortazavi et al. 2017; Siddiquea, Adeliba 2016; Vořechovský, Novák 2009). There are many different criteria that are designed to measure this uniformity and are subject to minimization during such optimization. One of the criteria that accentuate the space-filling property of the final design is the Audze-Eglâjs (AE) criterion (Audze, Eglâjs 1977). Another example is the periodic version of the AE criterion, hereinafter referred to as the PAE criterion (Eliáš, Vořechovský 2016), which removes a major flaw of the AE criterion. Many other criteria have been defined with the aim of ensuring the uniform filling of a given space. They are often based on the evaluation of discrepancy, e.g. Centered L_2-discrepancy (Fang, Ma 2001), Wrap-Around L_2-discrepancy (Fang, Ma 2001). Maximin or miniMax criteria (Husslage 2006; Johnson et al. 1990) may also be used. The criteria used for the illustration of application in this article are the Audze-Eglâjs (AE) criterion (Audze, Eglâjs 1977; Bates et al. 2003), or its generalization into the ϕ criterion (Morris, Mitchell 1995) and the PAE criterion (Eliáš, Vořechovský 2016).

The effective control of an optimization algorithm is often conditional upon the knowledge of the lower bound of the optimization criterion (the minimum that can be reached during optimization) and the mean value. Various means of optimization exist. For example, heuristic algorithms based on columnwise-pairwise exchanges (the shuffling of pre-sampled coordinates) (Li, Wu 1997; Morris, Mitchell 1995; Vořechovský, Novák 2009; Chen et al. 2016; Huang et al. 2016) can drastically profit from the knowledge of the minimum (or maximum in the case of maximization) of the objective function (e.g. the AE criterion).

The available methods of filling a unit hypercube with points are basically divided into two types: deterministic and stochastic. Historically, non-random lattices (such as ROGs, triangular lattices or hexagonal lattices) have also been used as models for a number of physical and environmental phenomena, e.g. elements of crystals, the placement of seedlings in the landscape, the locations of facilities in cities, etc. (Chu 2006). Therefore, the evaluation of distances in regular lattices may be important in these fields of expertise as well. Deterministic methods place the design points in regular patterns and may ensure perfect space-filling. One such example is full factorial design (Chudoba et al. 2013; Montgomery 2006). It is a basic design that, in repeatable computer experiments, has only one representant for each location and explores combinations of all factors with all levels for that factor.

In this paper, we consider such a Cartesian grid (regular orthogonal grid) of N_{sim} points in a design domain that is a unit hypercube of dimension N_{var} (sometimes denoted as $[0,1]^{N_{\text{var}}}$). In particular, we study the pairwise distances among all pairs of these N_{sim} points. The list of the distances featured in such a design is needed in the evaluation of many criteria concerning the optimality of that design (Maximin, miniMax, AE, PAE, ϕ criterion) (Audze, Eglâjs 1977; Bates et al. 2003; Eliáš, Vořechovský 2016; Husslage 2006; Johnson et al. 1990; Morris, Mitchell 1995). Due to the regularity and perfect space-filling of certain deterministic designs it is reasonable to expect these designs to provide a criterion value that is the minimum or close to the minimum for a given configuration (N_{sim}, N_{var}). The ROG designs studied in this paper are presumed to be optimal or near-optimal designs as regards many criteria related to uniformity, regularity, discrepancy and space-fillingness. It is supposed that they provide conservative estimates of the lower bounds on the design optimality criteria.

Since these deterministic designs are restricted just to specific numbers of design points ($N_{\text{sim}}=N_{\text{var}}$, N being a natural number expressing the number of different input values for each random input variable), the article also anticipates the possibility of interpolation of the lower bound for an arbitrary N_{sim} of a stochastic design.

This paper presents a method for the fast enumeration of all pairwise distances among points arranged into a regular orthogonal grid (ROG) in a unit hypercube and is organized as follows. Section 1 describes the ROG arrangement of points. Section 2 provides an analysis of distances in ROG and identifies main transformations of simple distances identified by simple combinatorial operations. Section 3 presents the speed-up compared to naïve evaluation of distances. Section 4 presents an application of the
method in determining the bounds of optimality criterion and design of computer experiments.

1. Unit hypercube filled with regular orthogonal grid of points

A Grid or Mesh is defined as smaller shapes formed after the discretization of a geometric domain. A regular grid is defined as a tessellation of N_{var}-dimensional Euclidean space by congruent paralleloptopes (e.g. bricks). Several types of gridding systems exist, e.g. hexagonal grids or triangular grids generalized to arbitrary dimensions. This paper considers a rectangular domain (a unit hypercube) and its division into a regular Cartesian grid. A Cartesian grid (ROG) of points is a special case where the elements are equal lines, squares, cubes, etc.

We consider a ROG of points arranged in the unit hypercube arranged such that the number of points reads:

$$N_{\text{sim}} = N_{\text{var}}^N,$$

(1)

where N is the number of equidistant coordinates along each individual dimension.

It corresponds to a tessellation of a unit hypercube into N_{sim} identical cubes; the points are placed in the intersections of lines passing through their centroids. In this arrangement, the points form an orthogonal grid inside a unit hypercube the dimension of which is N_{var}. Examples of such hypercubes are a line ($N_{\text{var}} = 1$), a square ($N_{\text{var}} = 2$), a cube, etc. In this paper, ROG is considered such that the number of equidistant points, N, is identical along each edge. Figure 1 shows examples of such ROGs for various dimensions. An ith point of ROG is a row vector with N_{var} coordinates:

$$x_i = \left(x_{i,1}, x_{i,2}, \ldots, x_{i,v}, \ldots, x_{i,N_{\text{var}}} \right).$$

(2)

The coordinates are found within the unit hypercube: $0 \leq x_{i,v} \leq 1$. All points then form a matrix \mathbf{x} (also referred to as the sampling plan in Section 4):

$$\mathbf{x} = \left[\begin{array}{cccc}
 x_1 & \cdots & x_{1,v} & \cdots & x_{1,N_{\text{var}}} \\
 \vdots & \ddots & \vdots & \ddots & \vdots \\
 x_i & \cdots & x_{i,v} & \cdots & x_{i,N_{\text{var}}} \\
 \vdots & \ddots & \vdots & \ddots & \vdots \\
 x_{N_{\text{sim}}} & \cdots & x_{N_{\text{sim}},v} & \cdots & x_{N_{\text{sim}},N_{\text{var}}} \\
\end{array} \right].$$

(3)

The notation used in this paper is such that the number or symbol following the comma in the lower index stands for the dimension $v \in (1, N_{\text{var}})$.

