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a Institute of Structural Mechanics, Faculty of Civil Engineering, Brno University of Technology, Veveří 331/95, Brno 60200, Czech Republic
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a b s t r a c t

The paper presents a discrete meso-scale model for fracture of concrete taking into account
random spatial variability of material parameters. Beams of various sizes, with notches of
various depths, are simulated numerically to study the combination of energetic and sta-
tistical size effects. A substantial part of material randomness is shown to be caused by ran-
dom locations of the largest aggregates. Further randomness, due to random fluctuations of
material parameters, is considered and an effect of introducing a spatially auto-correlated
random field is analyzed. The results of the simulations are compared with recently
published experimental data on concrete beams in three-point bending. The differences
in the role of randomness in beams of various sizes, with different notch depths, are
demonstrated, and differences in energy dissipation are discussed.

� 2015 Elsevier Ltd. All rights reserved.
1. Introduction

The reliability of reinforced concrete structural members is crucial for modern engineering structures. When evaluat-
ing the reliability of concrete structures, the fracturing of concrete is one of the crucial phenomena that needs to be
included in the analysis. Many features responsible for variability in resistence of concrete can be named. The irregular
inner structure of concrete, characterized by random spatial arrangement of grains of various sizes and spatial variability
of material properties calls for theoretical model that is able to account for these features. With the help of such a model,
the behavior of concrete structures can be studied, understood and predicted, which is needed for design and assessment
of engineering structures. The model parameters are usually obtained from small size laboratory specimens, but applying
these parameters to large structures poses difficulties. One of them is the spatial randomness of material properties,
which is usually insignificant and is ignored for the mean response of small specimens, but becomes significant in large
structures.

The need to understand concrete fracture has resulted in the development of complex numerical models that can predict
the strength and softening. It is generally agreed that the fracture process in concrete and other quasibrittle materials
(ceramics, ice, etc.) is characterized by the gradual release of stress, or softening, within the fracture process zone (FPZ)
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Nomenclature

D beam depth
S beam span
b beam thickness
a0 notch depth
a0 relative notch deptheE macroscopic elastic modulusem macroscopic Poisson’s ratio
Ea elastic modulus of grains
Ec elastic modulus of matrix
a parameter controlling Poisson’s ratio
f t tensile strength
f s shear strength
Gt fracture energy in tension
Gs fracture energy in shear
P loading force
A area under load–CMOD curve
c damage variable
rn nominal stress
g dissipated energy
lc correlation length
H random fieldbH Gaussian random field
x spatial coordinate
H random variable
FH cumulative distribution function
U cdf of the standard Gaussian distribution
C covariance matrix
n standard Gaussian variable
q correlation
k eigenvalue of covariance matrix
w eigenvector of covariance matrix
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ahead of the macroscopic crack tip. This gradual softening is understood to be a consequence of concrete heterogeneity. This
understanding has led to attempts to include the heterogeneity directly in the material model. Although heterogeneity
can be simulated using continuous material description [6], the meso-level simulation of concrete fracture is often
performed using discrete models. The simplest and least phenomenological of them are the classical lattice models
[14,21,41,26,37,42,38,30], which feature elasto-brittle lattice elements and lattice geometry independent of the material
heterogeneity. However, such models require a high resolution, even within the dominant heterogeneities, making them
computationally expensive and hence suitable for small specimens only. A reasonable compromise seems to be using a less
dense lattice with each node corresponding to one dominant mineral aggregate. Such models may have only translational
degrees of freedom and axial connections (i.e., central forces) between grains, as in a truss [4,28,29]. An early model of this
kind, efficient enough even for the 1970s computers, was Burton and Dougill’s [5] network model, which is recently being
emulated by the ‘‘peridynamic’’ models despite the serious inherent limitations of the central force lattice.

A major improvement, making the discrete model much more realistic, was the two-dimensional aggregate interface
model [47] in which the particle rotations and interparticle shear interactions were taken into account. This approach
was greatly improved and generalized to three dimensions in [8] and recently further refined in the works of Cusatis
et al. [10,11]. It is important that his model, called the lattice-particle model, can take into account the three-dimensional
rotations of particles or grains, which cause shearing and bending in particle contacts. This can be captured by constitutive
law formulated in terms of interface stress and strain vectors, in a way similar to the microplane model. It is a significant
advantage that the vectorial constitutive law can directly reflect not only crack opening but also frictional and dilatant slip
on plane of distinct orientations. The recent extensions of the lattice-particle model include effects such as chloride diffusion
[40,1], fiber reinforcement [31,32] or fatigue [19,13]. A comparison of failure events in the discrete model to acoustic emis-
sion measurements during compression test can be found in [27].

The modeling of the fracture process is further complicated by random fluctuations of mechanical properties in concrete.
These fluctuations have several sources, among which the randomness in the concrete constituents themselves (material
properties, geometric properties), the process by which the constituents are mixed (aggregate locations, non-homogeneous
distribution of water, cement, finer aggregates and additives), and non-uniform drying are the most significant. To identify
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the material spatial randomness in the form of model stochastic parameters is hard. Moreover, the spatial fluctuations of
material properties also complicate identification of parameters for deterministic model because the experimental data
are always ‘‘contaminated’’ by the material randomness.

The meso-level models have the advantage of incorporating a substantial part of the randomness through the consider-
ation of the random meso-level structure of the material. To improve the stochastic description of the material, further ran-
dom fluctuations of model parameters are typically used. Fluctuations are then usually included in the form of a stationary
random field [45,17,18]. Each source of randomness naturally has its own characteristic such as the correlation length, prob-
ability distribution type, and coefficient of variation.

