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a b s t r a c t

The objective of the paper is to analyse the influence of initial imperfections on the load-carrying

capacity of a single storey steel plane frame comprised of two columns loaded in compression. The

influence of the variance of initial imperfections on the variance of the load-carrying capacity was

calculated by means of Sobol’ sensitivity analysis. Monte Carlo based procedures were used for

computing full sets of first order and second order sensitivity indices of the model. The geometrical

nonlinear finite element solution, which provides numerical results per run, was employed. The mutual

dependence of sensitivity indices and column non-dimensional slenderness is analysed. The derivation

of the statistical characteristics of system imperfections of the initial inclination of columns is described

in the introduction of the present work. Material and geometrical characteristics of hot-rolled IPE

members were considered to be random quantities with histograms obtained from experiments. The

Sobol sensitivity analysis is used to identify the crucial input random imperfections and their higher

order interaction effects.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

The reliability analysis of structural systems in the limit state
methods is aimed at an assessment of safety and serviceability.
Steel structures are composed of thin members and hence the
problem of stability can prove to be one of the most important
constituents of the safety. The stability loss is caused by the
change of geometry of steel structures or structural components.
Thus, to assess the structural stability, the equilibrium equations
must be described under deformed geometry. This implies that
the consideration of geometrical nonlinearity is inevitable for
ultimate limit state analysis.

The behaviour of compressed members in the loading process
leading to the ultimate limit state is influenced by initial
imperfections generally divided into three categories: geometrical
imperfections, material imperfections and structural imperfections
[1,2]. The limit state theory for individual struts has been worked
out and corroborated with experiments. However, isolated struts
occur rarely in real structures. Generally, each structure is a system
of members, which mutually influence each other by their
behaviour. This interaction is most significant in structures with
rigid joints (frame systems). On the contrary, this mutual
interaction is small in truss structures and is generally neglected.

Within the division of structures into members and frame
systems, we can accept the further division of initial imperfections
into local (member) and global (frame systems) ones [1]. The local
ll rights reserved.
imperfections include: initial straightness deviation of member
axis, deviation from the theoretical layout of the hot-rolled cross
section, load eccentricity, dispersion of the mechanical material
properties, residual stress, etc. Global imperfections include initial
inclination of any column in systems and imperfections in the
realization of joints, connections, anchorage and other structural
details, which are apparent in comparison with the theoretical
assumptions introduced in the solution of idealized system.

One of the challenging issues in modern civil engineering
analysis is the typically large number of random quantities defining
the input and system parameters [3]. Most building structures are
atypical and hence a higher number of measurements are
conceivable from the statistical point of view just for local
imperfections of mass produced members. The basic indicators of
production quality include the yield strength, tensile strength,
ductility and geometrical characteristics of hot-rolled IPE profiles
which have been under long term statistical evaluation within the
framework of non-commercially aimed research programmes, see
e.g. [4,6]. Relatively sufficient statistical information on material
and geometrical characteristics of mass produced members of steel
structures is available in comparison to other building structures.

The frame depicted in Fig. 1 represents a typical stability problem
of a system comprised of more members. The fundamental question
in terms of safety of a structure is how significant is the effect of
inevitable initial imperfections on the load-carrying capacity. An
approach to make such problems tractable is to identify the most
important sources of uncertainty and to focus attention primarily on
those uncertainties of the input space. Such a method using the
Sobol decomposition [7], global sensitivity analysis method, is
proposed here. The Sobol decomposition is used to decompose the
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Fig. 1. IPE-section symmetric portal frame.

Fig. 2. Inclination of a single storey portal frame building.

Fig. 3. Inclination of each column.

Fig. 4. MC runs, Case 1, se1¼se2¼h/790.
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variance of the load-carrying capacity into contributions of the
individual input variables (initial imperfections).

