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A B S T R A C T   

The article explores the stochastic modelling of 3D steel frames under static vertical load, with a main focus on 
random initial geometrical imperfections. The random input parameters for initial geometrical imperfections are 
derived from the tolerance criteria in accordance with European standard. In order to derive statistical param-
eters from the corresponding standard tolerances, two methods noted as #RSS (random storey sway) and #RSP 
(random storey position) have been utilized and compared. Both of these methods are used along with the first- 
order reliability method (FORM) and the advanced finite element method (FEM) – geometrically and materially 
nonlinear imperfect analysis (GMNIA) to numerically analyse several geometries of steel frame structures. Ul-
timate resistances of these structures are monitored and basic sensitivity studies are conducted. The results are 
also compared with the deterministic approach of the European standard. The stochastic approach of the FORM 
to estimate the ultimate resistance of steel frame structures serves as a verification tool of the classic, in engi-
neering praxis widely used, deterministic approach. This study provides useful provisions for the advanced 
numerical analyses of steel frames of various geometries. Additionally, the estimations of ultimate resistance by 
the deterministic European standard approach is verified for selected frame geometries.   

1. Introduction 

For the analysis of steel frame structures, it is crucial to consider 
initial imperfections that can influence their load-bearing capacity [1]. 
These imperfections can be categorized into three main groups: 
geometrical imperfections, material imperfections, and structural im-
perfections [2,3]. Geometrical imperfections, resulting from 
manufacturing and erection tolerances, present as local (bow) and 
global (out-of-plumb) forms. Although commonly modelled as worst- 
case scenarios to amplify destabilizing load effects, such conservative 
estimations can lead to uneconomical designs, as noted by Shayan et al. 
[4]. The present study introduces stochastic methods for modelling 
initial geometrical imperfections in 3D steel frames, focusing on global 
and local random imperfections, while excluding cross-sectional 
geometrical imperfections. 

In certain cases, the initial imperfections have been neglected, e.g. in 
the study on steel-concrete composite frame structures [5], or analysis of 
the progressive collapse of post-tensioned steel frames [6], where the 
numerical results were considered as satisfactory given the initial im-
perfections in the test specimens. Initial imperfections were not 

considered as a major concern in numerical and experimental analysis of 
coupled steel-concrete composite wall-frame structures [7], or in 
detailed analysis of floor deck connections [8]. Segura et al. [9] 
neglected the explicit modelling of geometric imperfections, studying 
their minimal influence on specific frame types. This conclusion was 
supported by earlier validation of the model against experimental results 
of frames exposed to fire [10]. 

However, for other types of structures, the effect of initial geometric 
imperfection is not negligible, and should be considered. This is also 
mentioned in several standards, e.g. Eurocode for steel structure design 
[11]. For example, Chan et al. [12] have compared two methods to 
introduce the initial geometrical imperfections. The effects of initial 
geometric imperfections applied on the 2D braced portal frames are 
more significant compared to the unbraced 2D frames, as the bracings 
resist lateral movement, but cannot reduce the bow imperfection leading 
to the P–δ effect. Systematic method to evaluate the appropriate 
“equivalent initial imperfections” that need to be incorporated in the 
second-order global elastic analysis of in-plane frame structures are also 
discussed by Goncalves et al. [13]. Geometrical imperfections are often 
required to be considered for slenderer members, as recently 
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investigated for welded box-sections members by Radwan et al. [14]. 
Piątkowski [15] recommended to use the complex numerical models 
including imperfect elements of the bracing system and to use geomet-
rically nonlinear analysis in order to determine the influence of assumed 
geometric imperfections on all elements, bracings and connections of 
the analysed structure. 

Previous studies have extensively addressed the structural analysis of 
steel constructions with initial geometrical imperfections. For instance, 
Clarke et al. [16] followed Australian design specifications, Liew et al. 
[17] modelled inelastic behaviour of frames, and Shayan et al. [4] 
introduced a method for modelling these imperfections using eigen-
modes for 2D frames. Current research includes imperfection scaling 
based on strain energy and the entropy method, as discussed by Kala 
[18,19] and the use of terrestrial laser scanners to measure imperfec-
tions, as explored by Chacón et al. [20]. 

Several approaches address initial geometrical imperfections in steel 
frame analysis:  

• Scaling of the elastic buckling mode (EBM), where the first buckling 
mode of linear elastic buckling analysis (of a perfect structure) is 
scaled to approximate the imperfect geometry [21]. This method is 
still being improved. Aguero et al. extended EBM to non-uniform 
cross-sections [22]. However, EBM poses risks if first and second 
critical loads coincide [23]. Also, plastic deformations may deviate 
from the elastic buckling mode. A plastic second-order analysis re-
veals the final failure shape, which might be also scaled to determine 
the initial imperfect geometry [24]. However, this approach might 
be overly conservative, as the collapse geometry is induced at the 
initiation of the structural analysis. 

• Notional horizontal forces method (NHF) permitted by design stan-
dards such as the European standard 1993-1-1 [11], replaces the 
sway imperfection effects with equivalent horizontal forces, as uti-
lized by Liew et al. [25].  

• Member stiffness reduction, suggested by Kim [26], who reduced the 
elastic modulus to 0.85E to reflect the effects of geometric imper-
fection. However, this value lacks full probabilistic validation [4].  

• Direct modelling of the initial geometrical imperfection, used e.g. by 
Chan [12] and presented also in this study, where the nodal co-
ordinates of the finite element mesh are offset from the original 
position. This also enables the integration of probabilistic methods, 
discussed in relation to 3D frame structures. 