This paper is focused on two sources of randomness, one resulting from random geometry of the concrete meso-structure
which is naturally covered by meso-scale models, and another lumped here into the spatial variation of the material prop-
erties described by a random field. The effects of randomness in the model output are investigated from the viewpoint of
simulated peak loads, crack patterns and energy dissipation. This paper also tries to address the issue of identification of both
the deterministic and stochastic model parameters.

The lattice-particle model (called here meso-level discrete model) is here enhanced by random fluctuations to simulate an
extensive experimental series of three-point-bend beam tests recently carried out at Northwestern University [24,46]. This
series included four different beam sizes (with a size ratio of 1:12.5) and variable notch depths (from no notch at all up to a
notch extending to 30% of beam depth). The experiments were controlled by the crack mouth opening displacement (CMOD),
to make it possible to measure softening.

Two versions of the model are used in the paper: (i) the full stochastic version and (ii) the original deterministic version
with no additional spatial variability in model parameters. By comparing results from the deterministic and stochastic mod-
els with the experimental data, one can find what part of the variability in the model response is due to the randomness of
grain size and of spatial distribution. The deterministic model is also used to obtain the mean values of model parameters by
automatic identification based on matching the peak loads and the areas under the experimental load-CMOD curves. Only
the responses of the beams with the deepest notch are used to identify the deterministic model parameters, while the rest of
the test data is subsequently compared to the deterministic model predictions. The stochastic parameters unfortunately
could not be identified, and were merely generated.

The main objective is to demonstrate the robustness of the model by achieving a good match of the experimental
results. Further studied is the influence of specimen size and boundary conditions on the energy dissipation in the
model, as well as the effect of additional randomness introduced in the form spatial variability considered in the sto-
chastic model.
2. Model description

The modeling of heterogeneous materials using an assembly of discrete units has become a well established approach
with several advantages, such as the relative simplicity and transparency of constitutive law formulation, the ability to
represent material heterogeneity, the automatic weakening of the modeled material only in directions perpendicular to
cracks, etc. On the other hand, extensive computer resources are often needed to use such models. The present study is
based on the three-dimensional (3D) meso-level discrete model developed by [10], which is an extension of [8,9]. The
information regarding further development of the model can be found in [11]. Dynamic though the original model is,
only the static form of the model is used here.
2.1. Deterministic model

The material is represented by an assembly of ideally rigid 3D cells. The cells are created by a tessellation based on the
pseudo-random locations and radii of computer generated spheres , serving as virtual mineral aggregates in concrete. Every
cell contains one grain (Fig. 1a and b). The rigid cells are connected through their common facets, on which nonlinear cohe-
sive constitutive law is applied. The damage at the facets then represents the cracking in the matrix and in the interfacial
transition zone between two grains. The single damage variable c controls the loss of material integrity both in the normal
and tangential directions of the facet. The evolution of c depends on the facet strains and the previous loading history (for
details, see [10]). The confinement effect, present in the full version of the model, is not implemented here since it is not
important for the present problem.

To save computer time, the meso-level discrete model was used only in the regions in which cracking was expected. The
other regions of the beams were assumed to remain linearly elastic. They were, therefore, modeled by standard 8-node
isoparametric finite elements, which were connected to the meso-level discrete model via auxiliary zero-diameter particles
(or nodes) [12]. The macroscopic elastic constants (Poisson’s ratio ~m and modulus ~E) for the finite elements were identified by
fitting a continuous homogeneous displacement field to the displacements of the particle system when both were subjected
to a low-level uniaxial compression. In this identification, the inelastic (or fracturing) phenomena are negligible and only
elasticity gets manifested.



Fig. 1. (a) Concrete meso-structure simulated by the random placement of grains; (b) tessellation providing rigid cells around every grain; (c) contact
elements between adjacent cells assumed to lie in the common facet center; (d) constitutive relations assigned to the inter-particle contacts – elastic
envelope (bottom) and exponential softening (top), both dependent on the direction of straining [10]; (e) Weibull–Gauss probability distribution used for
the randomization of element parameters; (f) random field sample of model parameters generated on a regular grid and projected onto the model elements;
(g) specimen shape and boundary conditions.
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2.2. Stochastic extension of the model

The only source of the randomness in the original formulation of the model by [10] is in the positioning of grains within
the domain. In this paper, we extend the formulation by incorporating random spatial fluctuations in the material properties.
At each inter-particle connection, the material parameters are assigned according to a stationary random field HðxÞ. For a
given coordinate x0; Hðx0Þ is a random variable H of the cumulative probability density function (cdf), FHðhÞ. Since the ran-
dom field is stationary, the FHðhÞ is identical for any position x0.

The strength of quasibrittle structural members is typically governed by the material strength and fracture energy.
Realistic fracture models should therefore incorporate the random spatial variability of at least these two variables. The
material strength is here considered to be linearly dependent on the fracture energy [17]. Thus, four parameters of the
meso-level discrete model—shear strength f s, fracture energy in shear Gs, tensile strength f t , and fracture energy in tension
Gt—are modeled as mutually linearly dependent. All these random variables share the same distribution and the same
coefficient of variation. The same random field is used to generate values for both material strengths and both fracture
energies. When any of the four aforementioned mechanical properties are substituted for X, one can write
XðxÞ ¼ XHðxÞ ð1Þ
where X stands for the mean value of the particular property. The mean value of the (field) random variable H equals 1.
In [3,34,33], it has been shown that the strength distribution of a representative volume element (RVE) of a quasibrittle

material should be approximated by a Gaussian (or normal) cdf onto which a remote Weibullian tail is grafted from the left.
This Gauss–Weibull distribution is used for our H variable
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Here �h i ¼maxð�;0Þ; s1 ¼ s0r1=m
f ; m is the Weibull modulus (shape parameter) and s0 is the scale parameter of the Weibull

tail, lG and dG are the mean value and standard deviation of the Gaussian distribution that describes the Gaussian core and
pgr ¼ FHðhgrÞ is the probability at the grafting point, hgr . The Weibull–Gauss juncture at the grafting point hgr requires equality
in the probability density: ðdFH=dhÞjhþgr

