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ABSTRACT: An improved generalized law for combined energetic-probabilistic size effect on the nominal 
strength for structures failing by crack initiation from a smooth surface is used for practical purposes – the 
paper proposes a procedure to capture both deterministic and statistical size effects on the nominal strength of
quasibrittle structures failing at crack initiation. The advantage of the proposed approach is that the necessity
of time consuming statistical simulation is avoided, only deterministic nonlinear fracture mechanics FEM cal-
culation must be performed. Results of deterministic nonlinear FEM calculation should follow deterministic-
energetic formula, a superimposition with the Weibull size effect, which dominates for large sizes using the
energetic-statistical formula, is possible. As the procedure does not require a numerical simulation of Monte
Carlo type and uses only the results obtained by deterministic computation using any commercial FEM code
(which can capture satisfactorily deterministic size effect), it can be a simple practical engineering tool. 

1 INTRODUCTION AND SIZE EFFECT 
FORMULAE 

Practical and simple approach to incorporate the sta-
tistical size effect into the design or the assessment 
of very large unreinforced concrete structures (such 
as arch dams, foundations and earth retaining struc-
tures, where the statistical size effect plays a signifi-
cant role) is important. Failure load prediction can 
be done without simulation of Monte Carlo type util-
izing the energetic-statistical size effect formula in 
mean sense together with deterministic results of 
FEM nonlinear fracture mechanics codes.  

This work is based on the latest achievements of 
Bažant, Vo�echovský and Novák (2005) who pro-
poses a new improved law with two scaling lengths 
(deterministic and statistical) for combined ener-
getic-probabilistic size effect on the nominal 
strength for structures failing by crack initiation 
from smooth surface. The role of these two lengths 
in the transition from energetic to statistical size ef-
fect of Weibull type is clarified. Relations to the re-
cently developed deterministic-energetic and ener-
getic-statistical formulas are presented. The paper by 
Bažant, Vo�echovský and Novák (2005) also clari-
fies the role and interplay of two material lengths: 
deterministic and statistical. 

The deterministic energetic size effect formula 
for crack initiation from smooth surface reads (e.g.  

Bažant and Planas 1998, Bažant and Novák 200ab,  
Bažant 2002): 
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where �N is the nominal strength depending on 
the structural size D . Parameters fr

�, Db and r are 
positive constants representing the unknown empiri-
cal parameters to be determined. Parameter fr

� repre-
sents solution of the elastic-brittle strength which is 
reached as a nominal strength for very large struc-
tural sizes. The exponent r (a constant) controls the 
curvature and the slope of the law. The exponent of-
fers a degree of freedom while having no effect on 
the expansion in derivation of the law (Bažant and 
Planas 1998, Bažant 2002). Parameter Db has the 
meaning of the thickness of cracked layer. Variation 
of the parameter Db moves the whole curve left or 
right; it represents the deterministic scaling parame-
ter and is in principle related to grain size and drives 
the transition from elastic brittle (Db=0) to quasibrit-
tle (Db >0) behavior. 

 By considering the fact that extremely small 
structures (smaller than Db) must exhibit the plastic 
limit, a parameter lp is introduced to control this 
convergence. The formula (1) represents the full size 
range transition from perfectly plastic behavior 
(when D�0;D� lp) to elastic brittle behavior 
(D��;D�Db) through quasibrittle behavior. Pa-
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rameter lp governs the transition to plasticity for 
small sizes D (the crack band model or the averaging 
in nonlocal models lead to a horizontal asymptote). 
The case of lp �0 shows the plastic limit for vanish-
ing size D, which is the behavior predicted by the 
cohesive crack model as well as the assumption of 
perfectly plastic material in the crack both. For large 
sizes, the influence of lp decays fast with D and 
therefore all the cases of lp ����are asymptotically 
equivalent to the case lp = 0 for large D.

