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a b s t r a c t

This paper examines the feasibility of high-level Python based utilities for numerically intensive
applications via an example of a multidimensional integration for the evaluation of the statistical
characteristics of a random variable.We discuss the approaches to the implementation ofmathematically
formulated incremental expressions using high-level scripting code and low-level compiled code. Due
to the dynamic typing of the Python language, components of the algorithm can be easily coded in a
generic way as algorithmic templates. Using the Enthought Development Suite they can be effectively
assembled into a flexible computational framework that can be configured to execute the code for
arbitrary combinations of integration schemes and versions of instantiated code. The paper describes
the development cycle using a simple running example involving averaging of a random two-parametric
function that includes discontinuity. This example is also used to compare the performance of the
available algorithmic and executional features. The implemented package including further examples and
the results of performance studies have been made available via the free repository [1] and CPCP library.
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Running time:
Depending on the number of random variables the time needed for the numerical estimation of the mean
value of a function with a sufficiently low level of numerical error varies. For orientation, the time needed
for two included
examples: examples/fiber_tt_2p/fiber_tt_2p.py with 2 random
variables: few milliseconds
examples/fiber_po_8p/fiber_po_8p.py with 8 random
variables: few seconds

© 2012 Elsevier B.V. All rights reserved.
1. Introduction

High-level languages for scientific computing offer application
programmers a convenient and efficient tool for the formulation
and implementation of mathematical models. Examples of widely
used high-level software for the rapid prototyping of scientific
applications are Maple, Matlab, Octave, R and S+. These tools
provide rich documentation, visualization utilities, symbolic
operators and a large number of numericalmethods. The suitability
of the Matlab toolkit for the prototyping of numerical applications
and for teaching courses has been discussed e.g. in [2]. Compared
to the low-level programming languages like FORTRAN and C or
C++ these high-level tools make development more productive,
especially at the early stages of application development. On
the other hand, such high-level tools can seldom compete with
the performance of applications written in compiled languages.
The trade-off between flexibility and efficiency is a daily issue
for application programmers in the area of scientific computing.
An ideal development environment should provide both high
productivity at the early stages of development and, at the same
time, an easyway to accelerate code execution once the application
has reached a mature state.

A particularly appealing development environment has emer-
ged during the last decade in the area of open source software.
The scripting language Python has established a platform for
developing and integrating two rich numerical librariesnumpy and
scipy. These libraries embody algorithms andmethods developed
over the past decades in the compiled languages FORTRAN and
C++ (http://www.netlib.org). The flexibility of scripting in Python
applied to scientific applications has been thoroughly presented in
the textbook [3]. As further documented in [4,5], the high flexibility
of the scripting language is not necessarily accompanied by a
lower efficiency with respect to the compiled code. Indeed, when
implementing mathematical expressions in vectorized form using
compact array representation [6], the trade-off between flexibility
and efficiency is reduced to an acceptable level [7].

Besides the comparisonwith the compiled low-level languages,
the productivity and efficiency of the Python development
environment has been compared with Matlab and Octave using
several benchmark examples [8,9]. These studies came to the
conclusion that the functionality of the Python based environment
is comparable with that of commercial tools. However, in the
authors’ opinion, the Python environment has a decisive advantage
in one crucial area: it has an open and extensible object
model behind its language so that it can evolve further. The
possibility of extending the class definition in the language using
metaclasses allows the incorporation of design patterns into the
language that further increase the productivity of developers. In
particular, the Enthought Tool Suite (http://www.enthought.com)
has introduced a refined definition of a class using predefined
traits [10]. A class trait corresponds to the usual attribute in
an object-oriented language but extends it with information on
initialization, validation, notification of changes and visualization.
Such an extended attribute specification has been used to
incorporate the Model-View-Controller design pattern into the
language and provide automatic object visualization and dynamic
control of state changes with minimum programming effort. This
semantically rich language support allows developers to benefit
from automatic generation of the user interface directly from the
class view specification, persistence of objects, declaration of state
dependencies and effective support for data visualization.

This paper reports on the feasibility of the Python-based envi-
ronment for the development of scientific applications. The con-
cepts, observations and conclusions made here are relevant for
readers interested in three disciplines: estimation of statistical
moments, programming of scientific computing applications and
simulation of fiber bundles and/or of brittle matrix composites.
Throughout this paper, the applied implementation concepts are
demonstrated on the estimation of statistical moments of the
stress–strain response of a set of parallel fibers. This task corre-
sponds to the estimation of the statistical moments of an ‘‘ele-
mentary’’ function with random parameters. An example of such a
function describing the stress–strain response of a fiber loaded in
tension with two independent, identically distributed random pa-
rameters for stiffness and strength is shown in Fig. 1, left. Random
realizations of the single fiber’s response are displayed in Fig. 1,
right. The goal is to efficiently estimate themean response of a fiber
within the bundle, which is plotted as the solid black line in Fig. 1,
right.

The implementation of this specific example has been general-
ized so that it is applicable for the statistical characterization of an
arbitrary function with independent random parameters. The im-
plemented framework falls into the domain of multivariate anal-
ysis packages, as does pychem [11]. We shall demonstrate that
when using the aforementioned implementation environment, the
abstract nature of themathematical formulation can be reflected in
the code without any additional performance penalty. The partic-
ular motivation of the paper is to

• show the rapid prototyping of an application starting with a
simple Python script,

• showhow to generalize and scale up the script to a configurable
algorithmic object that can incorporate several variants of
random sampling and options for the speeding up of the code,

• provide a framework for the verification of results and for
studies of execution efficiency for all available features of the
implementation.
The paper is organized as follows. First, the symbolic specifi-

cation of the implemented algorithms is presented in Section 2.
After that, simple implementations of the algorithm in pure Python
on the one hand and using the numpy and scipy packages on the
other hand are constructed in Section 3. Next, the algorithm im-
plementation is generalized to incorporate other types of sampling
and languages (Section 4). The introduced variants of the algorithm
are then merged in the general interactive framework for multidi-
mensional integration in Section 5 using Enthought traits as a glue.
The configurable package allows for a thorough comparison of the
efficiency of several versions of the sampling types described in

http://www.netlib.org
http://www.enthought.com
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Fig. 1. Left: elementary response described by a functionwith two randomparameters; Right: sample of random responses (gray) and the calculatedmean response (black).
Section 8. The execution efficiency is compared for three types of
code generated and compiled on the fly for the current response
function and its randomization in Section 9. The code segments
provided throughout the paper constitute an executable script in-
cluded in the spirrid package that is available for downloading
from the online CPCP Library and in the github.com repository [1].