The Sobol sensitivity analysis quantifies the relative importance
of input imperfections in determining the value of load-carrying
capacity. The crucial imperfections, which should be paid greater
attention both in the modeling phase and in the interpretation of
model results, are identified using sensitivity analysis. One of the
advantages of the Sobol sensitivity analysis is that it enables the
identification of interaction effects between input quantities on
the monitored output. With the development of new concepts of
the reliability analysis, these procedures can contribute to a
qualitative improvement of the reliability analysis of structures.
2. Input random imperfections

2.1. Initial inclination of columns

Permitted inclination deviations of columns of a single storey
portal frame are listed in the standard EN1090-2. The permitted
deviation of mean inclination Da of all columns in the same frame
is h/500, see Fig. 2. This value is listed in the EN1090-2 for both
Class 1 and Class 2.

The essential (normative) tolerances of inclination of each
column have no specified limit; however, supplementary (in-
formative) tolerances list the permitted deviations 9Db9¼h/150
for Class 1 and 9Db9¼h/300 for Class 2, see EN1090-2 and Fig. 3.
Execution classes pertain to the production category and service
category, in conjunction with the effect classes listed in Appendix
B in the EN 1990:2002.

Inclination of each column is generally a random variable. In
concordance with Figs. 2 and 3, let us denote the inclination of the
left column as e1 and that of the right column as e2. Let us assume
that measurements of e1 and e2 were performed on a large number
of real frames, with respect to the permitted deviations according
to the EN1090-2. Let us assume that imperfections e1 and e2 are
statistically independent random variables with mean values equal
to zero, i.e., me1¼me2¼0 (perfectly vertical columns). Let us further
assume that 95% of realizations of e1 and e2 remain within the
tolerance limits of the standard EN1090-2 and that both variables
have a Gauss probability density function. Based on these
assumptions, the first half of measured frames will have variables
e1 and e2 of the same sign (Case 1), the second half will have
variables e1 and e2 with opposite signs (Case 2). Analogously, let us
introduce, for the permitted deviations Da, Db, random variables
ea¼(e1+e2)/2 and eb¼e1 or e2. The problem was analysed using
20 000 runs of the Monte Carlo (MC) method, see Figs. 4 and 5.

Case 1: If we introduce se1¼se2¼h/790, then it holds with 95%
probability that 9ea9r9Da9, see Fig. 4. At the same time, it holds
for both classes that 9eb9r9Db9 with a probability which is higher
than 95%.

Case 2: If we introduce se1¼se2¼h/670, then 95% of realiza-
tions of eb will be found within the tolerance limit 7h/300(Class
2), see Fig. 5. Similarly, it holds that if we introduce se1¼se2¼

h/335, then 95% of realizations of eb will be found within the
tolerance limit 7h/150 (Class 1). The fulfillment of the condition
9ea9r9Da9 together with 95% probability leads to se1¼se2¼h/430,
see Fig. 6. In order to secure reliability from the point of view of the
limit states, it is necessary to consider a smaller (safer) standard
deviation for Class 1. In practice, this means that for Class 1, we
shall introduce se1¼se2¼h/430 and for Class 2, se1¼se2¼h/670.



Fig. 5. MC runs, Case 2, Class 2, se1¼se2¼h/670.

Fig. 6. MC runs, Case 2, Class 1, se1¼se2¼h/430.

Table 1
Input random quantities.

No. Member Symbol Mean value Std. deviation

1 Left column h1
n 240.22 mm 1.0616 mm

2 b1
n 121.67 mm 1.1842 mm

3 tw1
n 6.53 mm 0.2421 mm

4 tf1
n 9.73 mm 0.4494 mm

5 E1
nn 210 GPa 10.5 GPa

6 fy1
n 297.3 MPa 16.8 MPa

7 Cross-beam h0
n 300.27 mm 1.327 mm

8 b0
n 152.08 mm 1.4802 mm

9 tw0
n 7.48 mm 0.2773 mm

10 tf0
n 10.62 mm 0.4907 mm

11 E0
nn 210 GPa 10.5 GPa

12 fy0
n 297.3 MPa 16.8 MPa

13 Right column h2
n 240.22 mm 1.0616 mm

14 b2
n 121.67 mm 1.1842 mm

15 tw2
n 6.53 mm 0.2421 mm

16 tf2
n 9.73 mm 0.4494 mm

17 E2
nn 210 GPa 10.5 GPa

18 fy2
n 297.3 MPa 16.8 MPa

19 System e1
nn 0 Section 2.1

20 e2
nn 0 Section 2.1

n Histogram.
nn Gauss pdf.
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Practical analysis based on the MC simulation method may be
performed in the following manner. Let us introduce imperfections
e1 and e2 as statistically independent random variables with Gauss
probability density functions with me1¼me2¼0 and se1¼se2¼