¼ ðdFH=dhÞjh�gr
; rf is a scaling parameter normalizing the distribution to satisfy the

condition FHð1Þ ¼ 1. The distribution has 4 independent parameters in total.
The spatial fluctuation of the field is characterized through an autocorrelation function. It determines the spatial statis-

tical dependence between random variables representing any pair of nodes. The correlation coefficient qij between two ran-
dom variables at coordinates xi and xj can be assumed to be a bell-shaped function similar to Gaussian distribution
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This form has been selected because the function is differentiable at zero [20] as opposed to the frequently used expo-
nential function (in which power 1 is used instead of 2). Also, the separable correlation function enables the usage of (i)
different correlation lengths lc;d along different dimensions d and (ii) a simplified algorithm for the spectral decomposition
of a covariance matrix on a regular grid, see Appendix A. In this paper, the autocorrelation length lc is kept constant in all
three directions. A regular grid for discretization of random fields, which enables the usage of EOLE method, is adopted,
as described later in this section.

To represent the random field H of a non-Gaussian variable, H, a commonly used option is to generate an underlying
Gaussian random field bH and then transform it via the isoprobabilistic (memoryless) transformation
HðxÞ ¼ F�1
H ðUðbHðxÞÞÞ ð5Þ
where U stands for the cdf of the Gaussian field. Such a transformation distorts the correlation structure of the field H. Thus,
when generating the underlying Gaussian field bH , the correlation coefficients must be modified in order to fulfill the desired
pairwise correlations of the non-Gaussian field H. This is performed using an approximation by the Nataf model [36].

There are several methods of generating a Gaussian random field. Here the Karhunen–Loève expansion is used. It is based
on the spectral decomposition of covariance matrix C (with components Cij ¼ qij). It transforms the correlated Gaussian vari-
ables bHðxiÞ into independent standard Gaussian variables n, which are simple to generate. The Gaussian random field is then
obtained using vector n of K standard Gaussian random variables as follows
bHðxÞ ¼XK

k¼1

ffiffiffiffiffi
kk

p
nkwkðxÞ ð6Þ
where k and w are the eigenvalues and the eigenvectors of the covariance matrix C, and K is the number of eigenmodes con-
sidered. It is not necessary to use all the eigenmodes of C. Rather, it suffices to consider only K eigenmodes corresponding to
K largest eigenvalues, so that the

PK
k¼1kk would be about 99% of the trace of the covariance matrix C [43]. The independent

standard Gaussian variables n are sampled by Latin Hypercube Sampling using the mean value of each subinterval. The
spurious correlation of these variables is then minimized by reordering their realizations during a simulated annealing
optimization process [44].

The realizations of the random field need to be evaluated at every shared facet center of the meso-level discrete model.
This can be computationally demanding for a large number of facets, because the covariance matrix is then large as well. In
the present simulation, there may be about 200,000 inter-particle connections. To overcome this computational burden, the
expansion-optimal linear estimation method (EOLE [35]), is adopted. This method significantly reduces the time required for
random field generation. The field is initially generated on a regular grid of nodes with spacing lc=3 (see Fig. 1f) instead of at
the facet centers. The values of the random field at the model facets are then obtained from the expression
bHðxÞ ¼XK

k¼1

nkffiffiffiffiffi
kk
p wT

k Cxg ð7Þ
where k and w are the eigenvalues and eigenvectors of the covariance matrix of the grid nodes; Cxg is a vector of covariances
between the facet center at coordinates x and the grid nodes; and nk are independent standard normal variables. After the
Gaussian random field values at facet centers are obtained by EOLE (Eq. (7)), they need to be transformed to non-Gaussian
space by Eq. (5).

Besides significant time savings, another advantage of using EOLE is that one can simply use the same field realization for
several different granular positions. By keeping realizations of the decomposed independent variables n, the field realization
can be adapted for any configuration of the facets in the meso-level discrete model. This feature will be used later. The ran-
dom field realizations on a grid will be generated only once (24 realizations for every correlation length) and these grid ran-
dom fields will be used repetitively for every beam geometry.
3. Experimental series and identification of model parameters

The experiments were performed at Northwestern University by Hoover et al. [24,22]. Beams with and without a notch
were loaded in three-point-bending; the tests were controlled via CMOD, which ensures stable crack propagation and thus
allow us to obtain postpeak softening. The series contained beams of four different depths D = 500, 215, 93 and 40 mm, geo-
metrically similar in two dimensions. They are labeled by the capital letters, A, B, C and D, respectively. The thickness
b ¼ 40 mm was the same for all the specimens and the span was 2:176D. Five notch depths were tested: a0 ¼ a0=D ¼ 0:3,
0.15, 0.075, 0.025 and 0. These are denoted by the lower-case letters a (a0 ¼ 0:3), b, c, d and e (a0 ¼ 0). Between 6 and
12 experiments were performed for all the size-notch depths combinations except for geometries Cb and Db, which were
not suitable for testing.
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Identification of the material parameters in the numerical model is based on simple minimization of the difference
between the experimentally measured and simulated responses. No attempt has been made to estimate the model param-
eters from information about the concrete mix composition. The grain diameters were considered to be distributed accord-
ing to the Fuller curve. The maximum grain size was set to 10 mm according to the aggregates in the tested material. The
grains with diameter bellow 2 mm were not modeled directly, since they were regarded as an integral part of the matrix.
3.1. Identification of deterministic parameters