2. Estimation of statistical moments of a function with
independent random variables

The goal is to estimate the statistical moments of a random
problemQ given as a function of a control variable ε and of random
variables θ1 · · · θm constituting the random domain Θ:

Q = q (ε; θ1, . . . , θm) (1)

with q(ε; θ) further referred to as a response function. The k-th raw
statistical moment of such a random problem is given as

µk(ε) =


Θ

[q (ε; θ)]k g(θ) dθ. (2)

Since only independent random variables are considered here, the
joint probability density function g(θ) (PDF) of the random vector
θ can be replacedwith the product of univariatemarginal densities

µk(ε) =


Θ1

· · ·


Θm

[q (ε; θ)]k

× g1(θ1) · · · gm(θm) dθ1 · · · dθm. (3)

The integration is to be performed numerically as a summation of
discrete values distributed over the discretized random domain

µk(ε) =


Θ1

· · ·


Θm

[q (ε; θ1 · · · θm)]k  
Q k

× ∆G1(θ1) · · · ∆Gm(θm)  
∆G

, (4)

where ∆Gi(θi) denote the weighting factors that depend on the
particular type of sampling as specified below. The distribution
of the integration points Θm within the random domain can be
expressed as

Θi = [θij, j ∈ 1 · · · ni], i ∈ 1 · · ·m, (5)

where ni is the number of discretization points for the i-th variable
and j counts the discretization point along a variable. There are
many ways to cover the random domain by sampling points.
In order to demonstrate the expressive power of the language
and to discuss the computational efficiency of the possible
implementation techniques we shall implement the integral (3) in
four different ways:
I. Equidistant grid of random variables (TGrid). The i-th random
variable is covered by regularly spaced values θij. The probability
associated with an integration cell is given as

∆Gi(θij) = gi(θij)∆θi (6)

with ∆θi denoting the spacing between discretization points.
II. Non-equidistant grid of random variables. Sampling points are
generated through an equidistant grid of sampling probabilities πij
(PGrid). The transformation of sampling probabilities into the ran-
dom domain Θ in Eq. (5) is performed for each random variable
enumerated as i = 1 · · ·m using the inverse cumulative distribu-
tions (also referred to as percent point function):

θij = G−1
i


πij


(7)

where the values πij are obtained as

πij =
j − 1

2

ni
, j ∈ 1 · · · ni. (8)

The integration cells rendered through this kind of sampling share
the same probability (weight) for each variable:

∆Gi(θij) =
1
ni

(9)

and each integration cell has an equal probability in them-dimen-
sional space of random variables

∆G(θ) =

m
i=1

1
ni

. (10)

This type of sampling is introduced here as a combination of the
grid-type of sampling with the concept of the Monte Carlo type of
sampling with constant integration cell probability.
III. CrudeMonte Carlo Sampling (MCS). Instead of using a structured
grid of πij as given in Eq. (8) the sampling probabilities are selected
randomly from πij ∈ ⟨0, 1⟩ and the corresponding sampling points
are selected according to Eq. (7). The underlying data structure
of Θi arrays can be flattened as the number of sampling points
ni = nsim is equal for all random variables and integration can be
done in a single loop as

µk(ε) =

nsim
j=1


q

ε; θ1j, . . . , θmj

k  
Q k

·
1

nsim
. (11)

IV. Latin Hypercube Sampling (LHS). An enhanced version of Monte
Carlo type sampling which uses stratification of the distribution
functions of input random variables to ensure uniform coverage
of the sampling probabilities [12–14]. An LHS sample tends to
be more uniformly distributed through the unit hypercube of
sampling probabilities πij than a Monte Carlo sample. As a result,
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the variance of the statistics estimators such as the one in Eq. (11)
is usually reduced in comparison withMCS. Indeed, Stein [15] has
shown that LHS reduces the variance compared to simple random
sampling (crude Monte Carlo). The amount of variance reduction
increases with the degree of additivity and monotonicity in the
random quantities on which the function q depends.

Similarly as in the case of MCS, the underlying data structure
can be flattened and integration can be performed in a single loop
as prescribed in Eq. (11). The sampling points in Eq. (7) are obtained
through sampling probabilities calculated as:

πij =
rij − 1

2

nsim
, j = 1 · · · nsim (12)

with rij representing an (m, nsim) matrix containing random
permutations of a sequence 1, . . . , nsim on each row. By using
this scheme, the medians of each stratum are selected as sampling
points.

Further improvements of the method can be achieved by se-
lecting probabilistic means in each stratum [16]. We remark that
the random ordering of sampling probabilities does not ensure an
exact unit correlation matrix of simulated data especially for small
sample sizes, see [17]. A possible remedy has been proposed in [16]
by employing an algorithm diminishing the undesired correlation
of the sample.

In order to make the explanation of the implementation illus-
trative let us introduce a simple two-parametric response function
depicted in Fig. 1 (left) as

q(ε; λ, ξ) = λ ε · H (ξ − ε) . (13)

This function defines the stress for a given positive control strain
ε of a linear elastic, brittle fiber with the stiffness parameter λ and
breaking strain ξ . The symbol H(x) represents the Heaviside func-
tion yielding zero for x < 0 and one for x ≥ 0. We deliberately
chose a function containing discontinuity in order to study the abil-
ity of the integration algorithm to reproduce the smoothness of the
average response of an ensemble with a constituent response gov-
erned by a non-smooth function. If many fibers act in parallel, as
is the case in a crack bridge in a composite, they exhibit imper-
fections. This means that the material parameters λ and ξ must
be considered random. The mean stress–strain behavior of a fiber
within a bundle can be obtained using Eq. (4) as

µq(ε) =


Θλ


Θξ

q (ε; λ, ξ)  
Q

gλgξ ∆θλ∆θξ  
∆G

. (14)

The result of this expression is plotted in Fig. 1 (right, black curve).
It demonstrates that the average response of the filament is nonlin-
ear. The described integral exhibits the structure of a strain-based
fiber bundlemodel describing the behavior of yarns and composite
materials [18]. The authors have used the procedure for modeling
the tensile tests of multi-filament yarns [19].

3. Scripting implementation of an equidistant integration
scheme

In order to demonstrate the possible approaches to the imple-
mentation of the numerical model, let us construct a short script
delivering the result of Eq. (14). In the first stepwe define the prob-
ability distributions of the parameters λ and ξ as normal and gen-
erate an equidistant discretization of the random domains Θλ and
Θξ with 20 values together with the values of marginal densities
gλ and gξ .

1from scipy.stats.distributions import norm
2import numpy as np
3# set the mean and standard deviation of la and xi
4m_la, std_la = 10.0, 1.0
5m_xi, std_xi = 1.0, 0.1
6# construct objects representing normal distributions
7pdistrib_la = norm(loc=m_la, scale=std_la)
8pdistrib_xi = norm(loc=m_xi, scale=std_xi)
9# get operators for probability density functions
10g_la = pdistrib_la.pdf
11g_xi = pdistrib_xi.pdf
12# number of integration points set equal for both variables
13n_i = 10
14# generate midpoints of n_i intervals in the range (-1,1)
15theta_arr = np.linspace(-(1.0 - 1.0 / n_i),
161.0 - 1.0 / n_i, n_i)
17# scale up theta_arr to cover the random domains
18theta_la = m_la + 4 * std_la * theta_arr
19theta_xi = m_xi + 4 * std_xi * theta_arr
20# get the size of the integration cells
21d_la = (8 * std_la) / n_i
22d_xi = (8 * std_xi) / n_i

Note that the random domain has been covered by an equidistant
set of integration points generated in two steps: First, the range
⟨−1, 1⟩ was covered by an array of midpoints of ni integration in-
tervals at line 15. Second, the rangewas centered around themean
value and scaled up by four standard deviations at lines 18–19 in
order to sufficiently cover the non-zero domain of the normal dis-
tribution. The response function itself is implemented consistently
with Eq. (13)1

23def Heaviside(x):
24"""Heaviside function."""
25return x >= 0.0
26
27def q_eq13(eps, la, xi):
28"""Response function of a single fiber."""
29return la * eps * Heaviside(xi - eps)

Note that the use of the control statements if and else has been
avoided. Instead, a Heaviside function returning Boolean values is
used in order to allow arrays as parameters of the response func-
tion.2 This is necessary to permit a vectorized evaluation of the
function as shall be explained later on.