The statistical modelling of imperfections is critical for verifying 
equivalent imperfection formulas and their application in frame calcu-
lations as per various standards, a point emphasized by Machowski et al. 
[27]. Currently, the most effective modelling of geometric imperfections 
is achieved through probabilistic methods, which can address the 
complexity of 3D structures, including the patterns of imperfections [4]. 
Probabilistic methods are often compared with deterministic approach, 
as for example in case of analysis of the steel-concrete composite floor 
progressive collapse by Ding et al. [28], who highlighted the importance 
of modelling uncertainties. Probabilistic modelling is the ultimate tool 
for cases, where the structural reliability is based on experimentally 
determined input parameters (stochastic values), where the standard-
ized design approach is not yet fully developed or needs to be verified by 
probabilistic methods. The aim of this study is to verify the ultimate 
resistances of several geometrically imperfect steel frame structures 
through stochastic analyses, directly addressing the problems of un-
economical designs under deterministic assumptions as highlighted by 
both the EN 1993-1-1 [11] standards and Shayan et al. [4]. 

European standard EN 1990 [29] recognizes two main classes of 
reliability methods:  

• Full probabilistic methods, which give in principle correct answers to 
the reliability problems, but are seldom used in the calibration of 
design codes due to frequent lack of statistical data.  

• First order reliability method (FORM), which for most structural 
applications lead to sufficiently accurate results [29]. 

In the European standard EN 1990 [29], the reliability design con-
ditions are based on the FORM (first-order reliability method). FORM 
belongs to one of the most important methods for the evaluation of 
structural reliability, mainly in combination with methods of the 
advanced numerical analyses, e.g., the finite element method (FEM) as 
also discussed by Faber [30] or Zhao and Ono [31]. The concept of this 
FORM method (in more detail described in studies by Kala [32–34] and 
Jönsson [35]) allows the assumption of the Gauss probability density 
function (PDF) for load and structural resistance. Since the random 
variables for the description of the loading and the resistance are sta-
tistically uncorrelated, the resistance can be studied independently of 
the load. In this paper, FORM has been utilized to analyse the design 
ultimate resistance of various steel frames. 

As several options to consider the initial geometrical imperfections 
are available, it is often required to conduct a comparison study of these 
methods considering the analysed structure, or to verify the utilized 
method to consider the initial geometrical imperfections. The study 
presented in this paper focuses on the stochastic modelling of initial 
geometrical imperfections in steel frame structures, which is considered 
to be the most rational of the available methods [4]. The results obtained 
using probabilistic methods could be valuable for verifying the other 
deterministic approaches in the global analysis of geometrically 
imperfect 3D steel frames. 

Advanced numerical geometrically and materially nonlinear ana-
lyses with imperfections (GMNIA) using the ANSYS software [36] are 
conducted in order to determine the resistance of steel frames. Methods 
of numerical analyses of steel structures are widely used in engineering 
praxis and research, as these offer advanced insight in the structural 
response of complex geometries, as for example cable structures ana-
lysed by Chen et.al [37], where geometrical nonlinearities need to be 
considered. 

In this paper, two approaches to define the initial geometrical im-
perfections are compared (described in the chapter 2 of this paper). The 
first one is simplified in accordance with EC3 [11] assumptions, ex-
pected to be more conservative as the defined imperfections are 
designed to be sufficiently safe. The second approach is probabilistic, 
using stochastic values of the input parameters along with the semi- 
probabilistic first-order reliability method (FORM), described in Euro-
pean standard EN 1990-1-1 [29]. The probabilistic approach, assumed 
to yield more realistic outcomes, utilizes statistical parameter values 
from EN 1090–2:2018 [38]. 

Due to the fact the standard defines criteria for two mutually 
dependent parameters (sways and also cumulative deviations of the 
floors relative to the base position), it is possible to consider two 
different, but complementary approaches for stochastic input parame-
ters, as further described in the chapter 3 of this paper, noted as #RSS 
and #RSP for “random storey sway” and “random storey position” 
respectively. These two methods have been statistically verified in the 
previous study [39]. 

The numerical analyses detailed in chapters 4 and 5 lead to results, 
discussions, summaries and conclusions in chapters 6 through 9. This 
paper also provides useful information about the possible workflows, 
and recommendations of how to consider the mutual correlations be-
tween the random input parameters which determine the initial 
geometrical imperfections, in case these are derived based on tolerance 
criteria of the EN 1090–2:2018 [38]. 

2. Methods to determine the structural resistance of steel frames 

The results based on two approaches to determine the structural 
resistance of steel frames are compared. The first, in accordance with 
EC3 [11] assumptions, utilizes all the input parameters as deterministic 
(chapter 2.1), hence, only single calculation per frame geometry is 
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conducted. In the second approach, the semi-probabilistic method along 
with stochastic input parameters is utilized (chapter 2.2), hence, suffi-
ciently large number of calculations are required to be conducted in 
order to obtain data for statistical evaluation. 

2.1. European standard assumptions; #EC3 

In accordance with the chapter 5.3.2 of the EC3 [11], the global 
initial sway imperfections are defined by angle ϕ which is applied on the 
whole structure in one direction: 

ϕ = ϕ0αhαm (1)  

where ϕ0 is the basic value of 1/200, αh is the reduction factor for height 
of the structure h (in meters): 

αh =
2̅
̅̅
h

√ ;
2
3
≤ α ≤ 1.0 (2)  

and αm is the reduction factor for the columns in a row: 

αm =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

0.5
(

1 +
1
m

)√

(3) 

Where m is the number of columns in a row (including only those 
columns which carry a vertical load not <50% of the average value of 
the column in the vertical plane considered. 

