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Quantile-based versus Sobol sensitivity analysis in limit state design 
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A B S T R A C T   

In limit state design, the reliability of building constructions is generally verified using design quantiles. The 
design resistance of a structure is explicitly expressed as a low quantile of the cumulative distribution function of 
resistance. The aim of this article is to show the connections and differences between quantile-oriented sensitivity 
analysis subordinated to a contrast and classic Sobol sensitivity analysis. Changing the fixed input variable causes 
synchronous change in the quantile and mean value, but how do the results of these two sensitivity analyses 
differ? The question is whether or not the changes around the design quantile (measured by contrast indices) are 
similar to the changes around the mean value, which are measured using Sobol’s indices. Comparison is per-
formed on a case study, where the resistance of the structure is expressed by a non-linear function, the inputs of 
which are random material and geometric characteristics of the structure. The non-dimensional slenderness is a 
deterministic parameter, which changes the influence of input variables on the resistance as the model output. It 
was concluded upon comparing the results of both sensitivity analyses that the rank of the most important 
variables is the same for both low and high slenderness and is similar for intermediate slenderness. However, the 
interaction effects are very different. The identification of insignificant variables is the same. Other significant 
similarities and differences between both types of sensitivity analyses are presented in the article.   

1. Introduction 

Eurocodes [1] assess the reliability of building structures using 
design quantiles of load and resistance, which are more practical for 
structural design than failure probability [2,3]. The basic reliability 
targets for design values in ultimate limit states recommended in [1] are 
based on a semi-probabilistic approach [4,5]. Structural design is reli-
able if the design resistance (lower quantile) is higher than the design 
load (upper quantile). This concept evaluates reliability using two states, 
i.e., satisfactory (design resistance > design load) or unsatisfactory 
(design resistance < design load). From a design point of view, this 
reliability assessment is sufficient even without the analysis of the fail-
ure probability Pf or the reliability index β [1]. A structure is either 
designed according to standards and is therefore sufficiently reliable, or 
such a design must be ensured. Economically and reliably optimal 
design means that the design resistance is equal to the design load. 
Higher reliability than is prescribed by standards is possible, however, 
higher economic costs of construction would be required (material, 
etc.). 

Reviews of sensitivity methods in interdisciplinary contexts are 
offered in [6–9]. In terms of utilization in the construction industry, the 
methods of sensitivity analysis (SA) can be divided into global sensitivity 

analysis [10–13], etc., reliability-oriented sensitivity analysis ROSA 
[14–17], etc., and other specific types of SA, see, for e.g., [18–21]. The 
first types of analyses focus on the distribution or certain moments of the 
output function while ROSA considers Pf, β or design quantiles as the 
quantity of interest. Comparative case studies [22] have shown that the 
differences between indices in the first and second group as well as 
between the groups are large and the information value of ROSA indices 
is unclear. 

In civil engineering, SA methods are often applied in a conventional 
manner, which takes advantage of the knowledge that the methods of 
the first group are partially empathic to reliability, see, for e.g., [23,24]. 
It can be argued that the input variable (imperfection) could have an 
influence on the distribution of the limit state function but not on Pf and 
conversely. However, such cases are not common in engineering prac-
tice. The results of reliability analysis tend to be more or less consistent 
with the results of Sobol sensitivity analysis (SSA), see, for e.g., analyses 
of the failure mode and load of steel frames [25]. 

The question is, what is the information value of the indices of the 
first group if the reliability analysis is the main subject of interest? 
Intuitively, it can be surmised that when the input variable influences 
the variance, it can also have some influence on structural reliability. A 
basic comparison of SA methods in terms of Pf has been performed in 
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[22]. In this article, we will focus on the random resistance R, for which 
we will evaluate the SA of the design quantile of the resistance Rd 
together with SSA. The structural resistance R represents the model 
output, which is generally non-linearly dependent on the inputs. The 
aim of this article is to show the connections between quantile-oriented 
sensitivity analysis subordinated to a contrast [14] (referred to as QSA in 
this article) and classic SSA. The results of QSA are compared with the 
results of SSA using a simple case study, where the quantity is used in 
limit state design (LSD). 