A simple implementation of the summation expression in
Eq. (14) would consist of three loops: one loop for gathering the
response values along the control variable ε and two loops along
the random variable domains Θλ and Θξ :

30def mu_q_eq14_loops(eps_arr):
31"""Loop-based calculation of mean values."""
32mu_q_arr = np.zeros_like(eps_arr)
33for i, eps in enumerate(eps_arr):
34mu_q = 0.0
35for la in theta_la:
36for xi in theta_xi:
37dG = g_la(la) * g_xi(xi) * d_la * d_xi
38mu_q += q_eq13(eps, la, xi) * dG
39mu_q_arr[i] = mu_q
40return mu_q_arr
41
42# construct an array of control strains
43eps_arr = np.linspace(0, 1.2, 80)
44mu_q_arr = mu_q_eq14_loops(eps_arr)

1 Code blocks in Python are introduced by indentation levels.
2 Another option would be to use masked arrays skipping the array values

associated with the True value of the logical expression defining the mask.
However, aswe shall comment in Section 9 this option is connectedwith significant
losses of performance.
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Fig. 2. Broadcasting as a tool to construct a cross product between two arrays.
This implementation is naive and extremely slow and is introduced
here solely for illustrative purposes. The above script is about 1000
times slower than the same code written in the C language. It
is obvious that in this form Python code cannot compete with
FORTRAN or C compiled code.

Efficient and more competitive Python code can be produced
using the numerical package numpy. The basic concept behind
speeding up the code is to avoid interpreted loops in the
implementation by using the array-based operators of numpy.
Consistent with Eq. (14), the terms Q and ∆G shall be calculated
separately for all combinations of the parameters within the
discretized random domain Θ = Θλ × Θξ as two-dimensional
arrays and, subsequently, the array-based product and summation
operators of numpy are to be applied. The array containing
the weight factors ∆G can be conveniently evaluated using the
vectorized product operator over two numpy arrays:

45dG_la = g_la(theta_la) * d_la
46dG_xi = g_xi(theta_xi) * d_xi
47dG_grid = dG_la[:,np.newaxis] * dG_xi[np.newaxis,:]

In the first two lines, 45–46, the PDF functions g_la and g_xi
previously constructed at lines 10–11 are reused. However, now
the random variables are represented as the arrays theta_la
and theta_xi. The result of the call g_la(theta_la) is an
array of PDF values for all values in theta_la. Such a vectorized
evaluation is executed completely in the compiled code of the
numerical library numpy. The loop over the array elements is not
explicitly given in the code. Therefore, this kind of code is often
somewhat imprecisely referred to as loopless.

The implicit loops are also used during the computation of the
dG_grid at line 47 delivering the two-dimensional array of joint
integration weights: ∆Gλξ (θλ, θξ ) = ∆Gλ(θλ) · ∆Gξ (θξ ), ∀θλ ∈

Θλ, ∀θξ ∈ Θξ . Line 47 demonstrates the use of index operators in
numpy to construct an outer product of two arrays in order to avoid
slow Python loops. The machinery behind the implicit loops uses
two concepts:

• A new dimension (np.newaxis) with the length of 1 was
added to the one-dimensional arrays dG_la and dG_xi so that
they became two-dimensional column (dG_la[:,np.new-
axis]) and row (dG_xi[np.newaxis,:]) matrices, re-
spectively. Note that the index operator [:] stands for a
slice, i.e. all values along that dimension. Thus, the construct
dG_xi[:,np.newaxis] reshapes an array and makes it open
for operations with operands possessing the second dimension.

• The orthogonal shape of the arrays dG_la[:,np.newaxis]
and dG_xi[np.newaxis,:] is used for ‘‘broadcasting’’ the
data across dimensions, a concept illustrated in Fig. 2: If a
column matrix A of the shape (m, 1) is multiplied with a row
matrix B of the shape (1, n) the resulting matrix will have the
shape (m, n). The nonexistent columns of A and nonexistent
rows of B are augmented with the values from the first column
and row, respectively, so that a(i,2···m) = a(1,j) and b(2···n,j) =

b(i,1).

The described technique is applicable in multiple dimensions:
dG_grid = dG_t1[:,np.newaxis,np.newaxis] * \
dG_t2[np.newaxis,:,np.newaxis] * \
dG_t3[ np.newaxis,np.newaxis,:]

It significantly increases the speed of the code compared to pure
Python due to the vectorized evaluation of the algorithm and
is more than sufficient for the prototyping phase of application
development. Further speedup is possible as shall be discussed
later in Section 9.

Having constructed the array with probabilistic weights ∆Gwe
may approach the array-based implementation of the response
function q(ε; λ, ξ) given in Eq. (13). We remark again that instead
of using the control blocks if and else in the listing (lines
27–29) to introduce discontinuity (i.e. to distinguish whether or
not the fiber is broken) a simple implementation of the Heaviside
function has been used (lines 23–25). In this form, the function
parameters la and xi can have both scalar or array values so that
a ‘‘vectorized’’ evaluation of the function is possible. The use of
if and else would only permit scalar parameters and no array-
based, loopless evaluation would be possible.

In analogy to the probabilistic weights ∆G, the values Q of the
response function can be obtained in a loopless manner using the
broadcasting concept. The expressionq(eps, theta_la[:,np.
newaxis], theta_xi[np.newaxis,:]) evaluates the respo-
nse function for all combinations of λ and ξ and stores them in a
two-dimensional array. Thus, the expression in Eq. (14) previously
implemented using loops at lines 34–39 can be reimplemented in
a loopless form in the method

48def mu_q_eq14(eps):
49"""Loopless calculation of mean value."""
50q_grid = q_eq13(eps,
51theta_la[:,np.newaxis],
52theta_xi[np.newaxis,:])
53q_dG_grid = q_grid * dG_grid
54return np.sum(q_dG_grid)

Note that q_grid and dG_grid have the same shape (n_i,n_i)
so that the variable q_dG_grid calculated at line 53 contains
element-by-element products of the response function values and
associated probabilistic weights. At line 54, summation over all
dimensions is performed to obtain the mean value.