 The large-size asymptote of the deterministic en-
ergetic size effect formula (1) is horizontal: 
�N(D)/fr

�=1, see fig. 1a). But this is not in agreement 
with the results of nonlocal Weibull theory as ap-
plied to modulus of rupture (Bažant and Novák 
2000b), in which the large-size asymptote in the 
logarithmic plot has the slope –n/m corresponding to 
the power law of the classical Weibull statistical 
theory (Weibull, 1939). In view of this fact, there is 
a need to superpose the energetic and statistical 
theories. Such superimposition is important, for ex-
ample, for analyzing the size effect in vertical bend-
ing fracture of arch dams, foundation plinths or re-
taining walls. 

A formula in which the statistical part of size ef-
fect is superposed on the energetic part was derived 
by Bažant and Novák (2000). Further it was general-
ized to satisfy the requirement for a horizontal as-
ymptote for vanishing D (Bažant 2003, 2004). The 
statistical characteristic length ls needed for this gen-
eralization was simply assumed to be equal to Db,
but the study of an analogous problem for glass fi-
bers by Vo�echovský and Chudoba (2005) indicated 
that ls may differ from Db and a mathematical deri-
vation of a realistic ls value was given by Bažant, 
Vorechovský and Novák (2005). It thus transpired 
that the statistical part of size effect in structures 
with stationary strength random field has a large-size 
asymptote in the classical Weibull form (straight line 
of slope -n/m in a double-log plot), while the left 
(small size) asymptote is horizontal. The value of the 
horizontal asymptote for D�� is the mean strength 
of the random field, and in Weibull understanding it 
is the mean strength measured for the reference 
length being equal to the autocorrelation length ls,
see Vo�echovský and Chudoba (2005). So, by intro-
duction of the random strength field, we introduce 
the length scale given by ls. Upon incorporating this 
result (i.e., the statistical part) into formula (1) we 
get the final law (Bažant, Vo�echovský and Novák, 
2005):
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This formula (which coincides with the law de-
rived by Bažant, 2004, except for the value of L0)
exhibits the following features:

� The small-size left asymptotic is the determinis-
tic plastic response (with parameter lp controlling 
the transition to small sizes).  

� Large-size asymptote is the Weibull power law 
(i.e., the statistical size effect, which is a straight 
line of slope -n/m in the double-logarithmic plot 
of nominal strength versus size) 

� Two scaling lengths: deterministic (Db) and sta-
tistical (L0) are present. The mean size effect is 
partitioned into deterministic and statistical 
parts, each of which has its own length scale. Pa-
rameter Db controls the transition from elastic-
brittle to quasibrittle failure, and L0 controls the 
transitional zone from constant nominal strength 
to local Weibull via the random strength field. 
Note that the autocorrelation length ls has direct 
connection to our statistical length L0. This cor-
respondence is explained in detail for glass fibers 
in Vo�echovský and Chudoba (2005) and for 
concrete in Bažant, Vorechovský and Novák 
(2005).

The summations in the denominators of (2) pre-
vent both the statistical and deterministic parts from 
growing to infinity for small D. Although this is not 
important for practice, because the small-size plastic 
behavior is reached only for theoretical sizes smaller 
than feasible (e.g., smaller than one aggregate size), 
it is important theoretically in order to allow the use 
of asymptotic matching.  

Note that, for m��, Eq. (2) degenerates to the 
deterministic formula (1). The same applies if 
L0��. The interplay of these two scaling lengths 
using the ratio L0/Db is demonstrated by Bažant, 
Vo�echovský and Novák (2005). The question arises 
at to what is the meaning of the ratio L0/Db? Since 
scaling lengths are in concrete controlled mainly by 
the grain sizes, we expect L0�Db, and so the simpler 
law with L0=Db should be an excellent performer in 
most practical cases. 