Design values of the initial bow imperfections are dependent on the 
buckling curve of the cross-section (Table 6.2 of the EC3) [11] of the 
corresponding column, and are summarized in the Table 5.1 of the EC3. 
For the rolled HEB sections of steel S355 with section flange thickness no 
>100 mm and section height to width ratio less or equal to 1.2 (up to 
HEB 360, what applies to all the cases of HEB profiles in this study), the 
relative initial local bow imperfections (for plastic analysis) are 1/200 
and 1/150 (of the column height) for the buckling about the major 
principal axis and the minor principal axis of HEB cross-section 
respectively. For elastic analysis, these values would be 1/250 and 1/ 
200 (for buckling about major and minor principal axis respectively). 

For this approach, the values of material parameters are considered 
by their design values. 

In case the structural resistance is determined considering above 
mentioned imperfections and the design values of material, the results 
are noted with “#EC3” mark. 

2.2. Structural resistance based on first-order reliability method (FORM) 

The structural reliability is expressed as a function of random load 
effect E and random resistance R. The safety margin M is then defined as: 

M = R − E ≥ 0 (4) 

The failure probability Pf is expressed as: 

Pf = P(R < E) = P(R − E < 0) = P(M < 0) (5)  

where R and E are statistically independent variables (uncorrelated); 
both defined by Gauss PDF with the mean values μR, μE, and the standard 
deviations σR, σE respectively. The safety margin M is described by Gauss 
PDF defined by mean value μM and standard deviation σM, expressed as: 

μM = μR − μE (6)  

σM =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
σR

2 + σE
2

√
(7) 

By the integration of PDF function of random variable M, the prob-
ability of R − E = M < 0 is then expressed as: 

Pf =

∫ 0

∞
fMdm = Φ

(
0 − μM

σM

)

= Φ( − β) (8)  

where Φ() is the normalized cumulative Gauss distribution and the ratio 
μM/σM is the reliability index β. Considering the reliability class RC2, 
which corresponds with the consequence class CC2, and the reference 
time of 50 years, see Chapter B.3.2(2) of annex B EN 1990 [29] or 
application [40], the required value of the reliability index for structural 
members is βd = 3.8. The probability of failure is then equal to Pf =

Φ(− 3.8) = 7.2 ⋅ 10− 5. In general, the structural reliability can be verified 
by the reliability index: 

β =
μM

σM
≥ βd (9) 

The probabilistic design condition Pf < Pfd (where Pfd is the target 
value of the failure probability [29]) is obtained by the substitution of 
Eq. (9) into Eq. (8). Eq. (7) might be transformed by the introduction of 
FORM sensitivity factors αE, and αR: 

σM =
σR

2 + σE
2

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
σR

2 + σE
2

√ =
σR

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
σR

2 + σE
2

√ σR +
σE

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
σR

2 + σE
2

√ σE (10)  

σM = αRσR +αEσE (11) 

For common design conditions (Gauss PDF, common values of σR and 
σE), it is allowed to use constant values αR = 0.8 and αE = 0.7, as pro-
posed by Chapter C.7(3) of annex C of EN 1990 [29]. This simplification 
results in σM ≈ 0.8 σR + 0.7 σE. The design condition of reliability is then 
obtained by substituting Eq. (6) and Eq. (11) into Eq. (9): 

μE + αEβdσE ≤ μR − αRβdσR (12) 

The values of the design resistance Rd and the design load Ed are 
expressed by the right and left sides of Eq. (12) respectively. For αR = 0.8 
and βd = 3.8, the design resistance Rd is: 

Rd = μR − 0.8⋅3.8⋅σR (13) 

The probability, that the structural resistance R is smaller than the 
design value of the structural resistance Rd is then expressed as: 

P(R ≤ Rd) = Φ
(

μR − αRβdσR − μR

σR

)

= Φ( − αRβd). (14) 

In this study, the reliability index β = βd = 3.8 and the FORM 
sensitivity factor for the structural resistance αR = 0.8 are adopted. 
Hence, the probability, that the structural resistance Rd calculated by 
this approach is smaller than the design resistance R is approximately 
Φ(− 0.8⋅3.8) = 0.118%. This value is approximately applicable as a 0.1% 
quantile of resistance PDF [41] [42], hence the values of structural re-
sistances discussed in this study based on FORM are determined by the 
use of Eq. (13). The same approach to determine the structural resis-
tance has been utilized in the previous studies, e.g. [43–45]. 

3. Erection tolerances of multi-storey steel frames 

Statistical values of parameters (initial geometrical imperfections) 
for the FORM method, might be derived from standard which defines the 
erection tolerance criteria, EN 1090–2:2018 [38]. Analogically, the 
values might be obtained from large sample of real construction site 
measurements, e.g. summarized in a research study by Lindner and 
Gietzel [46]. Similar values have been adopted by Shayan et al. [4]. The 
values in this study have been derived from the erection tolerance 
standard, as both approaches would result in similar data. 

3.1. Eurocode standard requirements – Tolerance criteria 

The erection tolerances for multi-storey steel buildings are consid-
ered in accordance with the Table B.18 of the Annex B of standard EN 
1090–2:2018 [38]. Two classes of functional tolerances are shown. Class 
1 should be applied unless otherwise specified by the execution speci-
fication, where consideration of Class 2 (stricter) can be necessary if a 
glazed façade is to be fitted, as mentioned in the chapter 11.3.2 of EN 
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1090–2:2018 [38]. In this study, functional tolerances of the Class 1 are 
considered for all the manufacturer and erection tolerances. 