In the first step of identification, only the deterministic parameters were found. The constitutive law of the deterministic
model has several parameters related to different failure modes (the compressive strength and compressive hardening) or
parameters hard to identify from the available limited set of experiments (the shear strength and shear fracture energy,
the asymptote of the hyperbolic elastic envelope). Values of these parameters were taken from the original paper [10]. Only
four free parameters were considered for identification: the elastic modulus of the matrix Ec , parameter a determining the
macroscopic Poisson’s ratio, tensile strength f t and fracture energy in tension Gt . The remaining parameters were considered
(based on [10]) to be as follows: elastic modulus of grains Ea ¼ 3Ec , shear strength f s ¼ 3f t , shear fracture energy Gs ¼ 16Gt ,
compressive strength f c ¼ 16f t , initial slope of compressive hardening Kc ¼ 0:26Ec , asymptotic slope of the hyperbola
determining the elastic limit in tension and shear l ¼ 0:2, compressive hardening parameter nc ¼ 2, and parameter of
compressive elastic envelope b ¼ 1.

To identify the deterministic parameters, only the responses of beams with the deepest notch (Aa, Ba, Ca, Da) were used.
There are two reasons for limiting the identification process to the deepest notch only: (i) the presence of a strong stress
concentration induced by a deep notch minimizes the effect of spatial randomness on the mean response [15,16] and (ii)
simulating the remaining beam geometries and comparing the results to the experimental data that have not been used
in the identification process reveals whether the model can provide reasonable predictions.

The macroscopic elastic parameters (used for the surrounding finite elements) were estimated first. The Poisson’s ratio for
concrete is usually approximately ~m � 0:19. By trial-error fitting of the elastic part of the load-CMOD curves, the macroscopic
elastic modulus was found to be ~E � 36:5 GPa. By fitting a continuous homogeneous displacement field to the displacements
of the particle system when both were subjected to low-level uniaxial compression, the corresponding meso-level discrete
model parameters were identified: Ec ¼ 25 GPa and a ¼ 0:29.

The tensile strength and fracture energy were identified via the simple automatic minimization of the maximum relative
difference between the measured and simulated peak loads and the areas under the load-CMOD curves. The mean
experimentally measured maximal load, �Pexp, and the area under the load-CMOD curve up to an opening of 0.15 mm,
�Aexp, represented the values that should be closely reproduced. The corresponding simulated values ðPsim;AsimÞ were evalu-
ated for every iteration of the optimization algorithm. The error to minimize was calculated as
max
j�Aexp

c � Asim
c j

�Aexp
c

;
j�Pexp

c � Psim
c j

�Pexp
c

 !
for c 2 Aa; Ba; Ca; Daf g ð8Þ
The simulated quantities Asim and Psim were obtained using the deterministic model with one (constant) grain position
only. For more reliable identification, one should perform several simulations with different grain positions for every eval-
uation of the objective function. The optimization process is shown in Fig. 2. The minimum achieved error was 0.067 (6.7%).
3.2. Identification of stochastic parameters

In the second identification step, at least some of the stochastic parameters were expected to be identified. It was pre-
sumed that the coefficient of variation of H could be determined from the deep notch results. As shown in [15,16], the spatial
fluctuations of local strengths and fracture energies have a negligible effect on the response if the crack initiates from a deep
Fig. 2. Comparison of experimental load–CMOD curves and simulated responses obtained by automatic optimization.
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notch. The only values that matter are the random parameters located close to the notch tip, which are directed solely by
distribution FH and not by the correlation length.

Therefore, one can separate the local properties of the randomness (distribution FH) from the spatial properties (correlation
length lc) by introducing a strong stress concentrator. Consequently, by matching the variability of experimental responses for
a deep notch, it is possible to estimate the coefficient of variation of the random field. Once this was done, one should be able
to identify the correlation length by matching the peak loads of the unnotched beams. As shown in the aforementioned papers
[15,16], the mean value of the peak load of unnotched beams strongly depends on the correlation length.

Unfortunately, this theoretical procedure could not be applied in the current study for two reasons. First, the experimen-
tal scatter for deep notch beams was already very close to the statistical scatter of the deterministic model, where the
randomness is generated only by the random locations of grains. The coefficient of variation of H would thus have to be con-
sidered close to zero. Second, introducing randomness into no-notch simulation can only lead to a decrease in the mean peak
loads, but the deterministic model for no-notch beams already exhibited lower peak loads than those measured
experimentally.

This observation suggests that any randomness other than that caused by the locations of the largest aggregates was
negligible in these tests. Therefore, it was decided that the variability present in the deterministic model is sufficient for
reproducing the randomness in the experimental series. Instead of using the random field to achieve a closer fit of the
measured data, the numerical analysis was run with an artificial excessive coefficient of variation (0.25) in order to study
the effect of model randomness deeper.

The following parameters of the distribution FH were used: Weibull modulus m ¼ 24; s1 ¼ 0:486 MPa; grafting point
hgr ¼ 0:364 MPa; standard deviation of the Gaussian core dG ¼ 0:25 MPa. These parameters provided the overall mean value
lH � 1; standard deviation dH � 0:25, and grafting probability FHðhgrÞ � 10�3. The selection of grafting probability was based
on recommendations in [3] where it has been found that the grafting point should be at probabilities between 10�5 and 10�2,
and most likely around 10�3.