2 SUPERIMPOSITION OF FEM 
DETERMINISTIC-ENERGETIC AND 
STATISTICAL SIZE EFFECTS 

As already mentioned, deterministic modeling with 
NLFEM can capture only deterministic size effect. 
Therefore, a procedure for superposing the statistical 
size effect is needed. Such a procedure can be for-
mulated as follows: 

1) Suppose that the modeled structure has charac-
teristic dimension Dt. The natural first step is to cre-
ate a finite element computational model for this real 
size, as realistic as possible (in terms of meshing, 
boundary conditions, material etc.). With this code, 
one predicts the nominal strength of the structure 
(based on the failure load, corresponding to the peak 
load of load-deflection diagram) for size Dt. Because 
the statistical part of size effect is neglected, the 
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Figure 1: Illustration of the superimposition steps. a) Steps 1-
4 resulting in deterministic fit; b) step 5 – determination of 
parameter L0; c) final formula and nominal strength predic-
tion for the real structural size 

strength is, in this (first) step, overestimated. The 
larger the structure, the greater the overestimation. 
The result is a point in the size effect plot, the solid 
circle in Fig. 1(a). 

2) Then we scale the geometry of computational 
model up and down, in order to obtain a set of simi-
lar structures with characteristic sizes Di, i=1,…, N.
Based on numerical experience, at least 4 sizes but 
better about 10, in order to cover the transitional 
range of size effect fully, spanning from very small 
to very large sizes. Then we calculate the nominal 
strength for each size, �i , i=1,…, N. Note that for 
two very large sizes the nominal strength values 
reaching into the horizontal asymptote should be 
almost identical (if not, crack initiation is not the 
failure mechanism and other phenomena, such as 
stress redistribution, play a significant role and the 
present procedure cannot be applied). The computa-
tional model must of course be mesh-objective in 
presence of softening (as, e.g., the crack band 
model or nonlocal continuum damage model). To 
ensure that the phenomenon of stress redistribution 
(causing a deterministic size effect) would be cor-
rectly captured, well tested models are recom-
mended for strength prediction. Special attention 
should be paid to the selection of the constitutive 
law and localization limiter. The result of this step 
is a set of points (circles) in the size effect plot, as 
shown in Fig. 1(a). 

3) The next step is to fit optimally the determinis-
tic-energetic formula (1) to the set of N  pairs 
{Di,��i } i=1,…, t, …, N. The result of this step is a 
set of values of four parameters: fr

�, Db, r and lp.
The parameter lp can be excluded from fitting be-
cause it can be identified a priori by plastic analysis 
(this is fully described by Bažant, Vo�echovský and 
Novák, 2005). Parameter fr

� can also be excluded 
because this limit can be estimated from nonlinear 
FEM analysis as the value to which the nominal 
strength converges with increasing size. So, for 
very large sizes, we can prescribe ��N /fr

�=1 as the 
asymptotic limit. The result of this step is illustrated 
by the curve fitted to the set of points in Fig. 1(a). 

4) There are three remaining parameters which 
are needed for the statistical-energetic formula (2): 
n,m and L0. Parameter n is the number of spatial di-
mensions of scaling (n=1,2 or 3). Parameter m repre-
sents the Weibull modulus of FPZ, characterizing 
the Weibull distribution of random strength. A re-
cent study of Bažant and Novák (2000a) revealed 
that, for concrete and mortar, the asymptotic value 
of Weibull modulus m��� rather than 12, the value 
widely accepted before. The ratio n/m therefore
represents the slope of MSEC in the size effect plot 
for D��. This means that the nominal strength de-
creases, for two-dimensional (2D) similarity (n=2)

and extreme sizes, as the -1/12 power of the struc-
ture size. Note, that for different materials the as-
ymptotic value of Weibull modulus is different. The 
results of these 4 steps are shown for illustration in 
Fig 1(a). 