The permitted deviation Δi for the location of the storey level located 
i levels above the base relative to the position of that base, also noted as 
cumulative tolerance, is expressed as: 

|Δi| ≤

∑i

j=1
hj

300
̅̅
i

√ (15)  

where hj is the height of the j-th storey. 
Functional tolerance for the criterion of maximal column inclination 

between two adjacent storey levels i-1 and i marked as Δdif,i,i-1, also noted 
as a storey sway is: 

⃒
⃒Δdif ,i,i− 1

⃒
⃒ ≤

hi

300
(16)  

where hi is the column height (storey height) between these two adja-
cent storeys. 

Functional tolerance for the straightness of a continuous column 
between adjacent storey levels, also noted as bow imperfection of the 
column, marked as LIk (local imperfection) is limited to the value: 

|LIk| ≤
hk

1000
(17)  

where hk is the height of the column k. 
Graphical depictions of these three criterions are in the Fig. 1, for the 

m-storey structure. 

3.2. Stochastic values of the erection tolerances, methods, correlations 

In case the frame geometry is to be considered stochastically for 
subsequent numerical analysis, so called 2 sigma rule might be used in 
order to achieve maximum 5% of random realizations not fulfilling the 
considered tolerance criterion. 

Local imperfection model, described in Chapter 3.2.1, is considered 
in all FORM method calculations. However, when analyzing the 

geometrical deviation of each storey, two criteria come into analysis. 
Stochastic values can be determined through two different approaches, 
#RSS and #RSP, as outlined in Chapters 3.2.2 and 3.2.3, and also [39]. 

3.2.1. Local imperfections 
For simplification, the random local imperfection LI, of all the col-

umns of certain floor is considered as the same for the corresponding 
direction (two horizontal global directions are considered, x and y) – e. 
g., in case of n-storey frame, there are all together 2n random input 
parameters noted as LIx1, … LIxn and LIy1, … LIyn, where LIxn is the local 
imperfection (bow imperfection) for all the columns of n-th floor in the 
global x direction. The statistical parameters are based on the tolerance 
criterion, Eq. (17), and as described in the chapter 3.2, the mean is 
considered as 0, with the standard deviation as 1/2000 of the column 
height, considered as the bow imperfection in the mid-height of the 
column. The shape of the bow imperfection is considered as half wave of 
a sinusoid. Any additional local imperfection (e.g. in a shape of the 
whole sinusoid wave, or 3 sinus half-waves), as was discussed e.g. by 
Shayan et al. [4] have been neglected in order not to implement too 
many random input parameters. 

3.2.2. Random storey sway (#RSS) method 
The first approach is to consider the random input of sways for each 

storey (noted as swayi,x in the Fig. 1, or further also in short variant swi, 

x). Based on Eq. (16), the mean value of 0, and standard deviation of 1/ 
600 rad (based on 2 sigma rule) are considered. This approach is further 
noted as “random storey sways” method (approach #RSS). The de-
viations of two adjacent storeys are limited by these sway values and the 
fact, that the geometry of each storey is bonded to the position of the 
storey below, hence the location of each storey relative to the base (the 
second criterion to be verified) is already partially indirectly incorpo-
rated in the logic of what is considered as random parameter for input. 

For this method, the subsequent verifications of the random re-
alizations number which violate the criteria of storey deviation relative 
to the position of the base, Eq. (15), is suitable to be conducted. Hence, 
whether approximately 5% of random realizations would violate crite-
rion for the corresponding storey, verified for each storey of the struc-
ture separately. It has been statistically verified, that the number of 
random realizations which would violate the criteria for the storey po-
sitions relative to the base is 4.56% for the 1st storey, around 4% for the 
15th storey, and 3.73% for the 23rd storey. This decrease appears to be 
approximately linear, in average − 0.0375% per storey. 

Overall, the #RSS approach might be used without any additional 
modification for smaller amount of floors. For larger number of storeys, 
it is questionable, whether the number of realizations which violate the 
cumulative tolerances (Eq. (15)) for the uppermost floors is not too 
small, as the value is not so close to the 5% threshold. 

3.2.3. Random storey position (#RSP) method 
In this approach, the stochastic input values are the storey deviations 

relative to the position of the base (noted as Δi,x in the Fig. 1), with mean 
values of 0 mm for each storey. The standard deviations are derived for 
each storey based on the Eq. (15), hence larger values with increasing 
level of the corresponding storey (using 2 sigma rule). 

In this case, certain correlations (positive) between these input pa-
rameters need to be introduced, mainly for multiple storey structures, as 
otherwise this approach would lack any relation between two adjacent 
storeys, resulting in too many realizations violating the criteria of storey 
sway (Eq. 16). These input storey deviations relative to the base are 
mutually correlated through the Gaussian correlation function (Eq. 18), 
which represents a 1D random field with correlation length Lcor [m] and 
was used also in [41,42]: 

ρjh = p⋅e− (ζjh/Lcor)
2

(18)  

where ρjh is the member of the correlation matrix, p is the multiplication Fig. 1. Tolerance criterions of steel frame structure for the x direction of GCS  
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factor to ensure the matrix is positive definite (applicable mainly for 
larger matrixes, considered as 0.99, except for diagonal matrix members 
which are exactly 1.0), ζjh is the vertical distance between two points 
(two floors). 

The correlation length Lcor might be expressed relatively as ω ratio: 

ω(m) =
Lcor

m h
(19)  

where m is the total number of floors, each of height h. As far as the 
vertical distance of two floors ζjh might be expressed as natural multi-
plication n⋅h of the storey height h, the Eq. 18 might be expressed as: 

ρjh = p⋅e
−

(

n
ω(m)⋅m

)2

(20)  

where n is the relative distance between two floors (e.g. n = 1 for the 
distance between the 1st floor and the 2nd floor). 