h/790. In the case that the random realization of the inclinations of
the first column and the second one have an opposite sign, we shall
multiply the inclination of each column with the coefficient 79/43
for Class 1 and 79/67 for Class 2. Let us note that the multi-
plications described in the preceding sentence are carried out in
the form of a computation model, i.e., the condition that the input
random quantities e1 and e2 are uncorrelated is fulfilled.
2.2. Material and geometrical characteristics

Traditionally, material yield strength, tensile strength and ductility
have been studied among the mechanical characteristics of steel
structures. Strength characteristics in the Czech Republic have
been statistically studied for a long time within the framework of
non-commercially aimed research [4], and results have been
compared with results of similar studies performed abroad [5]. For
dimensioning of structures, the yield strength is most important
above all. Statistical characteristics of yield strength of steel grade
S235 of the IPE profile used in the hereby presented study were
published in [4]. For non-measured quantities (Young’s modulus), the
study was based on data obtained from technical literature; for
example, statistical characteristics of Young’s modulus are given in
[8,9]. Geometrical characteristics of profiles IPE were considered
according to results of experimental research [6]. With the aim of
focusing attention on the influence of global sway imperfections e1

and e2 (and their higher order interaction effects), local bow
imperfections of the columns were neglected. The influence of the
random size and shape of strut axis on the ultimate limit state was
studied in [10]. The influence of residual stress was not taken into
consideration in the numerical study. All the input characteristics,
given synoptically in Table 1, are statistically independent of one
another.

3. Computation model

The elastic resistance was calculated by finding a stress
distribution which equilibrates the ultimate internal forces and
moments without exceeding the yield strength. The frame
geometry was meshed using beam elements. Each column was
meshed using ten beam elements. Internal forces and bending
moments were calculated by geometric nonlinear solution using
linear stress–strain laws. The geometric nonlinear solution was
elaborated and programmed by the author of the present paper
[11]. The step-by-step Euler Newton–Raphson iterative proce-
dures simulate real experiments. The first criterion (i.e., strength
condition) for the load-carrying capacity is given by loading at
which plasticization of the flange is initiated. The second criterion
(i.e., stability condition) for the load-carrying capacity is repre-
sented by loading corresponding to a decrease of the determinant
of stiffness matrix to zero (this phenomenon occurs at high yield
strength values with a small initial system imperfection). The
ultimate one-parametric loading is defined as the lowest value
from the strength and stability criterion of load-carrying capacity.

Realizations of input variables were computed using the MC
method, by means of which repetitions of experiments were



Z. Kala / Thin-Walled Structures 49 (2011) 645–651648
simulated. The obtained output value is that of the random load-
carrying capacity. The load-carrying capacity was determined
with 0.1% accuracy in each simulation run.
Fig. 7. Sobol sensitivity indices vs. non-dimensional slenderness.
4. Sensitivity analysis

The sensitivity analysis is a study of how uncertainty in the
model output can be apportioned to different sources of
uncertainty in the model input factors [7]. Within the scope of
modeling, the notion ‘‘sensitivity analysis’’ has different meaning
for different people, see e.g. [11–16]. The information on
problems and applications of the sensitivity analysis of thin-
walled members is presented, e.g. in [17–22]. The sensitivity
analysis contributes to model development, model calibration,
model validation, reliability and robustness analysis, decision-
making under uncertainty, quality-assurance, and model reduc-
tion. The basic division of sensitivity analysis is deterministic
sensitivity analysis (sometimes referred to as the ‘‘what-if study’’)
and stochastic sensitivity analysis.