Parameter L0 is now the only remaining parame-
ter to be determined. As it characterizes the statisti-
cal length scale, it might seem that one would need 
to incorporate statistical software into a nonlinear fi-
nite element code. But there is a much simpler alter-
native, based on evaluating the local Weibull inte-

1

2

3

0.6
0.7
0.8
0.9

0.1 1 10 100 1000

Plastic limit

m
n

   l  =0p

l =0p

1

2

3

0.6
0.7
0.8
0.9

Plastic limit

m
n

1

2

3

0.6
0.7
0.8
0.9

Plastic limit

   l  =0p

l =0p

deterministic NLFEM 
computation

best fit to formula  (1)

a)

b)

c)

Weibull 
power law

mean nominal 
strength 

r

1

r

1

mean size effect 
law (2)

L

r D

 
/ 

��
��

f
N

r
�

 
/ 

��
��

f
N

r
�

 
/ 

��
��

f
N

r
�

0

b

D/Db

413Proceedings ICOSSAR 2005,  Safety and Reliability of Engineering Systems and Structures



gral over the elastic stress field of the structure. The 
estimation statistical length scale ls is the first step. 
A good estimate is ls�Db. Since a choice about a 
scatter of FPZ strength must be made (Weibull 
modulus controlling the power of size effect for 
large sizes), one can compute the elastic field for a 
large-size structure having, and from the Weibull in-
tegral obtain the corresponding mean nominal 
strength. Once the point of mean strength of such 
large structure (a point in the size effect plot with 
coordinates Dstat, �stat) is known, one can pass 
through that point a straight line of slope -n/m, rep-
resenting the Weibull asymptote. Graphically, the 
intersection of the statistical (Weibull) asymptote 
with the deterministic strength fr� for infinite struc-
ture size (a horizontal asymptote) gives the statistical 
scaling length on the D-axis; Fig.1(b). The numeri-
cal solution to L0 can be written as:
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and, therefore, this parameter does not need to be 
fitted, rather an analytical expression can be used. 
Note that the large size strength (mean strength �stat)
can be computed by Weibull integral, where the 
choice of reference volume V0 and Weibull modulus 
(scatter) must be made (this is described, in detail, 
e.g. by Bažant and Planas, 1998):
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where V is the volume (area, length) of the struc-
ture depending on its dimension (n); s0 is the 
Weibull scaling parameter and V0 is an elementary 
volume of the material for which the Weibull distri-
bution has parameters m and s0. The function �x� � is 
the maximum principal stress at a point of coordi-
nate vector x. One can avoid the computation of 
nonlocal integral (and determination of the load 
leading to Pf , which corresponds to the mean load) 
by means of numerical simulation of Monte Carlo 
type. In such case, it is recommended to use directly 
the stability postulate of extreme values for discreti-
zation of random blocks and their association with 
scaled PDF. This approach has been used in the nu-
merical example and is described in detail by Novák, 
Bažant and Vo�echovský (2003). 

5) Once all the parameters of the statistical-
energetic formula have been determined, the nomi-
nal strength can be calculated for any size. Using the 
real size Dt of the structure, one can predict the cor-
responding nominal strength �N,t using Eq. (2). This 
prediction will be generally different (and lower) 
than the initial deterministic prediction; Fig. 1(c). 
The larger structure, the larger the difference is. The 
formula will provide us the strength prediction for 

the mean strength. Additionally, a scatter of strength 
can be determined just by using the fundamental as-
sumption of Weibull distribution. For the distribu-
tion we know two parameters; the shape parameter, 
m, is prescribed initially, and the scale parameters, s,
can be calculated easily from the predicted mean and 
the Weibull modulus (shape parameter). 

3 SUMMARY AND CONCLUSIONS 

The paper presents an analytical formula for the 
nominal mean strength prediction in crack initiation 
problems. The paper suggests a practical procedure 
for superposition of deterministic and statistical size 
effects at crack initiation. It requires only a few fi-
nite element analyses using scaled structure sizes 
and a simple evaluation of Weibull statistics from 
the elastic field in a large size structure. The predic-
tion can be carried out without any Monte Carlo 
simulation, with can be quire tedious.  
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