It is suitable to use the smallest possible value of the correlation 
length Lcor, the optimal correlation length, which would secure, that the 
number of random realizations which violate the sway tolerances (Eq. 
16) are below 5% for each storey of the m-storey structure. 

In order to achieve this, the Lcor is derived from the relative ω ratio in 
dependence on the number of storeys m, summarized in the Table 1. 

These ω ratio values have been numerically determined in previous 
study [39] considering numerous random generations of Δi, input values 
of a m-storey structures (m = 2 to 24). An algorithm to found optimal ω 
ratio for each m-storey structure has been used, where the ratio of 
random realizations violating the sway tolerance (Eq. 16) of that mth 

storey is equal to 5% ± 0.2%. This approach of #RSP might be also used 
to verify the already utilized #RSS in case of 3-storey frame structure 
analysis [47]. 

4. Numerical finite element models (FEM) 

4.1. Input values of statistical parameters for FORM method 

To conduct the first-order reliability analysis (FORM) utilizing 
GMNIA (geometrically and materially nonlinear imperfect analyses), 
statistical data on input parameters (material, geometric and imperfec-
tion) is required. 

ANSYS Classic technology (v.19) [36] with APDL (ANSYS parametric 

design language) scripts have been used to create a parametrized nu-
merical finite element models of various steel frame structures. The 
number of random input parameters is different for each frame, and 
depends on the number of floors. 

Local imperfections are described in the chapter 3.2.1. 
Furthermore, for each storey, there are random global geometrical 

imperfections defined for both global directions, x and y. The logic of 
this definition depends on the used approach, #RSS or #RSP, as 
described in the chapters 3.2.2 and 3.2.3 respectively. In both cases, 
there are additional 2n random parameters for the n-storey frame. 

Material of the steel (S355) is considered as linear elastic, ideal 
plastic, with the mean value of E modulus = 210 GPa, and the standard 
deviation of 10.5 GPa. The mean value of the yield stress fy is considered 
as 393.8 MPa and the standard deviation as 22 MPa [47]. Bilinear ma-
terial model with isotropic hardening and von Mises yield criterion has 
been considered (otherwise kinematic hardening is commonly used if 
the unloading of the steel structures is being modelled [36]). Tangent 
modulus (the slope of stress-strain diagram after the yield stress) was 
considered always as 5% of the Elastic modulus, E value. This simplifi-
cation has been considered, as the point, when plastic strains occurs in 
certain beam element (column), is already very close to the global ul-
timate resistance of the steel frame. Poisson ratio has been considered 
with the constant value of v = 0.3, as discussed in the stochastic sensi-
tivity study by Kala [45]. 

Normal Gauss distributions are considered for all the stochastic input 
parameters. The probability density function (PDF) might be considered 
as Gaussian for geometrical imperfections, as this assumption is 
commonly used in conventional stochastic models [3,4,47]. Concerning 
material parameters, according to study by Sakai et al. [48], the tensile 
properties of steel materials, as yield stress, is governed by normal dis-
tributions, while log-normal distributions also might be used. Normal 
distribution was also suggested by Sekulski for the yield stress of 
structural steel [49], and considered also for yield stress of steel rein-
forcement bars by Stefano et al. [50]. On the other hand, log-normal 
distributions were used for yield stress and Elastic modulus during the 
analysis of offshore wind turbines by Muskulus et al. [51]. For three 
different stainless steel grades, normal distributions are suggested for 
Elastic modulus and log-normal distribution for 0.2% proof stress 
conventionally adopted as the equivalent yield stress [52]. Adopting a 
log-normal distribution for certain parameters has the advantage, that 
no negative values can be randomly generated, as also noted by EN 1990 
[29], what is not case of material parameter values in this study, hence 
normal Gaussian distributions were preferred [48]. 

In summary, for n-storey frame, there are together 4n + 2 random 
input parameters: 2 material variables, 2n parameters for the local bow 
imperfection amplitude of the columns, and 2n global imperfections for 
stories (in global x and y directions). 

4.2. Geometries of the models, boundary conditions, loading 

In all the cases, 1D structural beam finite elements are utilized for 
numerical model of the steel frames. Structural spans, cross-sections and 
dimensions of the members are described in the subsequent chapters. 
For all the frame models, all 6 Degrees of Freedom (DoF) are constrained 
at the ground level of coordinate z = 0. All the columns are oriented in a 
way, that the “less rigid cross-section axis” is parallel with x-axis of the 
global coordinate system (GCS). No effects of beam-to-column joint 
stiffness or the floor slab stiffness have been considered. For simplifi-
cation, ideally rigid connections are assumed in the beam connections. 
Each column is being modelled by 10 finite elements, and the horizontal 
beams are discretized into 5 finite elements. This mesh density has been 
selected based on the results of short mesh size study, where various 
mesh sizes of the frame geometry #3 × 3 × 8 (further explained in this 
chapter) have been analysed. Ultimate resistance Nu,EN (as further 
explained in the chapter 5 and 5.2) has been monitored, and the results 
are depicted in the Table 2. The considered mesh size appears to be good 

Table 1 
Summary of the optimal correlation values expressed by 
the relative ratio ω.  

m storey structure ω(m) [− ] 

2 0.8333 
3 0.7259 
4 0.6500 
5 0.6098 
6 0.5744 
7 0.5416 
8 0.5128 
9 0.4872 
10 0.4764 
11 0.4513 
12 0.4444 
13 0.4376 
14 0.4222 
15 0.4133 
16 0.4097 
17 0.3967 
18 0.3942 
19 0.3953 
20 0.3889 
21 0.3869 
22 0.3838 
23 0.3845 
24 0.3815  
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compromise between the accuracy and time of the calculation. The 
comparison of analysis time is done on Intel Xeon E5 1620 0 (Sandy 
Bridge-EP) 3.6 GHz, using 2 CPUs from the total number of 4 CPU's. 