When all the coordinates are multiplied by number N then the sampling plan becomes a matrix of rank numbers, π. In this way the ROG is scaled from the unit hypercube in to a hypercube of length N. Individual points form row vectors of indices: $\pi_i = \left(\pi_{i,1}, \pi_{i,2}, \ldots, \pi_{i,v}, \ldots, \pi_{i,N_{\text{var}}} \right)$, where $i = 1, \ldots, N_{\text{sim}}$ and $\pi_{i,v} \in \{1, 2, \ldots, N\}$, see Figure 1 left – the rank numbers are denoted on the top axis.

$$\pi = \left[\begin{array}{cccc}
 \pi_{1,1} & \cdots & \pi_{1,v} & \cdots & \pi_{1,N_{\text{var}}} \\
 \pi_{i,1} & \cdots & \pi_{i,v} & \cdots & \pi_{i,N_{\text{var}}} \\
 \pi_{N_{\text{sim}},1} & \cdots & \pi_{N_{\text{sim}},v} & \cdots & \pi_{N_{\text{sim}},N_{\text{var}}} \\
\end{array} \right].$$

(4)

The uniform distribution of points within the unit hypercube is considered with the coordinates:

$$x_{i,v} = \frac{\pi_{i,v} - 1}{2}, \quad 1 \leq i \leq N_{\text{sim}}, \quad 1 \leq v \leq N_{\text{var}}.$$

(5)

The pairwise difference of points i and j is a row vector:

$$\delta_{ij} = \pi_i - \pi_j,$$

(6)

that consists of differences of rank numbers along individual dimensions: $\delta_{ij,v} = \pi_{i,v} - \pi_{j,v}$. Using these differences in index numbers, the Euclidean distance between points i and j reads:

$$L_{ij} = \frac{1}{N} \sqrt{\sum_{v=1}^{N_{\text{var}}} \delta_{ij,v}^2}.$$

(7)

The number of distances between all pairs of N_{sim} points is generally:

$$N_p = \frac{(N_{\text{sim}})^2}{2} = \frac{N_{\text{sim}}(N_{\text{sim}} - 1)}{2}.$$

(8)

This number is $O(N_{\text{sim}}^2)$ which implies its rapid growth with increasing discretization N and the dimension N_{var}. The calculation of distances between all pairs of points in ROG can be simplified.

2. Analysis of distances in ROG

The ROG is a collapsible arrangement and therefore the projections of pairwise distances along individual dimensions imply repeated vectors of index differences δ_{ij}. It is possible to obtain a list of all possible vectors of index differences, δ_{ij}, by considering only a limited list of vectors, δ_i. This list contains vectors that exhaust unique vectors δ_i irrespective of the order of elements. The number of such types of vectors is denoted as N_c. The vectors δ_i are indexed by “i” and their list is selected so as to represent distances from the point $\pi_1 = (1, \ldots, 1)$. The point π_1 has the lowest possible indices and is placed in the “bottom left corner” of the hypercube. Therefore, we can write the vectors as:

$$\delta_i \equiv \delta_{ii} = \pi_i - \pi_1, \quad 1 \leq i \leq N_c.$$

(9)

The considered set of points π_i is selected to exhaust all points that fulfil:

$$\{ i : \pi_{i,v} \geq \pi_{1,v}, \text{ for } 1 \leq v < w \leq N_{\text{var}} \}.$$

(10)

In other words, all vectors π_i form all possible non-increasing sequences of indices. Figure 2 illustrates the sit-
It helps to show that the number of vector types is proportional to $\frac{n}{v}$ and $\frac{n}{v}$, Eqn (13).

The full list of vectors is divided into three lists of vectors of dimensions 1, 2 and 3. It can be seen that the points in increasing dimensions progressively form a simplex.

We are now interested in obtaining the total number of such vectors δ_i. For a given design with (N,N_{var}), the number is equal to the number of ways to place N types of elements into a vector of length N_{var} (number of multisubsets). These are combinations with repetition:

$$N_c = \binom{N}{N_{\text{var}}} = \binom{N_{\text{var}} + N - 1}{N_{\text{var}}} = \frac{(N_{\text{var}} + N - 1)!}{N_{\text{var}}!(N - 1)!}. \quad (11)$$

As can be seen from Figure 2, when $N = N_{\text{var}} = 3$, the number of vector types is $N_c = 10$. Eqn (11) can be simplified by decomposing the factorial in the numerator and cancelling the $(N - 1)!$ terms in the numerator and denominator:

$$N_c = \frac{\prod_{i=0}^{N_{\text{var}}-1} (N + i)}{N_{\text{var}}!}. \quad (12)$$

Now, it is easy to write the bounds on N_c by taking either $i = 0$ (lower bound) or $i = N_{\text{var}}/2$ (upper bound):

$$\frac{N_{\text{sim}}}{N_{\text{var}}!} \leq N_c \leq \frac{(N + N_{\text{var}})^{N_{\text{var}}}}{2N_{\text{var}}!}. \quad (13)$$

The lower bound on the left hand side provides a useful estimate that quickly tends towards N_c with increasing N. It helps to show that the number of vector types is much lower than the total number of pairs, N_p. A direct comparison of Eqn (8) with the lower bound in Eqn (13) reveals that while N_p is proportional to N_{sim}, the number N_c is proportional to N_{sim} only. This fact is documented in Figure 4 (left), where the number of pairs, N_p, is independent of dimension and steeply grows with increasing N_{sim}. The number N_c slightly depends on N_{var}; however, the slope is half of that for N_p.

To show a more complex example of vectors δ_i, Table 1 presents all vectors δ_i for $N = 5$ and $N_{\text{var}} = 3$. The number of pairwise distances in such a grid is $N_p = 7,750$, while the number of unique types of vectors is $N_c = 35$. The table is accompanied by the corresponding Euclidean point distances in a unit hypercube, L_{u} (squared and multiplied by N^2). Eqn (7) can be reused to calculate the Euclidean lengths using the index differences $\delta_{i,t} = \delta_{i,t,v}$:

$$N \cdot L_u = ||\delta_i|| = \sqrt{\sum_{v=1}^{N_{\text{var}}} \delta_{i,t,v}^2}. \quad (14)$$

With all possible vector types, δ_i, and the associated distances, L_u, we are now interested in obtaining the total number of occurrences of each vector type, denoted as n_i. One can show that this number is a product of three coefficients:

$$n_i = n_p^t \times n_d^t \times n_d^d, \quad 2 \leq i \leq N_c, \quad (15)$$

where the three coefficients n_p^t, n_d^t and n_d^d represent three types of spatial transformations of δ_i: rotations, reflections and translations. Note that we index the vector types from $t = 2$; this is because δ_i is the null-vector. One can check that the number of pairwise distances (Eqn 8) equals to the sum of all n_i’s:

$$N_p = \sum_{i=2}^{N_c} n_i = \binom{N_{\text{sim}}}{2}. \quad (16)$$

The coefficients are derived in the following subsections.