We can generally distinguish two types of sensitivity analysis:
regression-based methods and variance-based methods [3].
Regression-based methods use a regression of the output on the
input vector, and variance-based methods decompose the
variance of the output as a sum of contributions of each input
variable. The variance-based techniques are sometimes called
ANOVA techniques, i.e., ANalysis Of VAriance. Variance-based
methods have a long history in sensitivity analysis, starting with
the Fourier implementation in the seventies [23], and have a
milestone in the work of Sobol [24].

4.1. Sobol sensitivity analysis

The sensitivity analysis concept enabling the analysis of the
influence of arbitrary subgroups of input quantities on the
monitored output was worked out by the Russian mathematician
Ilja M. Sobol [24]. The concept of Sobol sensitivity analysis was
worked out in detail and published along with a number of
examples from a number of scientific fields, e.g. in [7]. The case
with statistically independent input random variables Xi (input
imperfections) was studied. Sobol first order sensitivity indices
may be written in the following form:

Si ¼
VðEðY9XiÞÞ

VðYÞ
ð1Þ

Si measures the first order (e.g. additive) effect (so-called the main
effect) of Xi on the model output Y. The second order sensitivity
index Sij is the interaction term (3) between factors Xi, Xj. It
captures that part of the response of Y to Xi, Xj which cannot be
written as a superposition of effects separately due to Xi and Xj:

Sij ¼
VðEðY9Xi,XjÞÞ

VðYÞ
�Si�Sj ð2Þ

Other Sobol sensitivity indices enabling the quantification of
higher order interactions may be expressed similarly:X

i

Siþ
X

i

X
j4 i

Sijþ
X

i

X
j4 i

X
k4 j

Sijkþ � � � þS123:::M ¼ 1 ð3Þ

The number of members in (3) is 2M
�1, i.e., for M¼3 we

obtain 7 sensitivity indices S1, S2, S3, S12, S23, S13, S123; for M¼20
we obtain more than one million of sensitivity indices; it is
excessively large for practical usage. The main limitation in the
determination of all members of (3) is the computational
demandingness.
The sensitivity indices Si were evaluated applying the MC
method. The conditional random arithmetical mean E(Y9Xi) was
evaluated for 10 000 simulation runs; the variance V(E(Y9Xi)) was
calculated for 10 000 simulation runs, as well. The variance V(Y) of
load-carrying capacity is calculated under the assumption that all
the input imperfections are considered to be random ones;
100 000 runs were applied. The second-order sensitivity indices
Sij were calculated analogously.
5. Sensitivity analysis results

The sensitivity analysis is applied to the study of the influence
of initial imperfections (input values from Table 1) on the load-
carrying capacity (output value). Sobol sensitivity indices, Si and
Sij, were determined in dependence on the non-dimensional
slenderness of columns. The non-dimensional slenderness l is
given in EUROCODE 3 by

l ¼

ffiffiffiffiffiffiffiffiffi
Afy,c

Fcr

s
ð4Þ

where A is the cross-sectional area of the column, fy,c¼235 MPa is
the characteristic value of yield strength and Fcr is the buckling load
(Euler critical force) of steel plane frame. The buckling load of the
steel plane frame (with ideally vertical columns) was calculated
using the beam finite element method including the second-order
effect. The stability condition for the buckling load is represented
by loading corresponding to a decrease of the determinant of
stiffness matrix to zero (eigenvalue problem). The load-carrying
capacity for l¼ 0 was evaluated for a short perfectly vertical
column without consideration of the buckling effect.

The graphs of sensitivity indices Si and Sij are depicted in Fig. 7.
The study shows several trends in the effect of initial imperfec-
tions upon the load-carrying capacity. Very small values of
sensitivity indices are not depicted. Due to the fact that the
frame, load action and boundary conditions are symmetrical,
the values of sensitivity indices of both left and right columns are
the identical, i.e., they are depicted by a single curve only.