Type of the finite elements is BEAM188 – based on Timoshenko beam 
theory which includes shear-deformation effects. BEAM188 was 
considered with 6 degrees of freedom (DoF) at each node: translations in 
the x, y, z directions and rotations about the x, y, and z directions. The 
6th DoF variant of BEAM188 considers unrestrained warping. The op-
tion to include the 7th DoF per node (including warping) has not been 
used. For some frame cases, diagonal bracings are also considered. If 
applicable, each bracing is modelled by one single LINK180 finite 
element, with tension-only formulation. Hence, no initial geometrical 
imperfections of the braces were considered. Link element has 3 DoF at 
each node: translations in the nodal x, y, z axis. There was no initial 
prestress applied in these tension-only braces. By these assumptions, 
state of bracing just before stretching and introduction of the prestress is 
being modelled. 

The geometry of the simplest frame noted as #1 × 1 × 1 (numbers 
indicates span numbers in x, y and z directions) is analysed in this study 
is depicted in the Fig. 2. All the columns are HEB 240, beams in x di-
rection are IPE 270 and in y direction IPE 300. No diagonal bracings. 
Loading of the frame is considered in nodal points of column-beam 
intersections. 

The geometry of frame noted as #1 × 1 × 2 is depicted in the Fig. 3. 
The first floor is practically the same as in case of the #1 × 1 × 1. All the 
columns of the 2nd floor are HEB 200, and the beams are of profile IPE 
220 for the x direction and IPE 240 in the y direction. Loading applied at 
each floor in beam-column intersections. 

The Fig. 4 depicts frame noted as #1 × 1 × 3. In basic, this is case #1 
× 1 × 2 with the columns and beams of the 3rd floor the same as in the 
2nd floor. Loading applied at each floor in beam-column intersections. 

Cases #1 × 1 × 4_LF and #1 × 1 × 4_AF depicted in the Fig. 5 have 
HEB 220 as columns of the 1st floor, and HEB 200 for the 2nd – 4th 

floors. Beams in x and y directions are of the same cross-section for each 
floor: for the 1st, IPE 330 and for the 2nd – 4th floors IPE 300. These case 
differ in the loading, which is either applied in the beam-column in-
tersections of the last 4th floor only, or at each floor, hence the 

Table 2 
Mesh size study.  

Case of frame geometry #3 × 3 × 8 Mesh – number of elements 
per each 

Nu,EN [kN] Nu,EN difference with case D 
[%] 

Analysis time using 2 CPUs [seconds] 

Column Horizontal 
beam 

Total time summed for all 
threads 

Elapsed time 
(physical) 

A 5 2 51,291 2.0 105 60 
B 10 5 50,694 0.8 204 110 
C 20 10 50,428 0.3 367 195 
D 30 15 50,291 0.0 573 309  

Fig. 2. Geometry of the steel frame #1 × 1 × 1_AF  

Fig. 3. Geometry of the steel frame #1 × 1 × 2_AF  

Fig. 4. Geometry of the steel frame #1 × 1 × 3_AF  
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abbreviations of “LF” and “AF” for the meaning “last floor” and “all 
floors” respectively. 

Geometry of the case #3 × 3 × 8 is depicted in the Fig. 6. The cross- 
sections of the columns are in accordance with the planar views and 

depends on the floor number. Horizontal beams are the same through 
the whole height, IPE 330 in both directions. Diagonal bracings are 
located at all four facades sides, in the middle segments. These tension- 
only elements are defined by the cross-section areas, which matches the 
circles of the provided diameters: Ø34 mm, Ø26 mm and Ø18 mm 
(Fig. 6). Loading is applied at each floor in beam-column intersections. 
This presented case #3 × 3 × 8 is considered as rather realistic geometry 
of a structure. 

On the other hand, to test what the differences of the results might be 
no matter whether the geometry is feasible for the real-world structure, 
hence to test some theoretical limits, the geometry of the case #1 × 1 ×
24 has been considered, and is depicted in the Fig. 7. This rather unreal 
geometry frame has one span in each horizontal directions, and 24 
floors, each of 3.6 m height. The cross-sections are the same for each 
floor, and described in the Fig. 7. 

Note: the HEB and IPE cross-section geometries have been obtained 
from the corresponding web tables of staticstools.eu [53]. The radius of 
root fillet r [53] (the roundings between the section web and flange) 
have been neglected (hence only negligibly smaller section area and 
second moment of areas are considered). 

5. FEM simulations 

Geometrically and materially nonlinear imperfect analyses (GMNIA) 
have been conducted in order to determine the structural resistance. In 
the first step of the geometrically nonlinear analysis, the self-weight load 
is applied by gravitational acceleration of 9.81 m/s2 (steel material 
density of 7850 kg/m3 is considered as deterministic value for all the 
cases). In the second and all the subsequent steps of loading process, the 

Fig. 5. Geometry of the steel frame #1 × 1 × 4_AF and #1 × 1 × 4_LF  

Fig. 6. Geometry of the steel frame #3 × 3 × 8_AF  
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structural nodal forces are added in corresponding positions, depending 
on the analysed frame (see chapter 4.2, Fig. 2 – Fig. 7). The sum of 
vertical reaction Rz is being monitored during this process, and the ul-
timate resistance Nu is determined as the reaction resultant Rz of the last 
converged step of the analysis (default convergence criteria of ANSYS 
software). 