2.1. Number of permutations n_p^t of integer difference vectors

When considering a distance corresponding to a certain pattern δ_i, it is important to count the number of ways to achieve this distance from the point π_i. In particular, n_p^t corresponds to the number of ways to rotate the vector around the point π_i, which is equivalent to renumbering the dimensions. In other words, one must consider how many times the differences $\delta_{i,t,v}$ can be permuted. To make
Table 1. Enumeration of all vectors \(\mathbf{δ}_i \) with their corresponding numbers \(n_i \) and the associated lengths in a unit hypercube for a 3D grid \((N_{\text{var}} = 3) \) with \(N = 5 \) points along each dimension.

<table>
<thead>
<tr>
<th>(t)</th>
<th>(\mathbf{δ}_i)</th>
<th>(n_i^p)</th>
<th>(n_i^d)</th>
<th>(n_i^d)</th>
<th>(n_i)</th>
<th>((N \cdot L)^2)</th>
<th>((N \cdot L)^3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(0, 0, 0)</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>2</td>
<td>(1, 0, 0)</td>
<td>3</td>
<td>1</td>
<td>100</td>
<td>300</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>(2, 0, 0)</td>
<td>3</td>
<td>1</td>
<td>75</td>
<td>225</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>(3, 0, 0)</td>
<td>3</td>
<td>1</td>
<td>50</td>
<td>150</td>
<td>9</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>(4, 0, 0)</td>
<td>3</td>
<td>1</td>
<td>25</td>
<td>75</td>
<td>16</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>(1, 1, 0)</td>
<td>3</td>
<td>2</td>
<td>80</td>
<td>480</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>7</td>
<td>(2, 1, 0)</td>
<td>6</td>
<td>2</td>
<td>60</td>
<td>720</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>8</td>
<td>(3, 1, 0)</td>
<td>6</td>
<td>2</td>
<td>40</td>
<td>480</td>
<td>10</td>
<td>5</td>
</tr>
<tr>
<td>9</td>
<td>(4, 1, 0)</td>
<td>6</td>
<td>2</td>
<td>20</td>
<td>240</td>
<td>17</td>
<td>2</td>
</tr>
<tr>
<td>10</td>
<td>(2, 2, 0)</td>
<td>3</td>
<td>2</td>
<td>45</td>
<td>270</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>11</td>
<td>(3, 2, 0)</td>
<td>6</td>
<td>2</td>
<td>30</td>
<td>360</td>
<td>13</td>
<td>8</td>
</tr>
<tr>
<td>12</td>
<td>(4, 2, 0)</td>
<td>6</td>
<td>2</td>
<td>15</td>
<td>180</td>
<td>20</td>
<td>5</td>
</tr>
<tr>
<td>13</td>
<td>(3, 3, 0)</td>
<td>3</td>
<td>2</td>
<td>20</td>
<td>120</td>
<td>18</td>
<td>8</td>
</tr>
<tr>
<td>14</td>
<td>(4, 3, 0)</td>
<td>6</td>
<td>2</td>
<td>10</td>
<td>120</td>
<td>25</td>
<td>5</td>
</tr>
<tr>
<td>15</td>
<td>(4, 4, 0)</td>
<td>3</td>
<td>2</td>
<td>5</td>
<td>75</td>
<td>32</td>
<td>2</td>
</tr>
<tr>
<td>16</td>
<td>(1, 1, 1)</td>
<td>1</td>
<td>4</td>
<td>64</td>
<td>256</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>17</td>
<td>(2, 1, 1)</td>
<td>3</td>
<td>4</td>
<td>48</td>
<td>576</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>18</td>
<td>(3, 1, 1)</td>
<td>3</td>
<td>4</td>
<td>32</td>
<td>384</td>
<td>11</td>
<td>6</td>
</tr>
<tr>
<td>19</td>
<td>(4, 1, 1)</td>
<td>3</td>
<td>4</td>
<td>16</td>
<td>192</td>
<td>18</td>
<td>3</td>
</tr>
<tr>
<td>20</td>
<td>(2, 2, 1)</td>
<td>3</td>
<td>4</td>
<td>36</td>
<td>432</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>21</td>
<td>(3, 2, 1)</td>
<td>6</td>
<td>4</td>
<td>24</td>
<td>576</td>
<td>14</td>
<td>9</td>
</tr>
<tr>
<td>22</td>
<td>(4, 2, 1)</td>
<td>6</td>
<td>4</td>
<td>12</td>
<td>288</td>
<td>21</td>
<td>6</td>
</tr>
<tr>
<td>23</td>
<td>(3, 3, 1)</td>
<td>3</td>
<td>4</td>
<td>16</td>
<td>192</td>
<td>19</td>
<td>9</td>
</tr>
<tr>
<td>24</td>
<td>(4, 3, 1)</td>
<td>6</td>
<td>4</td>
<td>8</td>
<td>192</td>
<td>26</td>
<td>6</td>
</tr>
<tr>
<td>25</td>
<td>(4, 4, 1)</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>48</td>
<td>33</td>
<td>3</td>
</tr>
<tr>
<td>26</td>
<td>(2, 2, 2)</td>
<td>1</td>
<td>4</td>
<td>27</td>
<td>108</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>27</td>
<td>(3, 2, 2)</td>
<td>3</td>
<td>4</td>
<td>18</td>
<td>216</td>
<td>17</td>
<td>12</td>
</tr>
<tr>
<td>28</td>
<td>(4, 2, 2)</td>
<td>3</td>
<td>4</td>
<td>9</td>
<td>108</td>
<td>24</td>
<td>9</td>
</tr>
<tr>
<td>29</td>
<td>(3, 3, 2)</td>
<td>3</td>
<td>4</td>
<td>12</td>
<td>144</td>
<td>22</td>
<td>12</td>
</tr>
<tr>
<td>30</td>
<td>(4, 3, 2)</td>
<td>6</td>
<td>4</td>
<td>6</td>
<td>144</td>
<td>29</td>
<td>9</td>
</tr>
<tr>
<td>31</td>
<td>(4, 4, 2)</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>36</td>
<td>36</td>
<td>6</td>
</tr>
<tr>
<td>32</td>
<td>(3, 3, 3)</td>
<td>1</td>
<td>4</td>
<td>8</td>
<td>32</td>
<td>27</td>
<td>12</td>
</tr>
<tr>
<td>33</td>
<td>(4, 3, 3)</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>48</td>
<td>34</td>
<td>9</td>
</tr>
<tr>
<td>34</td>
<td>(4, 4, 3)</td>
<td>3</td>
<td>4</td>
<td>2</td>
<td>24</td>
<td>41</td>
<td>6</td>
</tr>
<tr>
<td>35</td>
<td>(4, 4, 4)</td>
<td>1</td>
<td>4</td>
<td>1</td>
<td>4</td>
<td>48</td>
<td>3</td>
</tr>
</tbody>
</table>