Two correlation lengths lc were considered: a shorter length, lc ¼ 40 mm (as found in [17]), and a longer length, lc ¼ 80
mm (as found in [45]).

4. Deterministic modeling

All the experimental beam geometries were modeled using the deterministic parameters identified from the deeply
notched beams. Ten simulations, differing in the random locations of grains, were preformed for each geometry. The self-
weight was applied in the first step. In the following steps, the external load P was calculated to gain a stable increase in
CMOD. The lengths of CMOD increments were adjusted to keep the number of iterations per step reasonable.

The CMOD control cannot be applied to beams with a shallow or zero notch, because the crack location is not known in
advance. In such a case, several openings were measured over several short intervals along the beam span and the simulation
was controlled by the largest of these openings. Because there was no gap between the intervals, the crack had to initiate
inside one of them, and the CMOD could thus be obtained. This is, however, barely possible in real experiments. Therefore,
the experimental opening was measured by one gauge over only a finite, not too long, base length, with the hope that the
crack would occur inside that base length. The corresponding gauge opening was extracted from the simulations, too, in
order to compare it with the experiments.

It is worth mentioning that it is nearly impossible to simulate smaller beams with the present model. The specimen of
size D has the depth of 4� the maximum grain diameter and the lattice representing the concrete material is already too
coarse. It might also be hard to simulate larger unnotched specimens. The model of geometry Ae has approximately 300
thousands degrees of freedom and, when only one processor is used, it takes about a week to calculate the response.

The responses of the experiments and the model are compared in Fig. 3. The vertical axis measures the nominal stress
defined as
�rn ¼
3PDS

2bD3 ¼
3:264P

bD
ð9Þ
where the superior bar above r means that the nominal stress was evaluated using the nominal beam dimensions, rather
than the real dimensions measured on each specimen separately. The horizontal axis shows the elongation measured along
the bottom surface over a distance corresponding to the gauge length used in experiments [46]. Each subgraph has the mean
value and standard deviation of nominal strength plotted in its top right corner; the number at the same position gives the
relative difference between the mean nominal strengths of the model and the experiment. The simulations were terminated
as soon as the loading force decreased below 30% of its maximum value. As mentioned, the material identification was
performed for the leftmost column only; all the other columns are model predictions. The agreement with tests appears
to be satisfactory. Nevertheless, some problems are present:

� The model underestimates the peak loads for most, but not all beam geometries. This indicates that the identification is
not ideal. Consideration of other beam geometries for identification would improve the performance of the model, but the
illustration of the predictive capabilities of the model would be lost.



Fig. 3. Responses obtained by the deterministic model compared to the responses recorded during experiments.

Fig. 4. Some damage patterns obtained by the deterministic meso-level discrete model.
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� The elastic parts of the experimental and model responses significantly differ for the smallest geometry De. The reason
appears to be that the underlying lattice of inter-particle contacts in such small specimens is inevitably too coarse,
and also that the response is affected by the regions with biased tessellation closer to the boundaries occupying a large
portion of the specimen.
� The two largest unnotched specimens (Ae and Be) had convergence problems right after the peak, which can be attrib-

uted to a sudden strong snap-back present in the load-deflection curve.

Fig. 4 shows some damage patterns obtained by the deterministic model. One can see that the no-notch simulations pro-
duce a wide zone of distributed micro-cracking, which develops prior to reaching the peak load. However, after the locali-
zation that develops at the peak load, the crack looks about the same as in the case of deeply notched specimens. Another
interesting point is the dependence of the damage zone width on the specimen size, which is clearly visible for the deeply
notched beams. The larger the specimen, the wider the damaged area. This feature was previously reported in [12,15].
5. Effects of spatial randomness

The application of additional spatial randomness is not meant to bring the results of the model closer to those obtained in
experiments. It is performed here in order to study the effects of randomness on the model behavior.
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For every geometry and every correlation length, 24 simulations were performed differing in both random grain positions
and random field realizations. However, the 24 random field realizations for each geometry were obtained from the same 24
grid realizations by using each realization repetitively. The resulting load-gauge opening curves are plotted in Fig. 5, along
with the means and standard deviations of the peak loads in the upper right corner of every subplot.

The notches too shallow compared to the aggregate size induce weak stress concentrations, which nevertheless suffice, in
most cases, to force the crack to start from the notch tip. However, it may happen that, due to randomness, a crack initiates
outside the shallow notch at midspan. The crack in unnotched beams may initiate away from the midspan as well. If the
gauge length is too small, the crack may even initiated outside of the gauge length, and then the gauge gradually closes
during the softening regime. This is why some of the responses for d and e beams exhibit decreasing gauge opening after
reaching the peak load. Nevertheless, the convergence problems in the unnotched beams are not as severe as they are in
the deterministic analysis. This is explained by the additional randomness which helps to localize the crack.

Fig. 6 shows the size effect plots of nominal strength using Eq. (9) and the maximum load Pmax. The nominal strengths
from experiments are taken directly from [24]. They are calculated using real dimensions measured directly on specimens,
which varied slightly. The deterministic model parameters were optimized using the nominal dimensions, but even after fil-
tering out the geometrical differences among the test specimens using their real dimensions, the correspondence between
the experimental data and the deterministic model prediction is acceptable.

For the deeply notched specimens, the application of the additional randomness leads only to an increase in the variance
of response. The average peak load does not change, compared to the deterministic model. The observed increase in variance
appears more or less independent of the correlation length. It was planned to use this expected behavior to identify the coef-
ficient of variation of H.