This article examines whether or not the change in R that occurs 
around the design quantiles is similar to the change around the mean 
value, which is measured by Sobol indices. The design resistance is 
explicitly expressed as the αth quantity from the cumulative distribution 
function of R. The subject of interest is the evaluation of inputs 
contributing to the extreme output values. It can be noted that the link 
between quantile-based SA and Sobol main effect sensitivity indices has 
already been studied in [26], however, not with the use of GSA [14], 
which is applied here. The GSA applied here is based on contrasts that 
measure the average distance between the quantile and the output in 
comparison to the measures proposed in [26], which use the average 
distance between the quantities. Additional studies of quantile-oriented 
SA subordinated to a contrast can be found, for e.g., in [27–29]. 

2. Sensitivity measures based on quantiles of output 

The model is represented by a mapping f which relates the domain of 
inputs to the output space: 

R = f (X1,X2, ...,XM) (1)  

where R is the model output (static resistance) and input variables (X1, 
X2, …, XM) are described using probability density functions (pdfs), 
which reflect the uncertain knowledge of the system under analysis. 

The Goal Oriented Sensitivity Analysis is based on contrast functions 
[14]. The contrast function ψ associated with α-quantile can be written 
using parameter θ as: 

ψ(θ) = E(ψ(R, θ) ) = E((R − θ)(α − 1R<θ) ) (2) 

The estimator of α-quantile θ* is given as θ* = Argmin ψ(θ). Based on 
[14] the first-order quantile contrast index Qi (first-order or main 
sensitivity index subordinated to the contrast) can be defined as: 

Qi =

min
θ

ψ(θ) − E
(

minE
θ

(ψ(R, θ)|Xi )

)

min
θ

ψ(θ)
(3)  

where the numerator is the contrast variation due to Xi. Qi is the sensi-
tivity index of the estimator of θ*. The minimum value of contrast ψ(θ) 
can be calculated, for e.g., using N runs of the Latin Hypercube Sampling 
method (LHS) [30] and [31] as: 

min
θ

ψ(θ) ≈
1
N

∑N

n=1
(f (X1(n), X2(n), ..., XM(n) ) − θ* )

(
α

− 1f (X1(n), X2(n), ..., XM (n) )⩽θ*
)

(4)  

where θ* is the estimator of α-quantile. The α-quantile θ* can be esti-
mated from LHS runs so that α⋅N runs of R are smaller than θ* and (1-α)⋅ 
N runs of R are greater than θ*, see the example shown in Fig. 1. For 
example, the estimate of 0.1-percentile (0.001-quantile) is practically 
calculated as the 400th smallest value in the set arranged in an 
ascending order with N = 400000 runs of LHS, see Fig. 1. 

The second member in the numerator (3) can be determined using 
two sets of the LHS method. K random realizations of Xi, i.e., Xi(1), …, 
Xi(k),…, Xi(K) are generated in the first set. Then N random realizations 
of the vector X~i are generated for each realization Xi(k), k = 1,…, K (all 
variables but Xi). For fixed Xi we can calculate 

minE
θ

(ψ(R, θ)|Xi ) ≈ m(k)

= 1
N

∑N

n=1

(
f
(
Xi(k), X̃i(k, n)

)
− θ*(k)

)

⎛

⎝α − 1
f

(
Xi(k), X

̃i
(k,n)

)
⩽θ*(k)

⎞

⎠

(5)  

where conditional α-quantile θ*(k) is evaluated analogously as in (4) 
with the difference that the runs of R are obtained for N random re-
alizations of variables X~i and fixed (non-random) Xi. For K runs of Xi we 
then obtain 

E
(

minE
θ

(ψ(R, θ)|Xi )

)

=
1
K

∑K

k=1
m(k) (6) 

The second-order quantile contrast index Qij is defined as: 

Qij =

min
θ

ψ(θ) − E
(

minE
θ

(
ψ(R, θ)|Xi,Xj

)
)

min
θ

ψ(θ)
− Qi − Qj (7) 