An example, \(\mathbf{δ}_2 = (1,0,0) \) corresponds to unit distance from \(\mathbf{r}_i \) along the first dimension. However, the same type of vector can also be placed along the remaining two dimensions \((0,1,0) \) and \((0,0,1) \), because we consider the metric to be isotropic. Basically, one has to count the number of different arrangements of indexes \(\delta_{1,v} \), some of which might be identical. In other words, one has to count the number of permutations with repetition:

\[
n_i^p = \frac{N_{\text{var}}!}{n_i^0! \cdot n_i^1! \cdots n_i^N_{\text{var}}!} = \frac{N_{\text{var}}!}{(n_i)_1!}, \]

(17)

where \(n_{i,k} \) are the numbers of repetitions of index differences \(k \) in vector \(\mathbf{δ}_i \). These numbers of repetitions can be counted as:

\[
n_{i,k} = \sum_{v=1}^{N_{\text{var}}} \mathbf{1}(\delta_{1,v} = k),
\]

(18)

where \(\mathbf{1}(x) \) is an indicator function returning one if there is a match, i.e. a repetition \((x = 0) \). Otherwise \((x \neq 0) \), the indicator function returns zero.

To explain how the formula works, we return to the example of vector \(\mathbf{δ}_2 = (1,0,0) \). The total number of permutations of these three index differences is \(N_{\text{var}}! \), see the numerator in Eqn (17). However, since the zero difference is featured more than once, some arrangements in the permutations are identical. In particular, the zero difference is repeated twice and therefore one has to consider that permutations with repetition only count for different arrangements. The numerator in Eqn (17) must be divided by the numbers of arrangements of indistinguishable differences.

One has to go through the list of all possible index differences, \(k \in \{0,1,\ldots,N_{\text{var}}-1\} \), that can occur in \(\mathbf{δ}_i \), and count the number of occurrences for each \(k \). In this example, the zero difference yielding \(n_{2,0} = 2 \) is featured twice, the unit difference \((n_{2,1} = 1) \) once and an index difference of two or higher \((n_{2,2} = n_{2,3} = n_{2,4} = 0) \) zero times. Therefore, the denominator reads \(2! \cdot 1! \cdot 0! \cdot 0! = 2 \). Finally, the number of distinguishable arrangements of \(\mathbf{δ}_2 = (1,0,0) \) is therefore \(n_i^p = 3! / 2 = 3 \), see Table 1.

Figure 3 (left) illustrates that \(\mathbf{δ}_1 = (3,2) \) a 2D design has the same distance from \(\mathbf{r}_1 \) as a vector \((2,3) \), so that \(n_i^p = 2 \).

\[\text{Figure 3. Illustration of the three types of transformation corresponding to } n_i^p, n_i^d \text{ and } n_i^p \text{ for a grid with } N = 5 \text{ and } N_{\text{var}} = 2 \]

2.2. Number of space diagonals \((r - \text{gonals}) n_i^d \)

The second coefficient, \(n_i^d \), corresponds to the number of reflections of each vector type, \(\mathbf{δ}_i \). The vector \(\mathbf{δ}_i \) forms a space diagonal \((r - \text{gonal}, \text{i.e. the longest diagonal}) \) of a hyperrectangle (sometimes called an \(n \)-orthotope or just a box). The dimension of such a diagonal \(\mathbf{δ}_i \) can be quantified as the number of nonzero index differences:

\[
n_i^d = \sum_{v=1}^{N_{\text{var}}} \mathbf{1}(\delta_{1,v} \neq 0), \quad 1 \leq r_i \leq N_{\text{var}},
\]

(19)
where \(I(x) \) is an indicator function returning one for nonzero integer differences \(\delta_{i,v} \) and zero otherwise. For a given dimension, \(r_i \), the number of various space diagonals in a hyper-rectangle is:

\[
n^d_i = 2^{r_i - 1}.
\]

(20)

For example, the number of space diagonals for vectors \(\delta_6 = (1,1,0) \) and \(\delta_7 = (2,1,0) \) forming diagonals of a square/rectangle is equal to \(n^d_2 = n^d_3 = 2 \) and the number of triagonals in 3 dimensional space with vectors \(\delta_{16} = (1,1,1) \) or \(\delta_{17} = (2,1,1) \) (cube/cuboid) is \(n^d_{16} = n^d_{17} = 4 \).

Figure 3 (centre) illustrates that a two-dimensional vector \((1,3,2) \) is one of two possible diagonals in the same rectangle, so that of \(n^d_{11} = 2 \).

2.3. Number of hyperrectangles \(n^p \)

The last coefficient, \(n^p \), corresponds to all possible translations of a “sub-hyperrectangle” within the hypercube. The coefficient is a product of the numbers of ways to translate the hyperrectangle along each dimension:

\[
n^p = \prod_{v=1}^{N_{var}} (N - \delta_{i,v}).
\]

(21)

The vector \(\delta_{11} = (3,2) \) featured in Figure 3 (left and centre) is shown to have \(n^p_{11} = 6 \) possible placements within the square shown in Figure 3 (right).