5.1. Influence of imperfections on the load-carrying capacity

Imperfections e1, e2: Maximum values of the first order
sensitivity indices S19¼S20¼0.18 (Class 1) and S19¼S20¼0.15
(Class 2) of imperfections e1 and e2 were calculated for l¼ 0:95
(buckling length Lcr¼8.9 m). Maximum values of the second order



Z. Kala / Thin-Walled Structures 49 (2011) 645–651 649
sensitivity indices S19,20¼0.42 (Class 1) and S19,20¼0.46 (Class 2)
describing interactions between e1 and e2 were calculated for
l¼ 0:93 (buckling length Lcr¼8.7 m). Differences in results for
Class 1 and Class 2 are apparent, see Fig. 7. The first order
sensitivity indices of Class 1 are higher than the first order
sensitivity indices of Class 2. The second order sensitivity indices of
Class 1 are lower than the first order sensitivity indices of Class 2.

Yield strength fy1, fy2: The influence of the yield strength on the
load-carrying capacity decreases with increase in l, see Fig. 7. The
load-carrying capacity is most influenced by the yield strengths of
the left or right column for lo0:7. For l¼ 0, the first order
sensitivity indices S6 (fy1) and S18 (fy2) are dominant, and the
second order effect S6,18 between fy1 and fy2 has the maximum
effect on the sum of all second order sensitivity indices, see Fig. 8.
For l¼ 0 there is no difference between the results for Class 1 and
Class 2, differences are very small for l40. For l41:2, the load-
carrying capacity is almost insensitive to changes in the yield
stress in both columns. For high slenderness, the stress in the
structure in limit state is significantly lower than the yield
Fig. 8. Sensitivity analysis for l¼ 0.

Fig. 9. Sensitivity analysis for l¼ 0:93, Class 1.
strength and therefore the variance of the yield strength has no
influence on the variance of the load-carrying capacity (Fig. 7).

Young’s modulus E1, E2: With increase in l, the load-carrying
capacity approaches the buckling load, and therefore is more
sensitive to changes of Young’s modulus values E1, E2, see Fig. 7.
Interaction effects of variables E1, E2 with the other variables are
practically negligible. Let us note that variables E1, E2, in
comparison with the other variables in Table 1, have a relatively
small variation coefficient. The influence is apparent only for high
slenderness where the influence of variables fy1, fy2, e1, e2 is small.

Flange thickness tf1, tf2: Increase in variables tf1, tf2 contributes to
an increase in the load-carrying capacity by increasing the cross-
section area and the second moment of area of the columns. For
small column slenderness, the load-carrying capacity is influenced
by the cross-section area. Interaction effects between the flange
thickness and yield strength of both columns are small, see Fig. 8.
For high slenderness, the stability and corresponding load-carrying
capacity are influenced by the second moment of area.

Web thickness tw1, tw2: Maximum values of the first order
sensitivity indices S3¼S15¼0.017 were calculated for l¼ 0.
Values of S3 and S15 decrease with increase in slenderness, and
in the event that l40:9, they are practically equal to zero.
Interactions effects are also very small.

The influences of all other characteristics, evident in Table 1,
are very small, and therefore their sensitivity indices are not
depicted in Fig. 7. Let us note that the behaviour of sensitivity
indices depicted in Fig. 7 is analogous to similarly evaluated
results of the sensitivity analysis of the load-carrying capacity of a
steel strut [2], with the difference being in the manifestation of
the influence of interactions amongst input imperfections in the
steel frames.
5.2. Interaction effects and reliability

One important distinction between the Sobol sensitivity and
the classical one is that the Sobol sensitivity analysis detects
interactions of input variables through the second and higher
order terms, while classical sensitivity methods give only
derivatives with respect to single variables [3]. The imperfections
which interact and may thus generate extreme values of load-
carrying capacity have been identified. This is important, for
example, in structural reliability.