The higher-order quantile contrast indices can be expressed analo-
gously. The sum of all sensitivity indices must be equal to 1. 
∑

i
Qi +

∑

i

∑

j>i
Qij +

∑

i

∑

j>i

∑

k>j
Qijk + ...+Q123...M = 1 (8) 

The sum of all indices is 2M− 1. If we substitute (2) with the contrast 
function ψ(θ) = E(R - θ)2, then the equations presented above lead to the 
classic Sobol decomposition [10] and [11], where the first-order sensi-
tivity index Si is defined as: 

Si =
V(R) − E(V(R|Xi ) )

V(R)
=

V(E(R|Xi ) )

V(R)
= corr2(R,E(R|Xi ) ) (9)  

where corr is Pearson correlation coefficient. Sobol higher-order sensi-
tivity indices Sij, Sijk, etc. are determined analogously. It can be noted 
that (2) is not of quadratic type as the contrast associated with Sobol. 

The substitution of corr with Spearman’s rank correlation or Ken-
dall’s τ also leads to the decomposition, where the sum of all indices is 1. 
However, the size of indices is generally a little different and their sig-
nificance may be discussed. 

The paper [14] is the first step towards a generalized theory of 

Fig. 1. Example of the estimation of the 0.1-percentile from 400,000 runs 
of LHS. 
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sensitivity analysis, which views Sobol indices as a special case that is 
based on quadratic contrast. Analogously as in SSA [32] we can intro-
duce the so-called total index in QSA as: 

QTi = 1 −

min
θ

ψ(θ) − E
(

minE
θ

(
ψ(R, θ)

⃒
⃒X̃i

)
)

min
θ

ψ(θ)
(10) 

The total effect index measures the total contribution to the output 
contrast due to variable Xi, i.e., its first-order effect including all higher- 
order effects due to interactions. The total effect is given as the sum of all 
terms in (8) where variable Xi is considered. As will be shown below, the 
introduction of (10) is very useful if the number of input variables is high 
and the higher-order effects due to interactions are noticeable. 

3. The target reliability and design quantiles 

The aim of this article is QSA of design resistance Rd, which is 
calculated as 0.1 percentile of the static resistance R. The calculation of 
0.1 percentile is based on the semi-probabilistic approach of standard 
[1]. For a simple case of Gaussian distributed variables of F on the load 
action side and R on the resistance side [33], the limit state function can 
be written as: 

G = R − F⩾0 (11)  

where F and R are statistically independent variables for which we can 
write: 

μG = μR − μF, σG =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

σ2
R + σ2

F

√

(12)  

where μ is the mean value and σ is the standard deviation. The reliability 
index β can be evaluated in relation to the probability of failure Pf as: 

β =
μG

σG
with Pf = 1 − Φ(β) = Φ( − β) (13)  

where Φ(•) is the cumulative normalized Gauss distribution. For the 
reference period of 50 years, the target reliability recommended in [1] 
for ultimate limit state is βd = 3.8, Pf = 7.2E-5, see Table C2 in [1] and/or 
[34]. In order to answer the question of which value on the load action 
side and which value on the resistance side result in the desired level of 
reliability, we have to introduce weighting factors αF (for the load action 
effect) and αR (for the resistance): 

αF =
σF

σG
, αR =

− σR

σG
(14) 

The so-called design values Fd and Rd can then be calculated as: 

Fd = μF + αF βd σF
Rd = μR + αR βd σR

(15) 

If the design is reliable, it must hold that Fd⩽Rd. The probability that 
resistance R⩽Rd can be written as: 

P(R⩽Rd) = Φ
(

μR − αR βd σR − μR

σR

)

= Φ( − αR βd) (16) 

Upon substitution of βd = 3.8 into (16) we obtain a probability of 
0.001183, which is approximately 0.1 percentile of R, see Fig. 2. An 
alternative equation to (15) is listed in [1] for variables, which do not 
have a Gaussian distribution, but have a different statistical distribution, 
such as Gumbel or Log-Normal pdfs. In this article Rd is calculated in all 
cases as 0.1 percentile non-parametrically based on LHS simulations, see 
Fig. 1. 