2.4. Histogram of pairwise distances

Equations (14) and (15) enable the evaluation of all pairwise distances (vector types \(\delta_i \)) and their counts, \(n_i \), in an ROG. We note that the list of vectors \(\delta_i \) may not represent the list of unique pairwise distances. The reason is that the sum of the squared projections of several different vectors \(\delta_i \) may be the same, see e.g. vectors \(\delta_4 \) and \(\delta_20 \) in Table 1. To obtain the most highly condensed list of different lengths and their frequencies possible, we propose sorting the vectors according to length and grouping the identical ones. The numbers of unique distances are plotted by green lines in Figure 4 (left).

In Figure 5, histograms of all distances \(L \), squared distances \(L^2 \) and distances raised to the power \(N_{var} + 1 \) are presented for various dimensions \(N_{var} \). The reason for presenting \(L^{N_{var} + 1} \) will become clear in Section 4. These histograms were obtained for a high number of points, \(N_{sim} \).

![Figure 4. Left: number of pairwise distances. The number of all pairs, \(N_p \), (black line) is compared with the number \(N_c \) of vectors \(\delta_i \) (blue lines) and the number of unique distances \(N_u \) (green line). The red dashed lines show the approximated formula \(N_{sim} / N_{var} \) from Eqn (13); Right: computing times (black/blue lines). The enumeration of all \(N_p \) pairwise distances takes much longer than the enumeration of \(N_c \) distance pairs and their counts. The red dashed lines show Eqns (26) and (27).](image)

![Figure 5. Probability density functions (histograms) of a random pairwise distance (left), squared distance (middle) and a distance raised to \(N_{var} + 1 \) (right) in a hypercube of dimension \(N_{var} \). The red lines are the exact density functions for a random pair of points.](image)
When the number of points grows high \((N_{\text{sim}} \to \infty)\), the average distances between two points can be seen as the distance between two points chosen at random inside a unit hypercube. The solution is trivial for \(N_{\text{var}} = 1\) \((\mathbb{E}[L] = 1/3)\). For \(N_{\text{var}} = 2\), the mean distance reads \(\frac{2 + \sqrt{6}}{15} + \ln(1 + \sqrt{2})/3 \approx 0.521405343\). This number is a known constant available in the On-Line Encyclopedia of Integer Sequences (OEIS), which is published electronically at https://oeis.org, 2010, Sequence “A091505” (OEIS 2010). Its explicit expression has already been provided by Ghosh (1951). For \(N_{\text{var}} = 3\), the mean distance reads \(\frac{4 + 17\sqrt{2}}{105} - \frac{2}{15} \left(\frac{3}{\sqrt{5}} + \ln(1 + \sqrt{2})/5 + 2\ln(2 + \sqrt{5})/5 \right) \approx 0.661707181\). This average distance is known as the Robbins constant (Robbins, Bolis 1978), which is available in the OEIS as Sequence “A073012” (OEIS 2010). Average distances are available for dimensions \(N_{\text{var}} = 4,5,6,7\) and \(8\) in the OEIS as Sequences “A103983, A103984, A103985, A103986 and A103987” (OEIS 2010). They read \(0.777665635, 0.8785309152, 0.9689420830, 1.0515838734\) and \(1.1281653402\), respectively (see also Bailey et al. 2007; Weisstein n.d.). Table 1 in Anderssen et al. (1976) provides approximate values for \(N_{\text{var}} = 9\) and \(10:\ 1.19985\) and 1.26748.

The distributions of distances \(L\) for increasing dimension \(N_{\text{var}}\) tend towards Gaussian distribution. Anderssen et al. (1976) provided bounds for the average distance \(D\) depending on the dimension, \(N_{\text{var}}\):

\[
\frac{\sqrt{N_{\text{var}}}}{3} \leq \mathbb{E}[L] \leq \sqrt{\frac{N_{\text{var}}}{6}} \left(1 + \frac{1}{2} - \frac{3}{5N_{\text{var}}}\right). \tag{22}
\]

We have found a tighter upper bound on the mean value that possesses correct asymptotic properties: \(\mathbb{E}[L]\) tends towards \(\sqrt{N_{\text{var}}/6}\) as \(N_{\text{var}} \to \infty\). The suggested bound reads:

\[
\mathbb{E}[L] \leq \frac{\sqrt{N_{\text{var}} - 1}}{3}, \tag{23}
\]

and provides an exact value for \(N_{\text{var}} = 1\) \((\mathbb{E}[L] = 1/3)\). Gates (1985) derived an asymptotic formula:

\[
\mathbb{E}[L] \approx \sqrt{\frac{N_{\text{var}}}{6}} \left(1 - \frac{7}{40N_{\text{var}}} - \frac{65}{89N_{\text{var}}^2} + \ldots\right). \tag{24}
\]

This formula is already very accurate for \(N_{\text{var}} > 2\).

The variance for \(N_{\text{var}} = 1\) reads simply \(\text{var}[L] = 1/18\). For higher \(N_{\text{var}}\), it is found within 1/16 and 1/18 and tends towards 7/120 as \(N_{\text{var}} \to \infty\).

From this analysis, it is clear that the Euclidean distance of two points picked randomly from a unit hypercube becomes virtually identical and deterministic in very high dimensions. The standard deviation stays approximately constant with increasing dimension \(N_{\text{var}}\) while the mean value keeps growing. The coefficient of variation of a random distance \(L\) is therefore asymptotically proportional to \(1/\sqrt{N_{\text{var}}}\). In such a case the distance contrast decreases and it is said that the distances concentrate (Aggarwal et al. 2001; Flexer, Schnitzer 2015). This distance concentration in high-dimensional spaces might lead to undesired effects in some applications such as the optimization of the design of experiments (Aduzé, Egláis 1977; Eliáš, Vořechovský 2016).

The squared distance, \(L^2\), has a trivial mean value, \(N_{\text{var}}/6\), and variance, \(7N_{\text{var}}/180\). The central limit theorem tells us that the square of the distance is almost normally distributed for large \(N_{\text{var}}\).

3. Speed-up and implementation details

The proposed algorithm delivers the list of pairwise distances and their counts quicker than a naïve approach that simply evaluates the distances for all pairs of points. The reason for this is that the number of vector types in an ROG is considerably smaller than the number of all pairs.