By issuing for example the call mu_q_eq14(1.0) one obtains
the mean response for the control variable 1.0, see the circle in
Fig. 1, right. In order to get the stress for multiple values of the
strain in a single call, the function mu_q_e14 can be vectorized3

to permit an array as an input parameter:

55mu_q_eq14_vct = np.vectorize(mu_q_eq14)
56# eps_arr from line 43 reused here
57mu_q_arr = mu_q_eq14_vct(eps_arr)

3 The np.vectorize method performs a repeated evaluation of the supplied
function over an array in a Python loop. Due to the lower efficiency of the vectorized
operator it should only be used in outer loops of an application. For inner loops,
either implicitly vectorized operators of numpy combined with broadcasting, or
acceleration packages like cython or weave discussed later should be used.
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Finally, plotting can be done using the matplotlib package.
We shall use the matlab-like interface for matplotlib called
pylab:

58import pylab as p
59p.plot(eps_arr, mu_q_arr)
60p.show()

This code produces the diagram shown in Fig. 1 (right) with the
mean response shown as a black curve. The example demonstrates
the prototyping step in the development of a numerical applica-
tion. The script is limited to a particular response function and
predefined randomization pattern.

4. Generalization for other sampling schemes

The abstract nature of the mathematical formulation (Eq. (4))
permits the use of an arbitrary type of the response function
q(ε; θ) and probability distributions gi(θi). It is desirable to
preserve this flexibility of the mathematical model also in its
implementation. The script implemented in the previous section
uses the equidistant discretization given in Eq. (6). In order to
implement the other three discretizations of the random domain
mentioned in Section 2 we shall capture the discretization-
independent part of the code in a generic algorithmic template.
The following code exploits the fact that functions can be treated
as variables in Python and defines the integration procedure
without specifying the particular type of data structure for the
sampling/integration points:

61def get_mu_q_fn(q, dG, *theta):
62"""Return a method evaluating the mean of q()."""
63def mu_q(eps):
64Q_dG = q(eps, *theta) * dG
65return np.sum(Q_dG)
66return np.vectorize(mu_q)

The function get_mu_q instantiates the generic template for the
integral in Eq. (14) and/or Eq. (11) for an arbitrary response
function q and the list of variables *theta and dG. The code
does not make any assumption about the particular type of
input variables and thus it can be used to instantiate the
integration procedures for all four sampling schemes introduced
in Section 2. In this form, the code captures the algorithmic
commonalities of the integration methods and remains open for
further specializations:

I. TGrid sampling. The previously constructed values of the ∆G
grid and Θi are reused to instantiate the template and calculate
the results as

67# SAMPLING:
68# ... reuse dG_grid and theta (lines 18, 19 and 45--47)
69
70# INSTANTIATION:
71mu_q_fn = get_mu_q_fn(q_eq13, dG_grid,
72theta_la[:,np.newaxis],
73theta_xi[np.newaxis,:])
74
75# CALCULATION:
76mu_q_arr = mu_q_fn(eps_arr)

Note that in contrast with the first implementation (line 52), the
broadcasting is now performed outside of the generic integration
function at line 73 to keep the integration template open for a
flattened sampling data structure.

II. PGrid sampling. The integration algorithm based on a grid of
constant sampling probabilities can be instantiated using the code
77# SAMPLING:
78# equidistant sampling probabilities (see Eq. 8)
79j_arr = np.arange(1, n_i + 1)
80pi_arr = (j_arr - 0.5) / n_i
81# use ppf (percent point function) to get sampling points
82# (pdistrib_la and pdistrib_xi was defined at lines 7, 8)
83theta_la = pdistrib_la.ppf(pi_arr)
84theta_xi = pdistrib_xi.ppf(pi_arr)
85# get the total number of integration points
86# for 2 random variables with equal n_i
87n_sim = n_i ** 2
88
89# INSTANTIATION:
90mu_q_fn = get_mu_q_fn(q_eq13, 1.0 / n_sim,
91theta_la[:,np.newaxis],
92theta_xi[np.newaxis,:])
93
94# CALCULATION:
95mu_q_arr = mu_q_fn(eps_arr)

Here, broadcasting is used again at line 92 and instead of a grid of
weighted parameters (dG_grid) only a single value ∆G = 1/nsim
is used for instantiation.

III. MCS sampling. The integration template can also be used for
the non-regular discretization used in Monte Carlo sampling.
For a comparison between grid sampling and the Monte Carlo
types of sampling we shall consider an equal number of function
evaluations, so that nsim =

m
i=1 ni, where ni represents the

number of values along each of the m dimensions in the grid
discretizations.

96# SAMPLING:
97# generate n_sim random realizations
98# using pdistrib objects (lines 7, 8)
99theta_la_rvs = pdistrib_la.rvs(n_sim)
100theta_xi_rvs = pdistrib_xi.rvs(n_sim)
101
102# INSTANTIATION:
103mu_q_fn = get_mu_q_fn(q_eq13, 1.0 / n_sim,
104theta_la_rvs, theta_xi_rvs)
105
106# CALCULATION:
107mu_q_arr = mu_q_fn(eps_arr)

The∆G value is again constant. The integration code is now instan-
tiated with flat arrays of sampled values.
IV. LHS sampling. The Latin Hypercube Sampling is constructed
using a perturbation of nsim values of θi obtained using the percent
point function.

108# SAMPLING:
109# sampling probabilities (see Eq. 12), n_sim as above
110j_arr = np.arange(1, n_sim + 1)
111pi_arr = (j_arr - 0.5) / n_sim
112# get the ppf values (percent point function)
113# using pdistrib objects defined at lines 7, 8
114theta_la_ppf = pdistrib_la.ppf(pi_arr)
115theta_xi_ppf = pdistrib_xi.ppf(pi_arr)
116# make random permutations of both arrays to diminish
117# correlation (not necessary for one of the random variables)
118theta_la = np.random.permutation(theta_la_ppf)
119theta_xi = theta_xi_ppf
120
121# INSTANTIATION:
122mu_q_fn = get_mu_q_fn(q_eq13, 1.0 / n_sim,
123theta_la, theta_xi)
124
125# CALCULATION:
126mu_q_arr = mu_q_fn(eps_arr)
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Fig. 3. Sampling structures within the random domain, and the calculated mean responses for the implemented integration schemes.
Fig. 3 shows the results for the four instantiated versions of the
algorithm. For the sampling schemes using structured grid (TGrid,
PGrid) nint = 10 integration points are used in each direction. For
the Monte Carlo types of sampling (MCS, LHS) the same number of
sampling points, nsim = nm

= 102, is used.
Let us summarize that all four examples could be realized using

the generic template get_mu_q implemented at lines 61–66. Due
to the use of implicit loops over numpy arrays the template code
can handle both grid-based and Monte Carlo types of sampling.
This documents the fact that using loopless code the algorithmic
structure could be captured in an abstract way without strong
assumptions about the particular representation of the sampling
data.