4. The computation of static resistance 

The elastic load carrying capacity MR was derived in [35], see also 
[36]. In this article the computational model of elastic load carrying 

capacity is taken from [35] with the difference that instead of MR we 
introduce the symbol R, so that we are consistent with the model output 
(resistance R) in the preceding paragraphs. The relatively fast response 
of the non-linear function (17) in the closed-form permits the use of high 
numbers of runs of the LHS method and gives accurate and highly 
transparent results even without using metamodels and 
supercomputers. 

The resistance R (17) of an I-beam decreases with its increasing 
length L due to the LTB phenomena [35]. The initial axial deformation 
increases when the loading bending moment M increases, see Fig. 3. 
Failure occurs when the longitudinal stress reaches the yield strength fy, 
which occurs when M approaches R at x = L/2. 

R = −

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(
4Q2

1 + 4Q1(Q4 − 2McrQ3) + Q2
4 + 4McrQ4Q2 + 4M2

crQ
2
2

)√

4McrWz

+
2Q1 + Q4 + 2McrQ2

4McrWz

(17)  

where 

Fig. 2. The random and design resistance.  

Fig. 3. Lateral-torsional buckling and geometric imperfections.  
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Q1 = fyMcrWyWz

Q2 = McrWz + Pz|av0|Wy

Q3 = McrWz − Pz|av0|Wy

Q4 = hP2
z |av0|Wy

av0 = e02Mcr/(2Mcr + hPz)

Pz = π2EIz/L2

Wy = 2Iy/h
Wz = 2Iz/b

(18) 

The significance of all variables in Eqs. (17) and (18) are explained in 
detail in [35]. The input variables are referred to as imperfections in 
engineering terminology [37]. Generally, these deficiencies arise during 
the production of the structure, its assembly and subsequent use and 
have an influence on the resistance, especially in cases where the 
structure is exposed to loss of stability, such as flexural or lateral- 
torsional buckling [38]. 

The resistance R (17) is in complete agreement with the elastic load 
carrying capacity obtained from the computational model created using 
the software Ansys, which was verified for 0⩽λLT⩽2.1 [39] and [40], 
where λLTis the non-dimensional slenderness [41]. 

The calculation of the second moment of area is based on an ideal-
ized geometry of a doubly-symmetric IPN200 section, see Fig. 3. The 
random variabilities of geometric characteristics h, b, t1 and t2 (geo-
metric imperfections) of the IPN200 section are introduced according to 
experimental researches [42] and [43]. The equation for the elastic 
critical moment Mcr is introduced according to [35] and [34], where 
shear modulus is G = 0.5⋅E/(1 + ν). 

The shape of initial geometric imperfections is introduced according 
to the first eigenmode (bow imperfection) of LTB, see Fig. 3. The random 
variability of amplitude e0 is based on the assumption that 5% of random 
samples of e0 lie outside the tolerance limits ±L/1000, see, for e.g., [35] 
and [34]. Statistical characteristics of yield strength are considered ac-
cording to [42] for steel S235 and [44] for steel S355, see also the dis-
cussion in [45]. The statistical characteristics of the other random 
imperfections in Table 1 are justified in [46]. The influence of residual 
stress was neglected. All random variables listed in Table 1 are statis-
tically independent. 

Dependencies between L1 and λLT, L2 and λLTlisted in Table 1 
approximate the procedure in [41]. The analytical function between L 
and λLT is derived in [47]. 

Slenderness is one of the basic parameters in the design of steel 
structures. The parametric study uses λLT to evaluate the effect of 
parametric change of λLT on sensitivity indices, whereλLTchanges with 

the step of 0.01. The length of the member L is assigned according to 
steel grade as L1 or L2. 