5.1. The structural resistance estimation 

The article examines structural resistance using the FEM model, 
wherein resistance is estimated through the step-by-step method of 
increasing force load. Generally, resistance can be estimated by two 
fundamental approaches: force loading and deformation loading. 

Force loading yields more realistic deformations, crucial for 
analyzing the impact of initial imperfections. However, the downside is 
that increasing force may lead to convergence issues near the curve's 
peak, which can be effectively addressed by numerically setting up the 
computation. 

The disadvantages of applying deformation loads, however, are more 
pronounced. Most frame geometries are loaded on each floor, compli-
cating the application of multiple interdependent deformation loads 
across all levels and potentially causing unnatural structural de-
formations. The advantage of deformation loading is that it allows for 
easier attainment of the peak of the load vs. deformation curve. 

In case studies comparing force and deformation loading, it was 
necessary to select a load action that would prevent unnatural structural 
deformations. For this reason, deformation loading was applied only to 
the top floor, utilizing a uniform prescribed vertical displacement, while 
gravitational loading was neglected. Two types of frames were analysed, 
as seen in Fig. 8 and Fig. 9. 

Analysis of frame geometry, subjected to both force and prescribed 
displacement, revealed negligible differences in ultimate resistance, as 
depicted in Fig. 8. Although convergence issues from force loading may 
occur near the peak of the load-displacement curve, they can be effec-
tively resolved by using a very small load step close to the Nu point. 

Fig. 9 illustrates the calculation of Nu,EN (Nu under EC3 assumptions – 
see chapter 5.2) using force loading (represented by the blue curve), 
where the peak of the curve is reached with the aid of deformation 
loading (represented by the orange curve). After the last force conver-
gence point, the analysis continued with deformation loading. The 
estimated ultimate resistances, Nu,EN, are 8.9192 and 8.9297, with a 
difference of 0.12%, as seen in the Fig. 9. 

Although it would be ideal to estimate the top point using subsequent 
deformation loading for all frames and all loading conditions, this 
approach can be complex in cases where the frame is loaded on every 
floor. In selected cases, we verified that a very similar accuracy in 
estimating Nu,EN, as illustrated in Fig. 9, was achieved in other selected 
simulations as well. The minor relative differences observed in these 
cases (0.8% and 0.1%) are deemed negligible. Thus, it can be summa-
rized that the estimation of structural resistance using force loading can 
be considered sufficiently accurate. 

For the solution, the full Newton-Rapson equation formulation was 
used, using standard convergence criteria according to M-F internal 
forces [36]. The initial increment was chosen with a size corresponding 
to one tenth of the total applied load, which is approximately twice the 
mean value of Nu. An automatic algorithm was used for subsequent load 
increment sizes, which decides the increment according to the speed of 
convergence of the previous step. In case no solution is found, the 
increment is reduced. Decreasing the increment continues until the 
minimum step is reached. The minimum step was applied in a size 
corresponding to 0.05% of the applied load. This defines the numerical 
accuracy of achieving the bearing capacity. 

5.2. #EC3 approach 

For each considered frame type (chapter 4.2), only one numerical 
GMNIA analysis is conducted in order to determine the structural 
resistance Nu in accordance with the EC3 assumptions. This value is 
considered as the design ultimate resistance, noted as Nu,EN, as the 

Fig. 7. Geometry of the steel frame #1 × 1 × 24_AF  

Fig. 8. Case study of the model #1 × 1 × 4_LF performance when loaded by 
force and prescribed displacement 

Fig. 9. Case study of the model #1 × 1 × 1 performance when loaded by force 
and prescribed displacement 
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design values of input parameters have been used. 

5.3. #FORM approach 

The statistical input data are discussed is the chapter 4.1. Two ap-
proaches, #RSS and #RSP, how to consider the input of global imper-
fection are described in the chapters 3.2.1 and 3.2.2 respectively. In both 
approaches, the Advanced Latin Hypercube Sampling (ALHS) method 
has been used to generate the random realizations of the input param-
eters. In this method, the correlation errors are minimized by the sto-
chastic evolution strategies [54]. The representation of the specified 
input distributions and the input correlations is also very accurate when 
the standard Latin Hypercube Sampling (LHS) method [55] is used, 
where a method to minimize the undesired correlations is implemented, 
Iman and Conover [56]. ALHS was preferred, as it is recommended for 
not so large number of input parameters [57]. The software OptiSLang 
[57] has been used to manage the ANSYS solver [36]. 2000 random 
realization have been numerically analysed for each case of steel frame 
geometry. 

5.3.1. Statistical verification 
In order to check the statistical validity of the results, the Gaussian 

distribution of the results was verified utilizing so-called “goodness-of- 
fit” tests [58]. Two distribution tests have been verified: Anderson- 
Darling [59] and Kolmogorov-Smirnov [60,61]. The purpose of these 
tests is to confirm, that a certain probability distribution (e.g., normal 
distribution) might be feasibly utilized for the description of a popula-
tion sample. It was revealed, that the hypothesis of Gauss distribution of 
the results (ultimate resistance Nu) was not rejected (1% significance 
level) based on the results of both tests for all the analysed cases. 
Therefore, the conclusion of these test is, that ultimate resistances Nu 
based on the finite element simulations might be considered as normally 
distributed. Hence for each set of 2000 analyses, the 0.1% quantile of the 
structural resistances Nu is considered as the design ultimate resistance 
based on FORM method, noted as Nu,FORM (determined by the Eq. 13). 