Relatively high values of the second-order sensitivity index
S19,20 are apparent in Fig. 7. In practice, it means that the influence
of imperfections e1 and e2 on the load-carrying capacity cannot be
expressed by the sum of influences e1 and e2. The influence of the
interaction between imperfections e1 and e2 is most significant for
l¼ 0:93, see Fig. 9. Class 2 has a higher interaction effect than
Class 1, because permitted deviations of Class 2 9Db9¼h/300 are
smaller, (stricter) than these for Class 1 9Db9¼h/150. Let us note
that, if a positive correlation between variables e1 and e2 is
introduced, then we will obtain a load-carrying capacity with
lower mean value and a higher standard deviation. This can be
clearly demonstrated using the MC method. The decrease in load-
carrying capacity is influenced namely by runs e1 and e2 with the
same sign (Case 1). The effect on the load-carrying capacity is
negative, being the most negative for e1¼e2 (correlation 1.0). The
implementation e1¼e2 is conservative and is commonly used in
practical design of steel structures. System imperfections of the
frame formally identical to the sway buckling mode may also be
considered and studied.

The interaction between yield strengths both of the left and
right columns was determined for small slenderness, see Fig. 8.
The load-carrying capacity of the frame increases if we increase
the yield strength of both columns. The opposite extreme can be
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dangerous. Let us note that the yield strength of steel S235 is
generally a random variable, statistical characteristics of which
were evaluated from a higher number of samples over a longer
time period [4]. The variance of yield strength from one
production line (with relatively small number of samples from a
shorter time period, etc.) can be lower than the variance of the
yield strength evaluated over a longer time period. If a positive
correlation between the yield strength of the left and right
columns is introduced, then the load-carrying capacity will have a
high mean value and higher load-carrying capacity. The imple-
mentation of this model is debatable and its effect on reliability
would have to be studied and proved with other probabilistic
studies.
6. Conclusion

The sensitivity analysis was used to detect and rank those
imperfections that need to be measured with greater accuracy in
order to reduce the variance of load-carrying capacity of the steel
plane frame.

System imperfections e1 and e2 have a dominant effect on the
load-carrying capacity of frequently used column lengths with
non-dimensional slenderness close to one. The sensitivity analysis
results have shown that interactions between imperfections e1

and e2 have approximately twice the effect on the variance of
the load-carrying capacity than when considered individually,
see Fig. 7. The main advantage of sensitivity analysis is that it
provides quantified evaluation of the influence of individual
imperfections and their interaction on the ultimate limit state,
and results may also be used for probabilistic assessments of
reliability and calibration methods and approaches, respectively
methods of the verification of tolerance limits Da, Db and other
imperfections. The sensitivity analysis results illustrate that the
statistical characteristic of system imperfections e1 and e2 should
be determined with increased accuracy; however, it is difficult or
practically impossible under hard service conditions.

The second greatest interaction effect of the second order
S6,18¼0.08 was obtained between the yield strength of the left
and right columns for l¼ 0, see Fig. 8. However, the value of this
interaction effect is, in comparison with the main effect S6 or S18,
approximately a quarter S6,18E0.25US6¼0.25US18 and hence of little
significance. Let us note that S6,18 is approximately equal to the main
effect of flange thickness of the left or right column S6,18ES4¼S16.

The most important characteristics, checked on mass produced
steel IPE members, are the yield strength and geometrical
characteristics of the cross-section. For the practice, we can
recommend the thorough measurement and check of yield
strength and flange thickness, the variances of which have an
influence on the variances of the load-carrying capacity of
compressed columns and may also be of significance under other
types of strain and loading. Let us note that the mean value of
flange thickness should be equal to the nominal value. In the case
of the yield strength, the member reliability may be increased by
decreasing the variance or by increasing the mean value.

The cross-section height of columns, flange width of columns
and cross-beam characteristics were identified as the factors
which, if left free to vary over their range of uncertainty, make no
significant contribution to the variance of the load-carrying
capacity. The identified imperfections can be fixed at any given
value within their range of variation without affecting the load-
carrying capacity. This analysis can be performed on groups of
factors, especially for large models, to identify non-influential
subset of imperfections.

The load-carrying capacity of very slender members is very
sensitive to Young’s modulus, the variance of which cannot be
influenced in production. The second most significant variable is
the flange thickness the variance of which can be favourably
influenced in production. No significant higher order interaction
effects were found for the hereby analysed problem for high
slenderness values.