5. Sensitivity analysis results 

The LHS method is used to evaluate all sensitivity indices. Each index 
Qi (3) is evaluated using K = 4000 runs of m(k) (5). Each realization of m 
(k) is evaluated using a set with N = 400000 runs of R, in which θ*(k) 
represents the conditional 0.1 percentile, which is the 400th smallest 
value in the set arranged in an ascending order, see, for e.g., Fig. 1. The 
denominator in (3) is calculated according to (4) for N = 400000 runs. 
Indices Si, Qij, Qijk, Qijkl and QiT are calculated analogously using the 
same values K and N. 

5.1. QSA for 8 input imperfections from Table 1 

QSA with M = 8 imperfections (Table 1) leads to 28-1 = 255 quantile 
contrast indices, which is too much for practical calculation. Therefore, 
all global effects are described using indices Qi and QTi, see Fig. 4, Fig. 5 
and Fig. 6. The total effect indices QTi provide a cumulative measure of 
sensitivity inclusive of interaction effects of any order. 

The difference QTi - Qi is a measure of the extent to which the ith 

imperfection is involved in interactions with any other input imperfec-
tion. The plots of QTi and Qi are similar in shape, but sizes and mutual 
proportions are different, see Fig. 4 and Fig. 5. In contrast to Qi, the total 
effects QTi show greater involvement of t2 for low slenderness and E for 
high slenderness. The modulus of elasticity E is a completely non- 
influential imperfection for λLT⩽0.4(see Fig. 5) and fy is a completely 
non-influential imperfection for approximately λLT⩾5 (see Fig. 6). 

The plots of Qi and Si are similar in shape. However, Sobol indices Si 
are significantly higher than Qi, see Fig. 4. This means that QSA iden-
tifies more significant interaction effects than SSA. SSA confirms 
approximately zero higher-order interactions 1-

∑
iSi≈0 [35], which is in 

sharp contrast to the results of QSA, where the difference QTi - Qi 
identifies strong interaction effects. QSA confirms the results of SSA [35] 
in the identification of marginal main effects of imperfections h, b, t1 and 
ν. 

The plots of Si in Fig. 4 (IPN 200) are almost identical to previous 
results of SSA of the resistance of beam IPE 220 [35]. It can be noted that 
beams IPN 200 and IPE 220 [35] have the same variation coefficients of 
imperfections h, b, t1, t2 and probability models of all other imperfec-
tions are the same in the case of steel S235 [45]. Sobol sensitivity indices 
Si are the same for both sections under these conditions. 

Table 1 
Statistical characteristics of input imperfections [42,44].  

No. Symbol Characteristic Density Mean μ Standard 
deviation σ 

1. t2 Flange thickness Gauss 11.3 mm 0.518 mm 
2. fy Yield strength, 

S235 
Yield strength, 
S355 

Gauss 
Gauss 

297.3 
MPa 
393.8 
MPa 

16.8 MPa 
22 MPa 

3. E Modulus of 
elasticity 

Gauss 210 GPa 10 GPa 

4. e0 Initial curvature, 
S235 
Initial curvature, 
S355 

Gauss 
Gauss 

0 
0 

L1/1960 * 
L2/1960 * 

5. h Cross-section 
height 

Gauss 200 mm 0.885 mm 

6. b Flange width Gauss 90 mm 0.888 mm 
7. t1 Web thickness Gauss 7.5 mm 0.293 mm 
8. ν Poisson’s ratio Gauss 0.3 0.009 

where L1 ≈ 2.15λLT − 0.75λ2
LT +1.95λ3

LT − 0.39λ4
LT for S235 [46], 

L2 ≈ 1.7λLT − 0.36λ2
LT +0.95λ3

LT − 0.15λ4
LT for S355. Fig. 4. First order sensitivity indices Si, Qi for M = 8.  
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It is apparent from Fig. 4 and Fig. 5 that the plots of sensitivity 
indices of steel S355 (red curves) approximately follow the plots of 
sensitivity indices of steel S235 (black curves), however, with the dif-
ference that the red curves are slightly shifted to the right, which is 
particularly noticeable in beams with intermediate slenderness. The 
values of indices Q5, Q7 and Q8, which are lower than 0.03 and are not 
shown in Fig. 4. The shift to the right is due to the fact that losses 
(contrasts) between R and Rd of members of steel S355 are more influ-
enced by the variability of fy and less influenced by t2 and E. Indices QTi 
of imperfections h and ν are very small and these variables can be 
regarded as non-influential, see Fig. 5 and Fig. 6. 

