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Abstract

General ideas and problems of probability approach and its utilization in the verification of structural design procedures of

EUROCODES are mentioned. The paper is aimed at the probability study of the ultimate limit state of a steel compressed member

designed economically according to EUROCODE 3. The theoretical failure probability (reliability index) vs. ratio of permanent to

variable load action is calculated by means of the Monte Carlo simulation method. The misalignment of the failure probability according

to EN1990 is analysed. Initial imperfections are generally considered as random variables and random fields. The non-linear beam FEM

is used. The influence of initial curvature shape and size variability of the member axis on the variability of load-carrying capacity is

investigated. The probabilistic analysis is supplemented with the fuzzy analysis of the influence of uncertainties on the failure probability.

r 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

This paper deals with the probabilistic verification of
reliability of steel bar structures designed according to the
EUROCODE standard. Design procedures of EURO-
CODE standards, utilized in dimensioning of steel mem-
bers, stems from the limit state methodology. The
reliability of design is secured by partial safety factors.

Unified European standards EUROCODE ensure a
satisfactory level of reliability provided that the required
corresponding quality of production of metallurgical
products in individual EU countries is met.

In the Czech Republic, material and geometric char-
acteristics of steel products are controlled both by
manufacturers and at independent scientific workplaces
[1]. The greatest attention is paid to the monitoring and
analysis of the random variable values of yield strength,
material strength and ductility. It has been proved by
means of comparison studies that statistical characteristics
of yield strength, material strength and ductility of Czech
and Austrian steel are in good concordance [2].
e front matter r 2007 Elsevier Ltd. All rights reserved.
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In stability problems, initial geometric imperfections of
member cross-section and axis have a great influence on the
load-carrying capacity of slender members under compres-
sion. With increasing member slenderness the influence of
the variability of yield strength on the variability of load-
carrying capacity decreases [3] and the influence of flexural
rigidity EI (the product of Young’s modulus E and the
second moment of area I), which prevents buckling,
increases [3]. The variability of load-carrying capacity of
the bar is the most sensitive to the variability of initial
imperfection of axial bar curvature with non-dimensional
slenderness l̄ ¼ 1:0 [3].
The paper is aimed at the probabilistic analysis of the

ultimate limit state of a compressed member of profile IPE
220 with l̄ ¼ 1:0. With aim at an accurate description of
the influence of initial curvature of strut axis on the failure
probability, size and shape imperfections of strut axis are
modelled utilizing random fields [4] (see Fig. 1). Computer-
based FEM modelling and simulation are required for the
stochastic analysis.
The problem involves both aleatory and epistemic

uncertainties. During structural design, an information
on statistical characteristics of eventual loading is absent.
Imprecision (fuzziness) of information on the random
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initial imperfections and their correlations presents a
further source of uncertainty.

Newer mathematical approaches, which extend or depart
from the probability theory, are available, e.g. in Refs.
[5,6]. In order to obtain realistic results from stochastic
inference, imprecision (fuzziness) of data has to be
modelled quantitatively. This is possible by applying the
fuzzy sets theory [7,8].
2. Initial curvature of the axis

In general, the axis of a real member is a curve; an ideally
straight member is practically never concerned. Let us
consider a long member with initial plane axial curvature
(see Fig. 2) with unit weight g acting at the cross-sectional
centroid, which is constant per unit length of curved axis.
Next let the main central axis xc of the curve about which
the second moment of area of the curved axis of the
member is minimal be sought.

An orthogonal coordinate system yc vs. xc is considered
(see Fig. 2). The curve axis is divided into n equidistant
members in the direction of axis xc, resulting in a random
sample of n members. Each member i ¼ 0, 1, y, n is
subjected to axial compressive loading passing through the
first and the last node of the strut. The force line determines
the local strut axis xi, which is at angle ai with respect to
axis xc.
Fig. 1. Random field of strut axis curvature.

Fig. 2. Global and local coordina

Fig. 3. Geometrical imperfections of strut axi
Each ith member is subdivided into k adjacent equidi-
stant elements k+1 (see Fig. 1). The angle ai of the local
coordinate system yi vs. xi is dependent on the position of
the initial yci0 and final ycik node of the member and may be
determined from the relation

tanðaiÞ ¼
Dyi

Dxi

¼
ycik � yci0

xcik � xci0
. (1)

Coordinates of the jth node in the coordinate system yc
vs. xc are transformed into the local coordinate system yi

vs. xi according to the relations

yij ¼ ðycij � yci0Þ cosðaiÞ � xcij sinðaiÞ, (2)

xij ¼ ðycij � yci0Þ sinðaiÞ þ xcij cosðaiÞ. (3)