5. Interactive algorithmic object

While the previous section was focused on capturing the
structural commonalities of the algorithmic procedure in the
generic code of the get_mu_q_fn template (lines 61–61), in this
section we intend to generalize the code for the specification of
the random problem, generation of sampling data and include also
loop-based code as an alternative to the vectorized code described
so far.

In the context of our running example,wewant to avoid thepart
of code that is entitled as SAMPLING in the four implementations
given in the previous section. At the same time, we want to
represent the random problem, the sampling methods and the
execution code in independent code entities so that they can be
combined interactively.

The specified functionality has been provided in the form of
an interactive algorithmic object. The random problem can be
defined and interactively configured using the SPIRRID class by
supplying an arbitrary response function and by specifying its
control and random parameters. The complete list of attributes
defining a general multi-variant random problem includes the
following items:

q defines the response function. It is either a
function or a ‘‘callable’’ object possessing the()
call operator. An example is a standard Python
function

def q(name1, name2, name3, name4, ...)

Parameter names are used for further specifica-
tion of control and random variables included
either in the eps_vars or theta_vars at-
tributes.
eps_vars specifies the control variables as a dictionary of
(name, value) pairs

eps_vars = {’name1’ : value_arr1,
’name2’ : value_arr2}

wherevalue_arrdefines the evaluation range
of the control variable.

theta_vars specifies random variables as a dictionary of
(name, value) pairs

theta_vars = {’name3’ : RV(distr3, loc3,
scale3, n_i3),
’name4’ : RV(distr4, loc4,
scale4, n_i4)}

where value objects constructed asRV(distr_
type, loc, scale, n_i) define the ran-
dom variables by specifying the type of pro-
bability distribution (distr_type) and its
parameters loc, scale and the number of
integration points n_i in the respective dimen-
sion of the random domain.

sampling_type within the random domain is specified using
the option sampling_type = [’TGrid’,
’PGrid’, ’MCS’, ’LHS’]. By choosing the
type of sampling, the corresponding arrays ofΘ
values and the associated statisticalweights∆G
are generated for the integration algorithm.

codegen_type is selected using option codegen_type =
[’numpy’, ’weave’, ’cython’]. Based
on this selection the integration code is gen-
erated on the fly for the currently configured
random problem and sampling either using the
vectorized numpy package or compiled looped-
based C code produced using the weave or
cython packages.

As an application example, let us reproduce the random prob-
lem defined previously at lines 108–123:

127from stats.spirrid import SPIRRID, RV
128# DEFINITION: random problem, sampling type, code type
129s = SPIRRID(q=q_eq13,
130eps_vars={’eps’ : np.linspace(0, 1.2, 80)},
131theta_vars={’la’ : RV(distr=’norm’, loc=10,
132scale=1.0, n_i=10),
133’xi’ : RV(distr=’norm’, loc=1,
134scale=0.1, n_i=10)}
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135sampling_type=’LHS’,
136codegen_type=’numpy’)
137# INSTANTIATION and CALCULATION
138print ’array of mean values’, s.mu_q_arr

Output values of the algorithmic object are obtained by access-
ing the mu_q_arr property attribute as indicated at line 138. This
means that the actual calculation of the mean response using the
SPIRRID object is not invoked explicitly but gets started on de-
mand upon an access to the property attributes of the algorithmic
object.

Except for the mean values, the SPIRRID class contains prop-
erty attributes for accessing also other output data produced
during the computation. In particular, variances and information
about the last performed calculation (e.g. CPU times consumed for
compilation, sampling and integration):

139print ’array of variances’, s.var_q_arr
140print ’execution time of the last calculation’, s.exec_time

Using the listed input and output attributes of the SPIRRID
class, the four sampling schemes introduced in Section 4 imple-
mented at lines 67–126 can be reproduced using the algorithmic
object defined at line 129 in a loop over the sampling schemes:

141# plot results for all implemented sampling types
142for sampling_type in [’TGrid’, ’PGrid’, ’MCS’, ’LHS’]:
143s.sampling_type = sampling_type
144p.plot(s.eps_arr, s.mu_q_arr, label=sampling_type)
145print ’execution time for’, sampling_type, s.exec_time
146
147p.legend()
148p.show() # show all diagrams in a single figure

This loop produces a diagram showing the response obtained using
the four sampling schemes and prints the execution times needed
for the included types of sampling. In an indicated way, data
on convergence and execution efficiency characterizing particular
configurations of the algorithmic object can be gathered, processed
and plotted. This is performed later in Sections 8 and 9 providing
a systematic performance comparison of the discussed sampling
methods on the one hand and of the implementation type, either
vectorized, loopless or compiled, loop-based on the other hand.

6. Implementation of the SPIRRID class using traits

After a brief description of the user view of the SPIRRID class,
let us shortly explain the approach to its implementation. The
structure of the code is depicted in Fig. 4 in the form of a UML
class diagram [20]. The diagram indicates the decomposition of the
problem into three parts:

randomization: representing the specification of the random
problem in terms of the response function and classifi-
cation of its parameters into control and random.

sampling: delivering the sampling data theta and dG for the
given randomization.

code generation: providing the instantiated execution method
either as a vectorizednumpy code or as a compiledC code
generated with the help of weave or cython packages.

Our Python implementation of the class diagram uses the
traits package provided within the Enthought Tool Suite (http://
www.enthought.com). This package introduces an extended at-
tribute definition into Python classes by including specification of
the attribute’s type and of its dynamic behavior. In our experience,
traits can significantly contribute to a compact implementation of
an object-oriented application since the implemented static class
structure can be easily enhanced with the specification of state
transitions involved in the life-cycle of an interactive object.

Let us demonstrate the implementation approach on a part
of the code showing the definition of the classes RV, Function
Randomization and SPIRRID depicted in Fig. 4:

149from traits.api import Trait, Callable, Dict, \
150Str, Property, DelegatesTo, on_trait_change, \
151cached_property
152from sampling import make_ogrid, \
153TGrid, PGrid, MonteCarlo, LatinHypercube,
154from code_gen import \
155CodeGenNumpy, CodeGenWeave, CodeGenCython
156# import subsidiary class for probabilistic distributions
157from stats.pdistrib import PDistrib
158
159class RV(HasTraits):
160"""Class representing a random variable."""
161distr_type = Str(’norm’, desc=’distribution type’)
162loc = Float(0.0, desc=’location parameter’)
163scale = Float(0.0, desc=’scale parameter’)
164shape = Float(1.0, desc=’shape parameter’)
165n_i = Int(40, desc=’number of integration points’)
166
167# probability distribution
168distr = Property(depends_on=’loc, scale, shape’)
169@cached_property
170def _get_distr(self):
171# PDistrib class wraps the scipy.stats.distributions
172return PDistrib(type=self.distr_type, loc=self.loc,
173scale=self.scale, shape=self.shape)
174
175# operators delegated to scipy.stats via PDistrib
176pdf = DelegatesTo(’distr’)
177cdf = DelegatesTo(’distr’)
178ppf = DelegatesTo(’distr’)
179
180class FunctionRandomization(HasTraits):
181"""Specification of a multi-variate random problem."""
182q = Callable(rp_spec=True)
183eps_vars = Dict(Str, Array, rp_spec=True)
184theta_vars = Dict(Str, RV, rp_spec=True)
185
186@on_trait_change(’+rp_spec’)
187def _validate_random_problem(self):
188"""Prepare the input data structure."""
189# ... skipped here ...
190
191# Mapping properties
192eps_lst = Property(depends_on=’+rp_spec’)
193@cached_property
194def _get_eps_lst(self):
195"""Order control variables according to q."""
196# ... skipped here ...
197
198class SPIRRID(FunctionRandomization):
199"""Algorithmic class for multi-variate random problem.
200"""
201sampling_type = Trait(’TGrid’,
202{’TGrid’ : TGrid,
203’PGrid’ : PGrid,
204’MCS’ : MonteCarlo,
205’LHS’: LatinHypercube},
206sp_spec = True)
207sampling = Property(depends_on=’sp_spec’)
208@cached_property
209def _get_sampling(self):
210"""Getter method for the sampling generator."""
211return self.sampling_type_(randomization=self)
212
213codegen_type = Trait(’numpy’,