The values of QTi remain practically unchanged for very high slen-
derness λLT⩾2, with the exception of QT2 and QT4, which decrease to 
zero, see Fig. 6. The values of QTi and Qi are shown in Fig. 7 for the limit 
case of λLT→∞. Practically, λLT = 100 was considered in the calculation. 
However, sensitivity indices remain constant for λLT > 10. The results in 
Fig. 7 apply to steel of both steel grades S235 and S355. 

5.2. QSA for four input imperfections 

The first four imperfections t2, fy, E and e0 listed in Table 1 were 
identified in the previous chapter as crucial. The comparison of QSA and 
SSA shows an agreement in the identification of non-influential imper-
fections h, b, t1 and ν, whose variability can be completely neglected. 
Such imperfections can be fixed at any value of their domain without 
influencing the average absolute loss (contrast) between R and Rd or R 
and μR. 

Let us consider the random variability of the first four imperfections 
t2, fy, E and e0 (M = 4) and introduce the other four h, b, t1 and ν as non- 
random by their mean value. This makes it possible to evaluate all 24-1 
= 15 quantile indices in decomposition (8), which can be clearly illus-
trated; see Fig. 8 and Fig. 9. 

The total indices QTi of imperfections t2, fy, E and e0 shown in Fig. 10 
(M = 4) are approximately the same as the indices in Fig. 5 (M = 8) with 
the exception of λLT = 2, where QTi in Fig. 5 is slightly lower than QTi in 
Fig. 10. The approximate similarity of indices Qi in Fig. 4 and Fig. 8 also 
applies. Fixing the values of imperfections h, b, t1 and ν (setting their 
mean value), therefore, does not have a significant effect on the main 
and total effects of imperfections t2, fy, E and e0. 

The non-zero total effects of imperfections fy and e0 are surprisingly 
also found for high slenderness λLT⩾2, see Fig. 6. Decomposition (8) 
performed for M = 4 shows that imperfections fy and e0 are involved in 
interactions with imperfections t2 and E for λLT = 2 (see Fig. 9), then 
their influence decreases. Decomposition (8) for limit case λLT→∞ leads 
to only three non-zero sensitivity indices, see Fig. 11. 

6. Discussion of the results 

In all cases, it was found that corr(Q(R|Xi), E(R|Xi)) ≈ 1, where Q(R| 
Xi) is the conditional 0.1 percentile and E(R|Xi) is the conditional mean 
value. Changing the fixed input variable Xi causes synchronous change 
in the quantile and mean value calculated from X~i. This was also 
observed when fixing pairs, triples, etc. The differences between indices 
Qi and Si are mainly due to the different nature of the contrast functions. 
The contrast function (2) associated with the quantile is based on the 
average normalized absolute distance between the quantile and R, while 
SSA is based on the average quadratic distance between the mean value 
and R (variance). Although QSA and SSA lead to the same or similar 
conclusions, the interaction effects identified by QSA are much less 
comprehensible. 

Although Eq. (17) represents a typical non-linear function of static 
resistance R of a steel structural element, the sensitivity analysis results 
cannot be generalized for all stochastic computational models. The 
question remains, in which cases could QSA lead to significantly 
different conclusions than SSA in terms of identifying the values of the 
input variables? 

In the case study presented here, SSA showed almost zero values of 

Fig. 5. Total quantile contrast indices for M = 8.  

Fig. 6. Total quantile contrast indices for M = 8.  

Fig. 7. QSA indices, λLT = 100, S235 and S355.  Fig. 8. First order quantile contrast indices for M = 4.  
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higher-order sensitivity indices. This is common when studying the 
resistance of structural elements [45] and [49], but not the resistance of 
steel frames (systems), where SSA identified significant contributions of 
interaction effects between system elements [23] and [50]. Although 
there is some similarity between the QSA and SSA results presented 
here, these conclusions cannot be generalized for sensitivity analysis of 
the resistance of steel frames with slender columns, where loss of sta-
bility is a significant phenomenon. 