A different situation arises for the unnotched specimens. In contrast to the deeply-notched specimens where the crack
always starts to propagate from the notch tip, the unnotched specimens are free of any stress concentrator, allowing the
macro-crack to initiate at the bottom face even far from the midspan. The region with the worst random combination of
stress and local strength will serve as an initiation point. The larger the area where the crack may initiate and the shorter
the correlation length, the weaker the local strength that may appear. One can thus see that the difference between the
deterministic and stochastic peak loads increases with increasing size and decreasing correlation length.

Several elected damage patterns obtained with the stochastic model (lc ¼ 40 mm) are shown in Fig. 7. Only one grid real-
ization of the random field, applied to different beam geometries, is shown. The large zone of distributed cracking prior to the
peak load, which was present in deterministic simulations of unnotched beams, is reduced. The pre-peak cracking is already
localized into weaker regions only. Geometry Bd shows a crack initiated outside the shallow notch.
Fig. 5. Responses obtained by the stochastic model (for two different correlation lengths) compared to the responses recorded during experiments.



Fig. 6. Size effect plots comparing nominal strengths measured in experiments and calculated by models.

Fig. 7. Some damage patterns obtained by the stochastic meso-level discrete model for different geometries but the same realization of the random field.
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Fig. 8 documents the positions of macro-cracks at the bottom face measured in the experiments [46] and obtained in the
deterministic and both stochastic models. The two deepest notches, a and b, led to initiation from the notch tip in all sim-
ulations and also in all experiments; they are therefore excluded from the figure. In the case of shallow notches c and d,
experiments and the deterministic simulation also led to initiation of the macro-crack form the notch tip in all cases.

The stochastic simulations for these too shallow notches may lead to crack initiation outside the notch; however, this
occurs only rarely, in spite of the large variability and shallowness of the notches considered. One would expect fewer cracks
outside the shallow notch for smaller beams because the chance for a crack to start outside the notch is now restricted by
very short spans and thus weaker random field fluctuations. But this is true only for the smallest size D, for which the ran-
dom field fluctuations are almost suppressed. Regarding other beam sizes, the initiation of a crack outside the notch is more
frequent in smaller beams. In these cases, the only value that matters is the absolute, rather than relative, notch depth. As the
specimen size decreases, the absolute notch depth decreases as well, and its stress concentration becomes less important



Fig. 8. The horizontal position of the macrocrack in the bottommost layer is shown by a separate marker for each simulation/experiment. The beam span is
scaled to constant length; the horizontal positions of supports are marked by black vertical lines, and a dash-and-dot line shows the midspan. The colorful
horizontal lines below the markers show � standard deviation (assuming the mean value is at the midspan) of the horizontal position of the macrocrack.
Numbers display the quantity of cracks outside the notch and the total number of simulations.
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compared to the stress disturbances due to material heterogeneity. This facilitates crack initiation at locations other than at
the notch tip.

Fig. 8 also shows the crack positions obtained in the unnotched beam models. The relative interval in which the cracks
occurred increased after the application of randomness, but it seems to be about the same for both correlation lengths and all
the beam sizes. The comparison to experimental data is difficult, due to the limited number of experiments, but the variabil-
ity in crack position measured in experiments is similar to the results of the deterministic model rather than to the results of
the stochastic models.

6. Analysis of energy dissipation

The energy dissipation during fracturing is examined via the dissipated energy per unit area at a specific beam depth, g.
This energy is calculated by summing the energies Gi dissipated at individual contacts, i, within a horizontal strip of width 2s.
One selects all the elements i at depth yi 2 hy� s; yþ si, and then sums their energies released since the beginning of the
simulation. The summation is then normalized by specimen thickness b and strip width 2s
gðyÞ ¼
X

i: jyi�yj6s

Gi

2bs
ð10Þ
Fig. 9 shows the energy variable g at the peak load along the specimen depth, for all the beam geometries. Deterministic
simulations are shown on the left hand side, whereas the right hand side displays the stochastic results. The mean value
(bold line) and standard deviation (shaded area) of g were evaluated from 10 deterministic or 24 stochastic realizations.
The strip width was chosen to be the same as the maximum grain size, i.e. 2s ¼ 10 mm. The consecutive strips were always
placed so that the notch tip would be located at the beginning of the first strips.

Except for an increased standard deviation, there is no difference between the stochastic and deterministic results when
the notch is present. But the unnotched beams exhibit, in the case of deterministic modeling, a large area of distributed
cracking prior to reaching the peak load. This area is visible in the graph as an increased energy dissipation close to the bot-
tom surface. The stochastic model lacks the distributed cracking because the pre-peak cracking is already localized into weak
regions only. Therefore, no increase in g can be seen for unnotched stochastic beams. Comparing the stochastic models with
two different correlation lengths, the figure shows a slightly larger dissipation for a longer correlation length in the unnot-
ched case, while for the notched beams the situation is opposite.

There is a clear dependence of g on the specimen size. This is attributed to the increasing stress gradient that constrains
the development of the fracture process zone for a decreasing beam size. The lower the constraint, the more the crack
branches in the model. One can also see that the maximum value of g (located above the notch tip) decreases with decreasing
notch depth.

As the simulation continues, the crack localizes and propagates. Fig. 10 shows g at the end of the simulation. A stress-free
crack is seen to develop in the bottom zone of the beam, and so g should have reached its final value and might be considered
to be equal to the macroscopic mode-I fracture energy.