For Dyi5Dxi and (ycij�yci0)51 it holds approximately
that xijExij, xijExcij, which is a frequent case practically.
The initial deformation of the jth node in the coordinate

system yc vs. xc is a random variable, which will be denoted
as ycj. When the number of struts n is a sufficiently large
number it holds that the mean value mycj of random
variable ycj of the jth node is approximately zero:

mycj ¼
1

n

Xn

i¼1

ycij � 0 for j ¼ 0; 1; . . . ; k. (4)

The shape of initial curvature of the strut axis depicted in
Fig. 1 represents the ith random observation from n struts.
Let us denote the random deviation of the jth node in the
local coordinate system y vs. x as yj (see Fig. 3). It can be
illustrated (e.g. by Monte Carlo simulation) that the mean
value myj of random deviation yj is equal to zero:

myj ¼
1

n

Xn

i¼1

yij � 0 for j ¼ 0; 1; . . . ; k, (5)

where yij was evaluated according to Eq. (2). The shape
of the random curvature is given by the correlation of
variables yj amongst k�1 nodes with y0 ¼ yk ¼ 0. The
correlations amongst variables ycj are approximately the
te system of axial curvature.

s curvature and cross-section dimensions.
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Table 1

Input random imperfections

Symbol Value Density Mean Standard deviation

h Cross-section height Histogram 220.22mm 0.975mm

b Flange width Histogram 111.49mm 1.093mm

t1 Web thickness Histogram 6.225mm 0.247mm

t2 Flange thickness Histogram 9.136mm 0.421mm

yj Initial imperfections Gauss 0m Syj according to Eq. (6)

E Modulus of elasticity Gauss 210GPa 12.6GPa

fy Yield strength Histogram 297.3MPa 16.8MPa
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same as amongst variables yj. This may be proven utilizing
the Monte Carlo simulation and Spearman’s rank-order
correlation. It can be assumed that the correlation
decreases with increasing distance between nodes and that
the standard deviation Syj is nil at the end nodes j ¼ 0,
j ¼ k and maximal at the centre of the strut.

The standard deviation along the length of the strut is
approximately given by the sine function (this is corrobo-
rated for e.g. by Monte Carlo simulation). In the case that
the number of nodes k is even, the standard deviation Syj of
the jth node can be expressed by the standard deviation Sya

of the central node with index a ¼ k/2:

Syj � Sya sin
pxj

L

� �
. (6)

It may be summarized that the initial random deviations
yj for j ¼ 0, 1, y, k have a mean value of myj ¼ 0 and the
standard deviation Syj along the length of the strut is given
by a sine function.

Statistical characteristics of other random variables and
their correlations may be obtained only through elaborated
statistical analysis based on experimental studies. The real
curvature of steel members is given by the technology of
rolling, transportation, welding and other production
processes. It would be interesting to determine what
relation exists between the correlations of adjacent nodes
and the amplitude of the standard deviation Sya.

The maximal deformations of real members are limited
by the tolerance standard [9] and are checked through
output production inspections. The standard deviation Sya

may be theoretically evaluated provided that 95% of
observations occur within the tolerance limits of standard
[9], which tolerates a maximal initial curvature of 0.15% of
member length L in the case of profile IPE 220. The
Gaussian probability density function is considered for yi

in the subsequent numerical study.

3. Input random imperfections

During the simulation of the deviation of nodes yi, e.g.
by Monte Carlo simulation, the correlation amongst
deviations of nodes yi eliminate the unreal shapes of initial
axial curvature. Let us consider the coordinate system y vs.
x (see Fig. 3). The degree of correlation amongst deviations
yi is most frequently represented by the Gauss autocorrela-
tion function [4], which defines the correlation amongst yj

and yh:

rjh ¼ e�ðxjh=LcorÞ
2

, (7)

where Lcor represents the correlation length of the random
field. The Gauss density function of yj is considered. The
correlation length Lcor ¼ 1.2m was obtained through
virtual simulation [10]; Monte Carlo simulations of the
realizations of random fields of axial curvature were
performed, such that the virtual results corresponded to
experimentally obtained results published in Ref. [11].
Ninety-five percent of observations of ya occur within the
tolerance limits [9] (�3.525mm; 3.525mm) for mya ¼ 0 and
Sya ¼ 1.8mm.
Other statistical material and geometrical characteristics

of profile IPE 220 were considered according to results of
experimental research [1]. The influence of residual stress
was not taken into consideration in the numerical study.
Statistical characteristics of Young’s modulus E are
considered according to two independently performed
experimental researches [11,12] (see Table 1).