http://www.enthought.com
http://www.enthought.com
http://www.enthought.com
http://www.enthought.com
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Fig. 4. UML class diagram with a general representation of the integration algorithm and extensible components for sampling schemes and implementations. Attribute
names preceded by a slash indicate derived output values implemented as property traits.
214{’numpy’ : CodeGenNumpy(),
215’weave’ : CodeGenC(),
216’cython’ : CodeGenCython()},
217cg_spec = True)
218codegen = Property(depends_on=’+cg_spec’)
219@cached_property
220def _get_codegen(self):
221"""Getter method for the code generator."""
222return self.codegen_type_(spirrid=self)
223
224mu_q_arr = Property(depends_on=
225’+rp_spec,+sp_spec,+cg_spec’)
226@cached_property
227def _get_mu_q_arr(self):
228"""Getter method for the mean value array."""
229eps_orth = make_ogrid(self.eps_lst)
230mu_q_fn = self.codegen.mu_q_fn
231mu_q_arr = mu_q_fn(*eps_orth)
232return mu_q_arr

Let us summarize the aspects of the implementation in a list of
remarks:

Remark 1 (Imported Packages). In the import section, first the
trait types included in the traits.apimodule of the Enthought
package are imported at lines 149–151. After that (lines 152–155)
specializations of the Sampling and CodeGen classes (compare
class diagram in Fig. 4) are imported from the modules sampling
and code_gen of the spirrid package, respectively. Finally, the
class PDistrib utilizing the statistical distributions provided by
the scipy package for an object-oriented application is imported
from the stats.pdistribmodule.

Remark 2 (Representation of Random Variables). Random variables
are introduced using the classRV shown at lines 159–178. The class
consists of traits specifying the type of probability distribution
distr_type, its parameters loc, scale, shape and the number
of integration points n_i. Except for these input traits, RV class
includes a property trait for the probability distribution distr.
The distr property is defined as a @cached_property which
means that there is a hidden attribute of a type PDistrib that
gets automatically constructed upon first access to distr. If any
of the traits listed in the depends_on specifier of the property has
changed, the hidden PDistrib instance gets reconstructed upon
the next access to the distr attribute by invoking the associated
‘‘getter’’ method _get_distr(). The last three traits (pdf, cdf,
ppf) of the RV class defined as DelegatesTo traits are proxies
accessing methods of the distr trait. These methods are used
during the generation of the sampling data in the subclasses of
Sampling class.

Remark 3 (Specification of Multi-Variate Random Problem). Speci-
fication of the random problem including the response function,
control variables and random variables is defined and man-
aged by the FunctionRandomization class (lines 180–189).
Based on the given control variables eps_vars and random vari-
ables theta_vars the response function q is inspected for the
matching names of parameters. Note that these traits are grou-
ped together by specifying the rp_spec = True metadata in
the trait constructor. The +rp_spec specifier can then be used
for compact specification of state dependencies. One way how
to introduce a dynamic dependency is by using the decora-
tor on_trait_change(’+rp_spec’). This is exemplified at
line 186 in order to trigger the validation method _validate_
random_problem() whenever any of the q, eps_vars and
theta_vars traits has been modified. Another example of de-
pendency specification is provided for a lazy update of the list of
control parameters in the cached property eps_lst (line 192)
providing the input arrays in an order that corresponds with the
specification given in the response function definition.

Remark 4 (Integration of Algorithmic Features). The SPIRRID
class defined at lines 198–232 inherits from the Function
Randomization and integrates the algorithmic features for sam-
pling types (sampling_type) and code types (codegen_type)
as trait attributes containing the lists of available sampling meth-
ods and code generators, respectively. Depending on the current
value of sampling_type and codegen_type the instances of
the corresponding class given in Fig. 4 are provided through the
sampling and codegen properties, respectively. In the associ-
ated ‘‘getter’’ methods, an instance of the sampling type (line 211)
or code generator (line 222) is constructed and provided with a
backward reference to the SPIRRID object (self). Using this ref-
erence, the algorithmic feature can extract information on the ran-
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domization or mapping of dimensions of the control/random do-
main and function parameters.

Remark 5 (Instantiation of the Algorithm and of the Results). The
property trait mu_q_arr for the array of mean values (line 224)
depends on attributes categorized as +rp_spec, +sp_spec and
+cg_spec. In its getter method, the control variables for the
parameters eps_lst are first arranged in an orthogonal array
using the make_ogridmethod at line 229. As a consequence, for
more than one control variables, the broadcasting rules discussed
previously in Section 4 in the context of the random domain apply.
Thismeans that for problemswithmore than one control variables
(eps_vars) the mean values are automatically calculated for all
combinations of their values. The particular calculation method
mu_q_fn is instantiated for the current random problem and
samplingmethod at line 230 upon the access to the equally named
property of the current code generator codegen. The obtained
vectorized function mu_q_fn accepts a list of control variables and
runs the calculation.

In order to explain what is meant with the code generator let us
briefly describe the definition of CodeGenNumpy class:

233from code_gen import CodeGen
234
235class CodeGenNumpy(CodeGen):
236"""Code generator for vectorized numpy code."""
237mu_q_fn = Property(depends_on=
238’+spirrid.rp_spec,+spirrid.sp_spec’)
239@cached_property
240def _get_mu_q_fn(self):
241"""Return a method evaluating the mean of q()."""
242s = self.spirrid
243# construct dictionary of random variables
244theta_args = dict(zip(s.theta_var_names,
245s.sampling.theta))
246
247def mu_q(*eps):
248# construct dictionary of control variables
249eps_args = dict(zip(s.eps_var_names, eps)
250# merge theta and eps dictionaries
251args = dict(eps_args.items(), theta_args.items())
252# calculate the product
253Q_dG = q(**args) * s.sampling.dG
254return np.sum(Q_dG)
255
256return np.vectorize(mu_q)

The implementation of the getter method _get_mu_q_fnmimics
the get_mu_q_fn template defined previously in Section 3 at
lines 61–66. One significant difference, however, is that the
getter method _get_mu_q_fn furnishes the generated mu_q_fn
method with a sequence *eps of vectorized control parameters
and, thus, supports broadcasting. Another difference is that the
sampling data theta and dG are not passed as an argument of the
instantiated mu_q_fn function but are accessed via the sampling
attribute of the containing SPIRRID instance. As a consequence,
a change of the sampling method is automatically reflected by the
re-instantiation of the calculationmethod. Note that the generated
method is stored as a cached hidden value and is reused if there
was no change in its dependencies.