It can be noted that the applied analytical solution makes it possible 
to study the influence of imperfections even in very slender (long) 
members. However, verification of the obtained results using FE models 
of very slender members would be desirable. Unfortunately, the number 
of finite elements and the computational demand of FE models of long 
members in simulations is very high and FE models with higher number 
of input variables exhibit certain numerical inaccuracies [46]. QSA 

based on FE models can be considered in the future in connection with 
supercomputers (FE models) and polynomial chaos expansions [48] 
(metamodels). 

Estimation of sensitivity indices using the LHS method can be per-
formed using high performance computing. The second member in the 
numerator in Eq. (3) is computed using double-nested-loop simulation of 
the LHS method, which is highly demanding on CPU time, therefore, it is 
effective to let the inner loops run as a parallel process. Further opti-
mization may involve the inner loop, where each LHS sample can run as 
a parallel process as well. The same parallelization of processes can be 
introduced when estimating other sensitivity indices. 

7. Conclusion 

This article presents the comparison of the results of quantile- 
oriented sensitivity analysis (QSA) with the results of classic Sobol 
sensitivity analysis (SSA) using a simple case study. The subject of in-
terest in SSA is the resistance (and its changes around the mean value) 
while the subject of interest in QSA is the lower quantile of resistance 
(and changes in resistance around this quantile). The non-dimensional 
slenderness is a deterministic parameter, which changes the influence 
of input variables on the resistance as the model output. Increasing the 
slenderness shifts our attention from material imperfections to geo-
metric imperfections. 

The results of the case study showed that the rank of the most 
important variables is the same for both low (λLT<0.45) and high 
(λLT>1.35) slenderness. For low slenderness, the first and second 
dominant variables are yield strength fy and flange thickness t2. For high 
slenderness, they are flange thickness t2 and modulus of elasticity E. For 
intermediate slenderness (0.45⩽λLT⩽1.35), the initial curvature e0 is the 
first or second dominant variable alternating the first position with t2 or 
fy, where fy decreases its sensitivity rank rapidly with increasing slen-
derness. These findings were made using both QSA and SSA. 

Although the main conclusions of QSA and SSA are approximately 
the same, each SA reaches its conclusion in a different manner using 
indices of different types. The conclusions from SSA are made on the 
basis of first-order indices, while higher-order indices are practically 
zero. On the contrary, QSA has the sum of first-order indices approxi-
mately the same as the sum of higher-order indices and thus the con-
clusions of QSA are made on the basis of first-order indices and total 
indices. 

In the presented study, SSA leads to similar conclusions as QSA in 
terms of identifying the most important input variables. The comparison 
of QSA and SSA also shows an agreement in identifying four totally non- 
influential imperfections. However, in terms of less or moderately 
important variables, the conclusions of QSA and SSA may differ. In cases 
where SSA shows almost zero influence, QSA may show certain small 
influence. An example is the initial curvature e0 for non-dimensional 
slenderness equal to two. Both SA are in agreement in almost zero 
first-order indices, but QSA also identifies higher-order indices. It can be 
noted that imperfection e0 is a typical input variable with strong non- 
linear influence on the static resistance. 

It is generally known that the variance is not sufficient for the 
sensitivity analysis of reliability, but are the results of SSA of such little 
practical use for the analysis of reliability? The case study presented 
here showed that the results of SSA are partially empathic to the results 
of QSA, where the lower quantile is the subject of interest. However, 
they are not the same. 

Although the presented conclusions cannot be generalized for all 
stochastic computational models, many stochastic computational 
models of resistance of steel elements may have very similar de-
pendencies between inputs and outputs, including the nature of input 
random variables. As was shown in the article, change in steel grade has 
little influence on the results of SA. It is unclear whether any agreement 
between SSA and QSA can also be obtained in steel frames, where SSA 

Fig. 9. Higher-order quantile contrast indices for M = 4.  