The ratio between the number of pairs among the \(N_{\text{sim}}\) points in the unit hypercube, \(N_p\) (see Eqn (8)), and the number of unique type vectors, \(N_c\) (Eqns (11), (12)), provides a hint about the speed-up associated with using the proposed methodology. Asymptotically the ratio reads:

\[
\frac{N_p}{N_p} = \frac{N_{\text{var}}^{1/3} (N_{\text{var}} - 1) - N_{\text{var}}^{1/2} (N_{\text{var}}^{N_{\text{var}}})}{2}. \tag{25}
\]

We have implemented both the naïve approach and the suggested approach in C language and the computing times for various \(N_{\text{sim}}\) and \(N_{\text{var}}\) have been measured. Figure 4 (right) displays the computing time of the naïve approach, \(t(N_p)\), and the time taken by the suggested approach, \(t(N_c)\). It is no surprise that the times taken by the naïve approach are proportional to the number of pairs, \(N_p\). The measured times are almost completely independent of the dimension, \(N_{\text{var}}\), and the following formula provides an excellent approximation of the time in seconds:

\[
t(N_p) = N_p \cdot C_1 \approx N_{\text{var}}^{3/2} \cdot C_1, \tag{26}
\]

where the constant \(C_1\) has been obtained by fitting the times measured with our hardware (Intel Core i7-860 2.8 GHz) as \(C_1 = 7 \cdot 10^{-9} [\text{sec}]\).

The computing times obtained with the proposed algorithm seem to be proportional to the number of vectors processed, \(N_c\), and they also depend linearly on the dimension:

\[
t(N_c) = N_c \cdot N_{\text{var}} \cdot C_2. \tag{27}
\]

The constant \(C_2 = 1.5 \cdot 10^{-8} [\text{sec}]\) has been obtained by fitting the times measured using the same hardware and compiler as for the naïve algorithm.

By using the lower bound from Eqn (13) one can conclude that the computing time is asymptotically linear in \(N_{\text{sim}}\):

\[
t(N_c) = \frac{N_{\text{sim}}}{(N_{\text{var}} - 1)!} \cdot C_2, \tag{28}
\]

see the triangles in Figure 4 (right), while \(N_p\) is quadratic in \(N_{\text{sim}}\). For high \(N_{\text{sim}}\) and \(N_{\text{var}}\), the speed-up is dramatic.
\[\frac{\sigma(N_{\text{FF}})}{\sigma(N_{\text{F}})} \approx \frac{(N_{\text{var}} - 1)!}{N_{\text{sim}}^2} \cdot 0.2 \]

(29)

The ratio between these two numbers increases very fast with an increasing number of simulations.

The analysis deals with the evaluation of distances and does not take into account the preparation of input arrays of coordinates \(x_{ij} \) or vector types \(\delta_{ij} \).

The prototype of an implementation of a function for the evaluation of pairwise distances and the number of their occurrences in a unit hypercube was made in Python programming language (van Rossum et al. 1991). The Python source code is presented in the Appendix.

4. Application

As mentioned in the Introduction, one of the possible applications of the proposed method and algorithm is in the field of the optimal placement of points used in Monte Carlo integration, which is one possible application of the Design of Experiments.

Monte Carlo sampling is the most general technique for estimation of probabilistic integrals, such as those representing the statistical moments of functions of random variables (e.g. Kala et al. 2017; Strauss et al. 2017; Vahtatirad et al. 2015), sensitivity analyses or reliability analyses (see e.g. Kong et al. 2013; Liao et al. 2015).

Monte Carlo integration approximates an integral of a function \(f \) as an average:

\[\int_{[0,1]^{N_{\text{var}}}} f(x) \, dx \approx \frac{1}{N_{\text{sim}}} \sum_{i=1}^{N_{\text{sim}}} f(x_i), \]

(30)

where \(\{ x_1, \ldots, x_{N_{\text{sim}}} \} \) is a set of points in the design space \([0,1]^{N_{\text{var}}} \) (a space of sampling probabilities). These points can be transformed into points in real space, where the function is evaluated. The ratio \(1/N_{\text{sim}} \) is a weight that is supposed to be identical for all points as their chance of being selected is supposed to be equal. Therefore, the points must be uniformly distributed throughout the unit hypercube. The way of selecting individual points from the design domain influences the quality of the approximation. According to Koksma-Hlawka inequality (Fang, Ma 2001; Niederreiter 1992), the error of such an approximation depends on the character of the examined function (its bounded variation, \(V(f) \)) and the star discrepancy of the set of integration points, \(D_{\text{star}}(x_1, \ldots, x_{N_{\text{sim}}}) \):

\[\left| \frac{1}{N_{\text{sim}}} \sum_{i=1}^{N_{\text{sim}}} f(x_i) - \int_{[0,1]^{N_{\text{var}}}} f(x) \, dx \right| \leq V(f) \cdot D_{\text{star}}(x_1, \ldots, x_{N_{\text{sim}}}). \]

(31)

As the character of the examined function is not under the analyst’s control, the only way to decrease the upper bound of the approximation error is to reduce the discrepancy of the set \(\{ x_1, \ldots, x_{N_{\text{sim}}} \} \). Therefore, uniform designs are sought. These can be obtained by optimizing an originally random design (either Monte Carlo or Latin Hypercube Sampling) using various optimality criteria, either some type of discrepancy criterion or some other criterion aimed at ensuring the uniformity of the final design. The latter type of criterion is usually based on distances between pairs of points in the design domain (traditionally the inter-site distances are considered).

A very general example of such a criterion is the \(\phi \) criterion. This criterion was first defined by Morris and Mitchell (1995), see also Damblin et al. (2013), Pronzato and Müller (2012):

\[\phi = \frac{1}{p} \sum_{i,j=1}^{N_{\text{sim}}} \frac{L_{ij}^p}{L_{ij}}, \]

(32)

where \(L_{ij} \) being the inter-site Euclidean distance of points \(i \) and \(j \) defined by Eqn (7).

A limit case of the \(\phi \) criterion for \(p \to \infty \) is the Maximin criterion (Johnson et al. 1990) (sometimes called the mindist criterion):

\[\phi_{\text{MM}} = \min_{i,j=1}^{N_{\text{sim}}} L_{ij}. \]

(33)

The value of this criterion must be maximized to obtain a better design.

A specific case of the \(\phi \) criterion, in which \(p = 2 \), is the Audze-Egläjs (AE) criterion defined earlier in Audze and Egläjs (1977) as:

\[E_{\text{AE}} = \frac{1}{N_{\text{p}}} \sum_{i=1}^{N_{\text{sim}}} \sum_{j=1}^{N_{\text{var}}} \frac{1}{L_{ij}^2}. \]

(34)

The use of this criterion has been presented in, e.g., Bates et al. (2003), Fuerle and Sienz (2011), Husslage et al. (2011), Janouchová and Kučerová (2013), Kovalovs and Rucveksis (2011), Liefvendahl and Stocki (2006), Vu et al. (2014). Note that the original formulation of the criterion does not feature standardization by the number of pairs considered (division by \(N_{\text{p}} \)).