In our opinion the shown implementation of the CodeGen
Numpy class provides a very compact and short code including
a high flexibility with respect to the specification of the random
problem and to the choice of the particular sampling method.
The ingredients contributing to this kind of implementation are
the dynamic typing of the Python language, notification mech-
Fig. 5. View to an object defining a random variable.

anism introduced by the traits package and the broadcasting
technique for vectorized implementation provided by the numpy
package. Later in Section 9 we shall also comment on the imple-
mentation of the other generator classes (CodeGenCython and
CodeGenWeave) producing compiled loop-based C code.

7. User interface for an algorithmic object

As already mentioned, the SPIRRID class is prepared for
interactive use either through a command line or through a
user interface. For a class defined using traits, the user interface
can be constructed by specifying views to the object using the
traits.ui package included in the Enthought suite. Views are
defined declaratively by specifying lists of traits to be included
in the user interface. For example, a view to the RV class (lines
159–178) can be defined and rendered into the UI window shown
in Fig. 5 as follows:

257from traits.ui import View, Item
258
259v = View(Item(’distr_type’, label=’Distribution type’),
260Item(’loc’, label=’Location’),
261Item(’scale’, label=’Scale’),
262Item(’shape’, label=’Shape’),
263title=’Random variable’
264buttons=[’OK’, ’Cancel’])
265
266rv = RV(distr_type=’norm’, scale=10, shape=1)
267rv.configure_traits(view=v)

A more complex user interface is exemplified in Fig. 6 for an
interactive SPIRRID instance. The example reflects the previously
introduced computational components: (1) the response function,
(2) specification of random parameters, (3) statistical distribution,
(4) execution control, (5) configuration and (6) plotting of the
calculated mean curves as movable tabs within the user interface
window.

Besides views, traited classes also have an attached Contro-
ller class responsible for handling interaction events. By default,
there is an automatically constructed viewand controller object for
each traited class instance. Thismeans that even at the initial stages
of development a simple user interface is automatically available.
In the later stages, the views and controllers can be easily refined
into a form suitable for a particular type of application.

The declarative mapping of class traits to a viewmakes it possi-
ble to define a user interface to an application without sticking to
a particular UI library. Indeed, a switch between different types of
user interface toolkits is done by switching between the UI back-
ends. Currently, the back-ends for the wx and Qt libraries are avail-
able. Further details of theUImappingmachinerywould go beyond
the scope of the present paper and can be found in [21].
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Fig. 6. User interface view of an instance of the traited SPIRRID class.
8. Computational efficiency of the implemented sampling
schemes

The implemented algorithmic object shall now be used for
performance studies comparing the efficiency of the available
algorithmic features. The studies have been implemented as scripts
interacting with a single SPIRRID instance.

The convergence of the integration algorithm for the available
sampling schemes shall be evaluated using an analytical solution
available for our running example. The exact mean response of
the two-parametric response function given in Eq. (13) with both
parameters considered random and normally distributed can be
obtained as:

µexact
q (ε) =

µλε
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the numerical estimation of the mean has been studied depending
on the number of sampling points and on executional time.
The error has been defined both locally and globally. Since the
estimate of the statistical characteristics of the peak value is of
special significance, the local error measure has been defined
as the relative maximum deviation along the control variable ε
discretized using nε points:

emax =

max
i

µq(εi) − µexact
q (εi)


max

i


µexact

q (εi)

− min

i


µexact

q (εi)
 , i = 1 · · · nε. (16)
The global error measure has been introduced as the relative root
mean square error within the range of the control variable ε:
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Fig. 7 shows the convergence behavior in double logarithmic scale
for both types of errors for an increasing number of sampling
points. Both diagrams document the fact that LHS covers the
random domain in a significantly more efficient way than all the
other implemented methods. The convergence behavior of the
other three sampling methods is comparable.

A more relevant comparison of efficiency is given in Fig. 8
which shows the measured CPU time for the studied sampling
methods instead of nsim. Also in this view, the LHS method is
superior to the other methods. PGrid sampling is revealed to be
slightly more efficient than Monte Carlo and TGrid. The higher
efficiency is due to the fact that during the response function
evaluation, some interim results can be reused in the broadcasted
dimension and, consequently, a significant number of operations
can be saved. Such a caching of interim values within a random
subspace is not possible in the Monte Carlo type of sampling due
to the unstructured coverage of the m-dimensional space. The
positive effect of vectorized evaluation increases as the number
of random parameters grows. However, it also depends on the
type of the response function and on the current choice of the
random parameters. It must be also considered that the vectorized
evaluation of the response function q(ε) in the m-dimensional
space is connected with the exponential growth of memory
consumption. Further studies of convergence for varied sampling
types and response functions, also including all permutations of
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Fig. 7. Convergence to an exact solution with an increasing number of sampling points in terms of local and global error measures given in Eqs. (16) and (17), respectively.
Fig. 8. Convergence to an exact solution with an increasing computational time in terms of local and global error measures given in Eqs. (16) and (17), respectively.
randomized parameters, have been provided in the documentation
of the spirrid package [1].

9. Execution efficiency of vectorized and compiled code

Previous studies shown in Fig. 8 reveal that the CPU time
required to achieve sufficiently accurate results (erms ≤ 10−3) for
a function with two random variables using the numpy code is less
than 1 s. For more complex functions with more random variables
further speedup might be desirable. There are several ways to
improve the execution efficiency of Python code. An overview of
speedup possibilities for numerical Python code has been provided
in [22].

In order to accelerate the present application two options
have been used: cython [23] and weave [24]. They have been
incorporated into the spirrid package analogically to the numpy
code generator as subclasses of the CodeGen class (see Fig. 4)
providing the callable method mu_q_fn as a cached property.
In comparison to the CodeGenNumpy described in Section 6 the
generation of the code in CodeGenWeave and CodeGenCython is
more complex and lengthy as it involves the string based assembly
of the code, its subsequent compilation and integration into the
running application.

The generation for loop-based cython code is sketched in
Fig. 9. The codegen object in the middle box assembles the
loops over the control and random domains, inserts the access
operator to the particular values in the theta and dG arrays,
inserts the call to the response function q for current theta
value and, finally, inserts the expression for the weighted sum of
the obtained response value. Let us remark that the code of the
response function qmust be provided in a form integrable into the
code generator, i.e. both for cython in the form of Python code
extended with type declarators and for weave code as a string in
the C language.