� Smaller beams have smaller final values of g. This is again caused by the increasing stress gradient that constrains the
fracture process zone for decreasing size.



Fig. 9. Energies g dissipated at specific beam depths until the maximum load was reached. The thick line refers to the average value and the shaded area
shows standard deviation. Left: deterministic model; right: stochastic models with correlation length lc = 40 and 80 mm.

Fig. 10. Energies g dissipated at specific beam depths until the termination of the simulations.
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� Although the final value of g for notched beams is about the same irrespective of notch depth, it was shown in [12] that it
may significantly decrease for extreme notch depths of a0 P 0:7.
� In the upper parts of the graphs in Figs. 9 and 10, g decreases rapidly from its more or less constant final value because the

simulation was stopped before the stress-free crack reached this depth; i.e. g had not reached its final value yet.

Fig. 10 shows once again how the randomness affects the energy dissipation. As in Fig. 9, the added randomness also only
increases the energy dissipation variance with no effect on its mean value. The only exception is the unnotched beam, due to
the previously discussed pre-peak distributed cracking.

The presently observed dependency of the energy dissipation on the specimen size and depth appears to support the fre-
quently expressed idea that macroscopic fracture energy of heterogeneous quasibrittle material is not constant. However,
the differences in the average dissipated energy (final value of g) in small and large specimens are rather small. Therefore,
it can be concluded that, for the size range analyzed, the macroscopic fracture energy for cohesive crack (crack band) model
could be considered approximately constant. This was recently shown for the same experimental series analyzed using con-
tinuous finite elements with constant fracture energy as a material parameter [23]. It was shown that an excellent match of



Fig. 11. Energy g calculated in the bottommost 20 mm-thick layer until the peak load was reached or until the termination of the simulation. It is divided
into energy dissipated inside and outside the macrocrack.
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this data set with the cohesive crack (or crack band) model can be obtain provided that a bilinear softening with four degrees
is used. It was also concluded that this data set cannot be satisfactorily fitted with softening laws of two degrees of freedom,
such as the linear softening or Hillerborg’s exponential.

A deeper analysis of energy dissipation in unnotched beams is presented in Fig. 11. It shows energy g averaged over two
bottommost strips divided into two parts: (i) the energy which was dissipated within �15 mm of the macro-crack location,
which is labeled as energy inside the macro-crack and (ii) the remaining part of the energy, labeled as energy outside the
macro-crack.

Since localization occurs at peak load, the outside energy does not increase much in the postpeak regime. However, it is
strongly dependent on applied randomness. It is larger for deterministic models, due to the wide zone of distributed cracking
and lower for stochastic models due to the localization of distributed cracking. It seems to be lower for the shorter correla-
tion length, probably because the distributed cracking is even more localized than in the case of the longer correlation
length. The outside energy is strongly size dependent because the outside volume of the material subjected to distributed
cracking depends on the beam size as well.

The inside energy is also affected by the application of the additional randomness. This is in contradiction with the deep
notch results, where the average of the inside energy was the same for both deterministic and stochastic models. In unnot-
ched beam geometries, the crack is not forced to initiate at the specific location but is allowed to choose some weakened area
along the bottom surface. Since the meso-level strength and fracture energy of rigid-body contacts are positively correlated,
the crack that initiates in a weakened material must also dissipate less energy.

In all the foregoing observations the fracture energy is considered as the energy dissipated at one location. What mainly
matters for the overall structural response and the deterministic part of size effect is the fracture energy defined as the flux of
energy, J, into a propagating fracture process zone, which is defined by Rice’s J-integral. For an infinitesimal FPZ, both are
equal [39]. But for a finite FPZ, both are proven equal only for steady-state propagation. This is generally not the case here.
It would require very large sizes, with FPZ remote from both the notch tip and all boundaries.
7. Summary and conclusions

The enhanced meso-level discrete model has been presented and also employed to reproduce loads and deformations
measured in a recent extensive series of experiments on concrete in three-point-bending. An identification procedure of
model parameters obtained using a subset of experimental data confirmed the robustness of the model by showing reason-
able agreement between simulated and experimental responses for all the data. This verified the predictive capabilities of
the model. The model is able to capture size effects on peak load of both, notched and un-notched, specimens; these size
effects are in good agreement with the experimental data. After the described simple parameter identification procedure,
the model can be used for prediction of behavior of details of concrete structures or obtaining important data for macro-level
models that are routinely used in engineering design. The main advantage of the model is its ability to mimic phenomena at
mesoscale level that includes gradual transition from distributed damage to strains localization in macro-cracks.

Both deterministic and stochastic versions of the model provide results that suggest dependency of the energy dissipation
during fracturing on the specimen size and also notch depth. Nevertheless, this dependency seems to be weak for the studied
configurations, especially for large sizes.

The deterministic version of the model (which contains randomness due to the random locations of the largest concrete
aggregates) seems to be already sufficient as it reproduces most of the variability measured in the experiments. But it alone
cannot capture the Weibull type statistical size effect in large unnotched specimens; for larger specimens or different type of
loading (e.g. four point bending or direct tension) the deterministic model would inevitably fail to reproduce the experimen-
tal data [17].
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The stochastic study with artificially chosen parameters was performed to further investigate the effects of randomness.
The following conclusions are in agreement with natural expectations.