4. Probabilistic verification of structural stability design

procedures

For an illustration of the probabilistic evaluation of the
specified design procedure, the problem of compressed
member of profile IPE 220 is studied. The design load-
carrying capacity of the strut according to the unified
European concept of EUROCODE 3 [13] is given as

Rd ¼
wf yAn

gM1

¼
0:597� 3:34� 10�3 � 235� 106

1:0
¼ 468:6kN.

(8)

A compressed member loaded by permanent action
combined with single variable action is considered. The
design load action can be expressed by

Fd ¼ gGGk þ gQQk. (9)

It is assumed that the structure is designed for maximum
exploitation (economic design), i.e., Fd ¼ Rd. The partial
safety factors gG ¼ 1.35 and gQ ¼ 1.5 are considered
according to Ref. [14]. The characteristic values Gk and
Qk can be determined according to Eq. (9) in dependence



ARTICLE IN PRESS
Z. Kala / Thin-Walled Structures 45 (2007) 861–865864
on the chosen ratio d given by d ¼ Qk/(Gk+Qk). For
permanent action G, the Gaussian density function [15]
with mean value mG ¼ Gk and variation coefficient 0.1 is
assumed [10]. For variable action Q, Gumbel-max density
function [15] with mean value mQ ¼ 0.6Qk and standard
deviation SQ ¼ 0.21Qk is considered. The analysis of the
member reliability is based on the condition

KRR4KFðG þQÞ. (10)

Load-carrying capacity R is calculated for input
imperfections from Table 1. The geometrical non-linear
FEM utilizing Euler Newton–Raphson method is used [3].
The member is meshed by 20 beam elements (see Fig. 1
and/or Fig. 3). R is evaluated from the condition that the
normal stress in the most stressed strut section is equal to
yield strength fy. The probabilistic analysis results are
obtained utilizing the Monte Carlo simulation for 5
millions runs. The probability that Eq. (10) is not fulfilled
is evaluated.

KR and KF represent coefficients of model epistemic
uncertainties of the load-carrying capacity R and the
loading effect F in relation (10). The aim of further studies
is not the elaborated analysis of the origin of model
uncertainties, but rather the theoretical quantification of
their influence on the behaviour of failure probability Pf in
dependence on parameter d. For this purpose coefficients
KR, KF are chosen as fuzzy numbers with linear triangular
Fig. 4. Fuzzy numbers KR and KF of uncertainties in the determination of

resistance and load action.

Fig. 5. Fuzzy analysis of the misal
symmetrical membership functions (see Fig. 4). The fuzzy
analysis of failure probability Pf is evaluated according to
the general extension principle for 10 a-cuts [7] (see Fig. 5)

mPf
ðKR;KFÞ ¼ _

Pf

ðm1ðKRÞ ^ m2ðKFÞÞ. (11)

The fuzzy analysis procedure according to Eq. (11) may
be explained on the cut A. Let us consider d ¼ 1. The
minimum Pf,min ¼ 10E�5 is evaluated for KF ¼ 0.97,
KR ¼ 1.03 and maximum Pf,max ¼ 37.7E�5 is estimated
for KF ¼ 1.03, KR ¼ 0.97. Fuzzy uncertainty of load-
carrying capacity and loading 73% brings about fuzzy
uncertainty Pf quantified by the interval PfA/10E�5,
37.7E�5S. Cuts A (support intervals) are marked by the
dashed line (see Fig. 5). The calculation procedure is
analogical for cut B, cut C and the other 10 a-cuts.
5. Conclusion

The misalignment of theoretical failure probability Pf

(reliability index b) vs. ratio of permanent to variable load
action d is presented in Fig. 5. The purely stochastic
solution (KR ¼ KF ¼ 1) is depicted by the full line in the
bottom plane of the 3D graph. Low reliability of design
Pf47.2E�5 (bo3.8) [14] was obtained for d40.74.
Results of fuzzy analysis quantify the dependence of Pf

on the change of coefficients KR, KF. The output
asymmetric non-linear membership functions vs. triangular
symmetric membership functions of coefficients KR and KF

are obtained. This information is very valuable because it
quantifies the non-linear dependence between the coeffi-
cients of model uncertainties KR and KF and the theoretical
failure probability Pf. The defuzzified ‘‘crisp’’ failure
probability values are obtained utilizing the centre of
gravity method [7]. Due to the non-linear and asymmetrical
membership functions of failure probability Pf, the
defuzzified values are higher (dot-and-dash line) than
the values of the purely stochastic solution (full line)
(see Fig. 5).
ignment of failure probability.
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Further analytical studies are planned for additional
values of partial safety factors gG, gQ, gM. The reliability
analysis of the design of steel structures according to the
allowable stress design method for gG ¼ 1.0; gQ ¼ 1.0 and
gM ¼ 1.5 will be performed. Probabilistic analysis results of
the limit state method and the allowable stress method will
be compared.
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