An improved version of the AE criterion, called the Periodic Audze-Egläjs (PAE) criterion, has recently been published in Eliáš and Vořechovský (2016). It removes a major flaw of the standard AE criterion related to the presence of boundaries:

\[E_{\text{PAE}} = \frac{1}{N_{\text{p}}} \sum_{i=1}^{N_{\text{sim}}} \sum_{j=1}^{N_{\text{var}}} \frac{1}{L_{ij}^2}, \]

(35)

where \(\Gamma_{ij} \) is not the Euclidean distance of points in the design space, but a distance redefined as the distance between point \(i \) and the nearest image of point \(j \) in a periodically extended space. Taking the nearest distance corresponds to folding and gluing the design domain \(N_{\text{var}} \) times – compare \(L \) and \(\Gamma \) in Figure 6. The new definition of this length (modification of Eqn (7)) stands:

\[\Gamma_{ij} = \sum_{v=1}^{N_{\text{var}}} \left[\min \left(\Delta_{ij,v} \cdot 1 - \Delta_{ij,v} \right) \right]^2, \]

(36)
where the projected distance along direction \(v \) reads

\[
\Delta_{ij,v} = |x_{i,v} - x_{j,v}|. \tag{37}
\]

This distance may also be defined in terms of \(\delta \) in a similar manner as to \(\delta \) as presented in Eqn (7), then:

\[
\overline{\delta}_{ij,v} = \frac{1}{N^2} \sum_{v=1}^{N^2} \delta_{ij,v}, \tag{38}
\]

where:

\[
\delta_{ij,v} = \begin{cases}
\min (\delta, N - \delta) & \text{for } N \text{ even} \\
\min (\delta, N - \delta - 1) & \text{for } N \text{ odd}
\end{cases} \tag{39}
\]

The rightmost column in Table 1 presents the shortest squared distances \(\overline{\delta}_{ij} \) in a periodic space (multiplied by \(N^2 \)). These can be directly compared with the standard squared inter-site distances \(\delta_{ij} \) used in the AE criterion.

The proposed algorithm for the evaluation of pairwise distances can be used without any modification. However, to get a list of unique distances in a periodic space, the list of distances must be sorted according to the periodic length and some vector types must be merged as they become identical to others. The number of unique periodic distances in a periodic space is roughly one half of the standard distances in a hypercube.

The modified formulation of AE and PAE criteria (Eqns (34) and (35)) can be viewed as the computation of the average inverse squared distance \(1/\overline{\delta}_{ij} \) (or \(1/\delta_{ij} \)). The convergence of the average distance measures is studied for the orthogonal grid in Figure 7 (bottom left). We argue that this criterion, which can also be understood as the potential energy of a system of charged particles (Eliáš, Vořechovský 2016), changes its character for various dimensions \(N \) and for various numbers of points, \(N_{\text{sim}} \). In a 1D situation, the energy tends towards infinity linearly with increasing point count \(N_{\text{sim}} = N \). In 2D (\(N_{\text{var}} = 2 \)), the energy tends towards infinity as \(\ln (N_{\text{sim}}) \). Such a divergence is not a power law and therefore various sample sizes may yield dissimilar optimal patterns (self-similarity would be manifested through a power law dependence of the criterion on the point count). For 3D and higher \(N_{\text{var}} \), the energy tends towards a constant for increasing \(N_{\text{sim}} \), see Figure 7 (bottom left). This means that for a given \(N_{\text{var}} > 1 \), a higher number of points yields a different proportion between the long-range and short-range interactions. This may not be desirable behaviour as the criterion in high dimensions and also for a high number of points becomes insensitive to local clusters of points: it becomes dominated by long-range interactions.

Therefore, we also consider a modification of the criterion where the inverse distances are raised to a power that might be dependent on the problem dimension, \(N_{\text{var}} \). The definition of such a criterion is analogous to the \(\phi \) criterion but we suggest a reason for the selection of the distance power, \(p \):

\[
E_{n}^{\text{AEp}} = \frac{1}{N_{\text{p}}} \sum_{i=1}^{N_{\text{sim}}} \sum_{j=i+1}^{N_{\text{sim}}} \frac{1}{\overline{\delta}_{ij}^p}, \tag{40}
\]

and equivalently, the periodic version:

\[
E_{n}^{\text{PAEp}} = \frac{1}{N_{\text{p}}} \sum_{i=1}^{N_{\text{sim}}} \sum_{j=i+1}^{N_{\text{sim}}} \frac{1}{\delta_{ij}^p}. \tag{41}
\]

It is suggested that the power be at least \(p = N_{\text{var}} + 1 \). Why? With this power, the interaction is dominated by short-range forces. The convergence of the potential energy \(E_{n}^{\text{AEp}} \), or better \(E_{n}^{\text{PAEp}} \), towards infinity for a uniform distribution of points is a power law. Such a convergence signals the self-similarity of the problem (the absence of a length scale). In other words, a zoom into a sufficiently representative subdomain has all the features of the full design and the energy value can be easily scaled from the value corresponding to the smaller zoom.

This can be shown by studying the behaviour of the radial part of the integral of the potential over the volume \(V \) of an \(N_{\text{var}} \) dimensional domain. The potential energy for a uniform design reads:

\[
I = \int \frac{1}{L^p} d^{N_{\text{var}}} V. \tag{42}
\]

After transformation into polar coordinates, one writes:

\[
I = \int_{N_{\text{var}}}^{\phi} d^{N_{\text{var}}-1} V |l| \frac{1}{L^p} dL, \tag{43}
\]

where \(|l|\) is the Jacobian. The volume element is thereby given as:

\[
d^{N_{\text{var}}-1} V = L^{N_{\text{var}}-1} dL \cdot d\phi \prod_{i=1}^{N_{\text{var}}-2} \sin^{N_{\text{var}}-2-i} (\phi_i). \tag{44}
\]

Therefore, the integral is performed over the product \(L^{N_{\text{var}}-1-p} \). Performing just the radial integration leads to

\[
I_r = \int \frac{L^{N_{\text{var}}-1}}{L^p} dL. \tag{45}
\]
For \(p = 2 \) as used in the AE criterion, we obtain the behaviour described above. Using \(p = N_{\text{var}} \) leads to \(I_r = \int \frac{1}{L} dL = \ln(L) \), which diverges logarithmically, and the interaction is still long-range. Using \(p = N_{\text{var}} + 1 \) yields \(I_r = \int \frac{1}{L^2} dL = 1/L \), which is the desired asymptotic behaviour driven by short-range interaction. Using higher powers only increases the (asymptotically constant) ratio between short-range and long-range interactions.