� Additional randomness applied to notched beams only increases the variability in their strengths and dissipated energies.
The mean values of both quantities remain unchanged.
� Unnotched beams exhibit lower mean strengths with additional randomness than without it. This is due to the possibility

that the crack will initiate from, and grow in, a weak region along the bottom surface.
� The energy dissipation in unnotched beams is affected by additional randomness as well. The zone of distributed cracking

prior to the peak load is large in the deterministic model, but highly localized into the weaker regions in the stochastic
model. This causes an appreciable difference in the dissipated energy between models with and without additional
randomness.
� The energy released inside the macro-crack at the bottom surface of unnotched beams is lower in the stochastic model

than in the deterministic model. This is due to the assumed positive correlation between meso-level strength and fracture
energy. The macro-crack prefers to run through weaker regions, where meso-level fracture energy is lower, too.
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Appendix A. Spectral decomposition for EOLE using a grid of nodes

In this section we show how the spectral decomposition of correlation matrix C can be simplified when using the auto-
correlation function defined in Eq. (4). As shown in [43], such a pattern of autocorrelation (fully separable correlation)
enables us to greatly simplify the computation of eigenvalues and the associated eigenfunctions (vectors) of the correlation
function (matrix). The solution of the eigenvalue problem is a solution to the Fredholm integral equation of the second kind,
homogeneous, where the correlation function is the kernel [43].

Let us now assume a discrete case in which the (squared, symmetric) autocorrelation matrix C of order N is assembled for
N grid nodes (random variables). We assume that the grid is formed by Nx nodes along the x-direction, Ny nodes along the y
direction and Nz nodes along the z direction. Therefore, the order of the correlation matrix is N ¼ Nx Ny Nz. The entries in the
correlation matrix are calculated directly from Eq. (4). Each entry in such a correlation matrix can therefore be written as the
product of Nd correlations over individual dimensions
C : Cij ¼
YNd

dim¼x;y;z

exp �kDi;j;dimk
lc;dim

� �2

¼ qxði; jÞ � qyði; jÞ � qzði; jÞ i; j ¼ 1; . . . ;N ðA:1Þ
where indices i, j denote a pair of points (random variables), and Nd is the number of spatial dimensions considered as 3.
Therefore, each entry in the matrix is the product of three correlations; the correlation matrix C can thus be written as a
tensor product of three considerably smaller correlation matrices, namely Cx; Cy and Cz
C ¼ Cx � Cy � Cz ðA:2Þ

The three matrices Cx; Cy and Cz represent correlation matrices of the three one-dimensional grids along x; y and z direc-
tions. This is why the matrices are symmetric positive (semi)definite matrices of orders Nx; Ny and Nz.

We now seek N eigenvalues and eigen-shapes of this matrix (or, the K dominant modes). The problem involved in the
simulation of random fields using the Karhunen–Loève expansion is to find such an eigenvalue matrix K and the associated
orthonormal eigenvectors (columns of) w such that
C ¼ wKwT ðA:3Þ

The key to simplifying the computation of K and w lies in the fact that the desired eigenmodes can be obtained as the solu-
tion to three smaller problems
K ¼ Kx � Ky � Kz; w ¼ wx � wy � wz ðA:4Þ
where Kx (wx) is the diagonal matrix containing eigenvalues (eigenvectors) of Cx; Cy ¼ wyKyw
T
y , etc.

This idea, described in detail for a general number of dimensions in [43], will now be demonstrated using a two-dimen-
sional problem ðNz ¼ 1Þ, depicted in Fig. 12. Consider a two-dimensional region covered with a grid of N ¼ 20 nodes using
Nx ¼ 5 and Ny ¼ 4 nodal coordinates. For a unidirectional numbering of equidistant nodes along each direction, the correla-
tion matrices Cx and Cy are symmetric Toeplitz matrices (diagonal-constant matrices) where the ði; jÞth elements depend
only on the distance between nodes i and j. Numerical problems involving Toeplitz matrices are typically solved quickly.
Specialized algorithms exist for spectral decomposition, see e.g. [2,25,7]. The correlation matrix along the x direction reads



Fig. 12. Left: Example of a two-dimensional grid for the simulation of a random field within a beam. Right: Values of the autocorrelation function along the
x-direction.
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ðA:5Þ
and therefore the correlation matrix of the two-dimensional grid can be written as
ðA:6Þ
The desired eigenvalue matrix of twenty eigenvalues is constructed as a list of multiplications between all pairs of eigen-
values for each unidirectional grid
ðA:7Þ
and similarly the eigenvector matrix can be constructed as a block matrix
ðA:8Þ
Sorting the eigenvalues from the largest to the smallest and simultaneously sorting the columns of w enables us to ignore
eigenmodes with small eigenvalues.

Such an exploitation of the separable patterns of correlation matrices leads to considerable time and memory savings, and
also to increased accuracy. Note that K and w do not have to be stored in computer memory. For large systems, it is advantageous
to save only the source matrices for unidirectional grids (wx; wy; Kx and KyÞ and expand the entries of K and w during compu-
tation. In our meso-level discrete model of bent beams, the grid for autocorrelation length l ¼ 40 mm consists of N ¼ 65:254
nodes. This grid is constructed using Nx ¼ 79; Ny ¼ 59 and Nz ¼ 14 nodes. Computation of the eigenproblem requires dealing
with a correlation matrix of order N; to store the N eigenvectors in computer memory, one must store N2 � 4:25 � 109 values.
This can not fit into the RAM memory of a common computer. The proposed partitioning enables solution of three problems
with matrices of orders Nx ¼ 79; Ny ¼ 59 and Nz ¼ 14. This is considerably easier and the three eigenvector matrices
occupy only N2

x þ N2
y þ N2

z � 9:9 � 103 values. Six orders of magnitude represents a noticeable difference. Combination of this
partitioning approach on a grid with EOLE interpolation (Eq. (7)) forms an efficient way of random field generation.
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