Execution times have been measured for the two-parametric
function in Eq. (13) of our running example with two types of
sampling:LHS andPGrid. The size of the sample for both sampling
schemes was chosen in order that a comparable level of accuracy
was reached based on the studies of sampling efficiency shown
earlier in Fig. 8. The accuracy required for the studies was erms ≤

5 · 10−5, which corresponds to nsim = 4402 for LHS and nsim =

50002 for PGrid. CPU time was measured for three phases of the
computation:

• sampling time needed for preparing the arrays Θi (Eq. (5)) and
∆Gi within the sampling object,

• timeneeded to prepare and compile themethodmu_q_method
within the codegen object, and

• time needed to execute the integration procedure on the
prepared data arrays.

Each version of the code was executed twice in order to show
the difference between CPU time with and without the setup and
compilation of the generated C code. CPU times obtained for LHS
shown in Fig. 10 (left) reveal that a significant amount of time was
spent on the permutation of θ arrays. For all three types of code
a standard permutation algorithm available in the numpy package
was used so that the sampling time remained constant (≈0.19 s)
in all runs.
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Fig. 9. Generation of the integration code for the current function, randomization, sampling and language.
Fig. 10. Comparison of execution times for LHS and PGrid sampling needed in the first (1) and second (2) run of numpy, cython and weave code (nε = 80).
The shortest execution time was achieved in the second run
of the compiled weave code.4 The CPU time achieved by the
cython version of the code was only insignificantly slower. This is
not surprising since both compiled versions lead to an optimized
C code with a similar structure. As already stated in [22] the
efficiency of weave and cython can be regarded as equivalent.
The overall CPU time of the scripting numpy version was about
2.5 times longer than for both compiled versions. Regarding the
time required by the pure integration procedure, the compiled
code is 12 times faster than the scripting code. This relation is in
agreement with the studies published in [22].

Even though the grid-based sampling schemes are significantly
slower than LHS it is interesting to examine the effect of
compilation on the speedup for the PGrid sampling shown in the
right diagram of Fig. 10. Regarding the CPU time required by the
pure integration (numpy: 18.45 s, weave: 3.78 s) we can see that
the speedup factor (≈5) is much smaller than in the case of LHS
(≈12). As already discussed at the end of Section 8, the vectorized
evaluation of the response function can increase the efficiency of
numpy compared to the nested loop implementation in weave and
cython due to the caching of interim results during broadcasting
from a smaller subspace to the m-dimensional domain. Even
though the increase in efficiency is not sufficient to compensate
for the slower convergence of the sampling, it is helpful to keep
this issue in mind when implementing scripts for the grid-based
accumulation of values.

In the simple example used for this study, the setup and com-
pilation time of the first run was longer than the time spent on
computation. For larger problems with a more complex response
function, more random variables and more sampling points, the
proportion of time spent on setup and compilationwould certainly
diminish. Amore detailed analysis of performance considering fur-
ther factors affecting efficiency would go beyond the scope of this
paper. Studies of more complex functions with different combi-
nations of random variables have been included in the spirrid
package. For the sake of completeness, let us remark that further

4 The compilation has been done using gcc compiler (version 4.5.2) with the
following arguments:-NDEBUG -fwrapv -O3 -march=native -ffast-math.
speedup of the code would be possible using code parallelization
and/ormore advanced treatment of discontinuities in the response
function. Regarding parallelization, an approach suggested in [25]
exploiting the dynamic and generic nature of the Python language
is a possible choice.

The effect of discontinuity representation deserves more de-
tailed comment: The generic implementation of grid based sam-
pling schemes (PGrid and TGrid) for compiled code uses nested
loops. The code of the response function is simply inserted into
the innermost loop over the random domain. This means that if
the function body contains the control statements if, else in-
troducing jumps in the response function, losses in performance
occur since the argument of the if, else test does not necessar-
ily occur directly at the intermediate level of iteration over its val-
ues. Performing the test in the innermost loop causes unnecessary
passes through sampling points that would be skipped if the test
occurred outside of the inner loop. For special cases it might be
desirable to manually factor out the test to some higher level of it-
eration avoiding unnecessary passes through the inner loops. This
case is not treated in the present implementation focused primar-
ily on the flexibility of the algorithmic structure with interactively
selectable integration variables. An expression analysis of the func-
tion would be necessary to provide an optimum placement of the
control statementswithin the embedded iteration loops to achieve
a general solution to this problem.

A similar problem occurs for the numpy code using the Heavi-
side function. Sampling points with zero Heaviside function values
could be immediately skipped to avoid further calculationwith ze-
ros. A possible remedymight be the use of masked arrays provided
by the numpy package. However, in our case the extra cost con-
nected with access to values in a masked array turned out to be
higher than the savings gained by skipping some operations in the
masked sampling points.

10. Conclusions

In the present paper we have reported on the feasibility of the
Python based environment for the development of scientific com-
puting applications. We have gone through the whole develop-
ment life-cycle including mathematical formulation, prototyping
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using simple scripts, generalization of the algorithmic structure,
designing an algorithmic object reflecting the state dependencies
between the editable components and speeding up of the code to
achieve the efficiency of low-level compiled code. The resulting
algorithmic object for statistical integration can be interactively
edited by modifying the response function, declaring its parame-
ters as control or randomvariables, choosing and configuring prob-
ability distributions of the random variables, selecting from four
types of sampling schemes and configuring the execution code for
the integration.

During the implementation of the sampling schemes, an inter-
esting possibility emerged covering the random domain using a
regular gridwith constant probabilities (PGrid). To the knowledge
of the authors, this type of sampling has not yet been mentioned
elsewhere. This type of sampling becomes interesting in connec-
tion with the vectorized evaluation as its efficiency grows with the
increasing dimensionm of the integration domain.

The vectorized evaluation of functions using implicit loops
over m-dimensional arrays is sometimes referred to as loopless
programming. It makes the scripting code in the early stages of
prototyping very short and compact, which contributes to its scal-
ability in the later stages of development. At the same time, the
performance of the loopless code for calculations of moderately
sized problems is within an acceptable range. For larger problems,
including complex response functions with several random vari-
ables, it can even reach the level of optimized loop-based inlined C
code. Further improvements of the loopless code are possible us-
ing techniques that accelerate algebraic operations with large vec-
tors and arrays [26]. Further possibilities for speedup are provided
by high-level libraries for vectorized programming using graphical
processors [27] or library for optimization and evaluation of math-
ematical expressions involving multidimensional arrays [28].

The use of general numerical libraries in connection with
the traited class provided by Enthought traits greatly simplifies
the later stages of application development by alleviating the
formulation of the interfaces both for the scripting interaction
and for the construction of the user interface. The significant
advantage of the Enthought environment is its multi-platform
usage capability. It is very easy to extend the application
with visualization features (matplotlib, mayavi), a graphics
interface and persistence management of the data. It is a powerful
environment for scientific computations based on the Python high-
level programming language. The script constructed throughout
the paper and the traited implementation of the spirrid package
based on the Enthought traits library has been made available
for downloading and testing through the Computer Physics
Communications Program Library.
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