Figure 5 (right) shows a qualitative change in the histograms of lengths featured in the criterion. From Figure 7 right bottom, it can be seen that the mean value of \(1/L^{N_{\text{var}}+1} \) diverges linearly with increasing \(N \), which is a common behaviour for any hypercube dimension, \(N_{\text{var}} \). The power law divergence of the criterion (Eqn (40)) obtained for ROG confirms the behaviour of the radial part of the integral, i.e. the short-range interaction dominates the potential energy, see Figure 7 (right bottom).

Using a different power in the definition of the criteria does not necessitate the re-evaluation of the list of vector types and pairwise distances. The same holds for the selection of the definition of the metric itself (see the criticism of the Euclidean length at the end of Section 2.4). Instead, a fractional norm instead the ubiquitous Euclidean norm can be used. Changing the distance norm is independent of the presented algorithm and fast evaluation of the norm histogram can help when studying behaviour of various norms. When a different distance norm is used or a different power, \(p \), the list of various vectors and their counts can be used to quickly enumerate any criterion of the ROG.

Conclusions

The paper presents a simple algorithm for the exact evaluation of pairwise distances among all pairs of points forming a regular orthogonal grid of points within a unit hypercube. The algorithm provides the distances and their counts considerably faster than a naive algorithm based on the evaluation of all pairs of points. The speed-up is enabled by the regular structure of the orthogonal grid.

The paper shows how the algorithm can be used in the study of the behaviour of criteria concerning regularity, discrepancy or space-fillingness. In particular, since the regular orthogonal grid can be considered to be close to optimal point placement, the algorithm can be used for the fast estimation of the lower bound of various distance-based criteria of design optimality for the possible sample sizes.

Acknowledgements

The authors acknowledge the financial support provided by the Czech Science Foundation under projects Nos. GA16-22230S and GA15-07730S.

The authors would like to thank Dr. Godehard Sutmann for a valuable discussion about the physics of interacting particles.

Funding

This work was supported by the Czech Science Foundation under Grants Nos. 16-22230S and GA15-07730S.
Disclosure statement

Authors declare that they have not any competing financial, professional, or personal interests from other parties.

References

Anderssen, R. S.; Brent, R. P.; Daley, D. J.; Moran, A. P. 1976. Concerning \(\int_0^1 \int_0^1 \sqrt{x_1^2 + \cdots + x_k^2} \, dx_1 \cdots dx_k \) and a Taylor series method, SIAM Journal on Applied Mathematics 30: 22–30. https://doi.org/10.1137/0130003

Liao, K.-W.; Lu, H.-J.; Wang, C.-Y. 2015. A probabilistic evaluation of pier-scour potential in the Gaoping River Basin of
Appendix

The prototype of the described algorithm written in Python programming language uses the standard Python libraries `math`, `functools` and `itertools`. The package `itertools` is used to create an iterator for N_v types of difference vectors δ_t, using the function `combinations_with_replacement`. The function `rog_lengths` for evaluation of pairwise distances in ROG takes three parameters. The first two arguments $n, nvar$ are required to define the hypercube parameters. The last keyword argument `periodic` enables evaluation of distances in a periodically extended space as described in Section 4. The function returns two lists: i) `lengths` contains pairwise distances and ii) `counts` contains their counts.

Re-implementation in C language yields significant speed-up and enables the evaluation of larger designs. Python and C codes for evaluation of pairwise distances are available in the Github repository (Sadílek, Vořechovský 2017).

```python
import math
import itertools
from functools import reduce

def rog_lengths(n, nvar, periodic=False):
    '''
    Evaluate pairwise distances among points forming regular orthogonal grid in a hypercube.
    
    Parameters
    ----------
    n : int
        number of equidistant points along an individual dimension
    nvar : int
        number of input random variables (dimension of a hypercube)
    periodic : bool, optional
        evaluate lengths in a periodically extended space. Default is False.
    
    Returns
    -------
    lengths : list of floats
        pairwise distances among points
    counts : list of ints
        number of distances of the same type
    
    Examples
    --------
    >>> n = 3
    >>> nvar = 2
    >>> rog_lengths(n, nvar, periodic=False)
    ([0.3333333333333333, 0.6666666666666666, 0.4714045207910317, 0.7453559924999299, 0.9428090415820635], [12, 6, 8, 8, 2])
    >>> rog_lengths(n, nvar, periodic=True)
    ([0.3333333333333333, 0.3333333333333333, 0.47140452079103173, 0.47140452079103173], [12, 6, 8, 8, 2])
    
    
    >>> lengths = []
    >>> counts = []
    # prepare iterator for difference vectors delta_t
    deltas = itertools.combinations_with_replacement(range(n), nvar)
    next(deltas) # skip the first null vector (0,...,0)
    # loop over difference vectors delta_t
    for delta_t in deltas:
        # sum of squared differences
        if periodic:
            # update delta_t for periodic space eq.(39)
            h = [(dt - n // 2) > 0 for dt in delta_t]
```
\[
\text{delta}_t_{pae} = \left[\text{abs}(hi * n - dt) \text{ for } hi, dt \text{ in } \text{zip}(h, \text{delta}_t) \right]
\]

```python
length_t = sum([dt ** 2 for dt in delta_t_pae])
else:
    length_t = sum([dt ** 2 for dt in delta_t])
```

number n_t^n eq. (21)
ntn = reduce(lambda x, y: x * y, [n - dt for dt in delta_t])
number n_t^p eq. (17)
ntp = math.factorial(nvar)
for k in set(delta_t):
 # frequencies of differences in the vector delta_t
 ntp //= math.factorial(sum([(dt - k) == 0 for dt in delta_t]))
number n_t^d eq. (20)
ntd = 2 ** (sum([dt > 0 for dt in delta_t]) - 1)
number n_t eq. (15)
nt = ntn * ntp * ntd
lengths.append(length_t)
counts.append(nt)
calculate real lengths in unit hypercube eq. (7) or (38)
lengths = [l ** 0.5 / float(n) for l in lengths]
return lengths, counts