Fig. 10. Total quantile contrast indices for M = 4.  

Fig. 11. QSA indices (8) for M = 4, λLT = 100, S235 and S355.  
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has shown significant contributions of interaction effects between sys-
tem elements [23]. 

QSA is proving to be a possible tool for identifying the effects of input 
imperfections on the contrasts between model outputs and design 
quantiles. This domain deserves much more work in order to make QSA 
a useful and practical tool. Future work will be focused on other types of 
sensitivity indices subordinated to contrasts, which are suitable for 
further reliability analysis of structures associated with probability 
distributions. 

Declaration of Competing Interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Acknowledgements 

The work has been supported and prepared within the project 
namely “Probability oriented global sensitivity measures of structural 
reliability“ of The Czech Science Foundation (GACR, https://gacr.cz/) 
no.20-01734S, Czechia. 

References 

[1] EN 1990, Eurocode-Basic of Structural Design, CEN, Brussels, 2002. 
[2] Sedlacek G, Stangenberg H. Design philosophy of Eurocodes - background 

information. J Constr Steel Res 2000;54(1):173–90. 
[3] Sedlacek G, Müller Ch. The European standard family and its basis. J Constr Steel 

Res 2006;62(11):1047–59. 
[4] Sedlacek G, Kraus O. Use of safety factors for the design of steel structures 

according to the Eurocodes. Eng Fail Anal 2007;14:434–41. 
[5] Simões da Silva L, Tankova T, Marques L. On the safety of the European stability 

design rules for steel members. Structures 2016;8:157–69. 
[6] Wei P, Lu Z, Song J. Variable importance analysis: a comprehensive review. Reliab 

Eng Syst Saf 2015;142:399–432. 
[7] Borgonovo E, Plischke E. Sensitivity analysis: a review of recent advances. Eur J 

Oper Res 2016;248(3):869–87. 
[8] Saltelli A, Aleksankina K, Becker W, Fennell P, Ferretti F, Holst N, et al. Why so 

many published sensitivity analyses are false: a systematic review of sensitivity 
analysis practices. Environ Modell Software 2019;114:29–39. 

[9] J. Antucheviciene, Z. Kala, M. Marzouk, E.R. Vaidogas, Solving civil engineering 
problems by means of fuzzy and stochastic MCDM methods: Current state and 
future research, Mathematical Problems in Engineering 2015 (2015) 1–16. Article 
ID 362579. 

[10] I.M. Sobol’, Sensitivity estimates for nonlinear mathematical models, Mathematical 
Modelling and Computational Experiment 1(4) (1993) 407–414 [Translated from 
Russian. Sobol’, IM. Sensitivity estimates for nonlinear mathematical models. 
Matematicheskoe Modelirovanie 2 (1) (1990) 112-118.]. 

[11] Sobol’ IM. Global sensitivity indices for nonlinear mathematical models and their 
Monte Carlo estimates. Math Comput Simul 2001;55(1–3):271–80. 

[12] Borgonovo E. A new uncertainty importance measure. Reliab Eng Syst Saf 2007;92: 
771–84. 

[13] Gamboa F, Klein T, Lagnoux A. Sensitivity analysis based on Cramér-von Mises 
distance. SIAM/ASA J Uncertainty Quantification 2018;6:522–48. 

[14] Fort J-C, Klein T, Rachdi N. New sensitivity analysis subordinated to a contrast. 
Commun Statist - Theory and Methods 2016;45(15):4349–64. 

[15] Xiao S, Lu Z. Structural reliability sensitivity analysis based on classification of 
model output. Aerosp Sci Technol 2017;71:52–61. 

[16] Ling C, Lu Z, Cheng K, Sun B. An effcient method for estimating global reliability 
sensitivity indices. Probab Eng Mech 2019;56:35–49. 

[17] Madsen HO. Omission sensitivity factor. Struct Saf 1988;5:35–45. 
[18] Lehký D, Pan L, Novák D, Cao M, Šomodíková M, Slowik O. A comparison of 
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