The initial imperfections are among the basic and frequently
most important input data of theoretical studies and hence they
should be paid great attention. In this regard, it is generally
necessary to point out the publications dedicated to research
problems in the field of stability problems [25]. For the load-
carrying capacity problems, it is also necessary to study the
influence of interaction amongst imperfections formally identical
to the buckling modes which cause the instability [26–28], the
influence of load action eccentricity [29] and that of joint stiffness
[30]. Variance-based methods can be beneficial when studying
the first and the higher order interaction effects of imperfections
on limit states and reliability of structures.
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analysis within the elaboration of steel plated girder resistance. Advanced
Steel Construction 2009;5(2):120–6.

[22] Zhang S, Prater Jr. G. A study of the effect of elastic instability on stiffness-
based gauge sensitivity indices for vehicle body structure assessment. Thin-
walled Structures 2009;47(12):1590–6, doi:10.1016/j.tws.2009.05.002.

[23] Cukier RI, Fortuin CM, Schuler KE, Petschek AG, Schaibly JH. Study of the
sensitivity of coupled reaction systems to uncertainties in rate coefficients. I
Theory. The Journal of Chemical Physics 1973;59:3873–8.

[24] Sobol IM. Sensitivity analysis for non-linear mathematical models. Mathema-
tical Modelling and Computational Experiment 1993;1:407–14. Translated
from Russian: I.M. Sobol, Sensitivity estimates for nonlinear mathematical
models, Matematicheskoe Modelirovanie 2 (1990) 112–118.

[25] Kote"ko M, Kowal–Michalska K, Rhodes J. Stability of structures. Thin-walled
Structures 2007;45(10–11):809, doi:10.1016/j.tws.2007.08.002.

[26] Ohsaki M. Imperfection sensitivity of optimal symmetric braced frames
against buckling. International Journal of Non-linear Mechanics
2003;38(7):1103–17. PII: S0020-7462(02)00056–2.

[27] Kote"ko M. Load-capacity estimation and collapse analysis of thin-walled beams
and columns—recent advances. Thin-walled Structures 2004;42(2):153–75,
doi:10.1016/S0263-8231(03)00055-7.

[28] Kote"ko M. Load-carrying capacity and energy absorption of thin-walled
profiles with edge stiffeners. Thin-walled Structures 2007;45(10–11):872–6,
doi:10.1016/j.tws.2007.08.038.

[29] Królak M, Ko"akowski Z, Kote"ko M. Influence of load-non-uniformity and
eccentricity on the stability and load-carrying capacity of orthotropic tubular
columns of regular hexagonal cross-section. Thin-walled Structures
2001;39(6):483–98. PII: S02 63 -8231(01)00011–8.

[30] Camotim D, Basaglia C, Silvestre N. GBT buckling analysis of thin-walled steel
frames: a state-of-the-art report. Thin-walled Structures 2010, doi:10.1016/
j.tws.2009.12.003.

dx.doi.org/10.1016/S0263-8231(02)00091-5.3d
dx.doi.org/10.1016/S0263-8231(02)00091-5.3d
dx.doi.org/10.1016/j.tws.2008.04.001
dx.doi.org/10.1016/j.tws.2008.04.001
dx.doi.org/10.1016/j.tws.2009.05.002
dx.doi.org/10.1016/j.tws.2007.08.002
dx.doi.org/10.1016/S0263-8231(03)00055-7.3d
dx.doi.org/10.1016/j.tws.2007.08.038
dx.doi.org/10.1016/j.tws.2009.12.003
dx.doi.org/10.1016/j.tws.2009.12.003

	Sensitivity analysis of stability problems of steel plane frames
	Introduction
	Input random imperfections
	Initial inclination of columns
	Material and geometrical characteristics

	Computation model
	Sensitivity analysis
	Sobol sensitivity analysis

	Sensitivity analysis results
	Influence of imperfections on the load-carrying capacity
	Interaction effects and reliability

	Conclusion
	Acknowledgements
	References