6. Results 

6.1. Ultimate resistances 

The results of all the analysed cases are summarized in the Table 3. 
Case names are in the first column of the table. The geometry of frames 
for these cases is closely described in the chapter 4.2. In short, the “x × y 
× z” stands for the number of spans in two horizontal (x,y) and vertical 
direction (z – number of floors). “AF” or “LF” stands for “all floors” or 
“last floor” respectively, and indicates the applied loading (see the 
chapter 4.2). The #RSS and #RSP stands for the method of applied 
imperfections, the “random storey sway” or “random storey position” – 
as described in the chapter 3.2. 

The estimations of the slenderness values λ1; λ2 for the columns of the 

first and (if applicable) the second floor respectively are summarized in 
the second column of the table Table 3. The relative slenderness values 
are determined in dependence on the cross-section area A, and the yield 
stress fy (355 MPa) as: 

λi =

̅̅̅̅̅̅̅̅
A⋅fy

Ncr,i

√

(21)  

where Ncr,i is the critical Euler force, which was derived from the results 
of the linear stability analysis (eigenvalue buckling), always using the 
first critical eigenvalue – factor α1, and normal force Ni of the column 
from the corresponding i-th floor taken from the initial stress calcula-
tion, which is prior to the eigenvalue buckling analysis: 

Ncr,i = α1Ni (22) 

The values are determined only for the columns of the first and 
second floor, and only for those model cases, where the normal force Ni 
of all the columns from the corresponding floor are the same. For the 
more complex geometry of the case #3 × 3 × 8_AF, the relative slen-
derness values have not been estimated. 

In the third column of the Table 3, which is applicable only for the 
cases calculated by the #RSP method, the used correlation length Lcor is 
provided (see chapter 3.2.3). Subsequent columns denote the mean 
value of ultimate resistance, Nu,mean, standard deviation Nu,σ, coefficient 
of variation Nu,CoV, and ultimate resistance determined by the FORM 
method, Nu,FORM. The last column summarizes ultimate resistance Nu,EN, 
based on the EC3 assumptions. The values for the cases of the #RSP 
approach are marked by asterisk “*”, as formally the EC3 approach 
considers the definition of the sway for the whole structure, hence the 
value is the same as the corresponding case of #RSS method. Results of 
the selected cases are graphically depicted in the Fig. 10, where values 
based on FORM method and the EC3 approach are compared. 

Note: the resistance of the case #1 × 1 × 24_AF_RSS is larger than in 
the other cases due to smaller height of the floor (Figs. 2–5 and Fig. 7), 
rather more stiff cross-section of the columns through the whole height, 
and compared to the case #1 × 1 × 1 also smaller angle ϕ for the 
structure sway applied for the EC3 calculation (as for smaller structure, 
the angle tends to be larger due to αh coefficient – Eq. 2). 

The structural resistance determined by the EC3 approach is larger 
for majority of the analysed cases, with exception of the #3 × 3 × 8 and 
#1 × 1 × 24 (Table 3). For the analysed cases, the ultimate resistance 
determined in accordance with the #RSP approach results only in 
negligibly different values then if #RSS approach is considered – see also 
graphical depiction in the Fig. 11. The only exception is the case #1 × 1 
× 24, where there is circa 12% difference in the ultimate resistances by 
#RSS and #RSP approach. However, for the more realistic geometry of 
the frame structure, e.g. case #3 × 3 × 8, the difference is rather 
negligible, if the properly considered correlation length is used. As 
shown in #1 × 1 × 4_LF, the un properly considered correlation length 
might result in rather large deviation from the result by the #RSS 

Table 3 
Summary of analysed cases.  

Case Slenderness λ1; λ2 Lcor (RSP) [m] Nu,mean [kN] Nu,σ [kN] Nu,CoV [%] Nu,FORM [kN] Nu,EN [kN] 

#1 × 1 × 1_AF_RSS 1.04 – 11,366 1021 8.99 8261 8919 
#1 × 1 × 2_AF_RSS 1.13; 1.37 – 10,483 711 6.78 8321 8887 
#1 × 1 × 3_AF_RSS 1.28; 1.35 – 8311 674 8.10 6264 7271 
#1 × 1 × 4_AF_RSS 1.19; 1.27 – 8110 589 7.26 6320 6796 
#1 × 1 × 4_AF_RSP 1.19; 1.27 11.70 8182 565 6.90 6465 6796 * 
#1 × 1 × 4_LF_RSS 1.45; 1.34 – 5636 336 5.96 4616 4830 
#1 × 1 × 4_LF_RSP 1.45; 1.34 0.00 5286 430 8.13 3980 4830 * 
#1 × 1 × 4_LF_RSP 1.45; 1.34 11.70 5628 351 6.24 4561 4830 * 
#1 × 1 × 4_LF_RSP 1.45; 1.34 999.00 5830 311 5.34 4883 4830 * 
#3 × 3 × 8_AF_RSS – – 58,551 2441 4.17 51,130 50,694 
#3 × 3 × 8_AF_RSP – 14.77 58,534 2446 4.18 51,098 50,694 * 
#1 × 1 × 24_AF_RSS 1.05; 1.07 – 11,765 689 5.86 9669 9169 
#1 × 1 × 24_AF_RSP 1.05; 1.07 32.96 12,846 644 5.01 10,888 9169 *  
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approach. 

6.2. Failure modes 

The overall deformations of each single random realization differs, as 
it predominantly follows the pattern of the random initial imperfection, 
most significantly sway imperfections of the floors. An example of the 
displacements in the global y direction of the frame #3 × 3 × 8 (more 
precisely the case with sway in accordance with EC3) is depicted in the 
Fig. 12. The inclination of the whole frame is in the direction of the 
applied geometrical imperfection. Just before the ultimate resistance 
has been reached, the plastic strains began to appear, as in the example 
of frame #1 × 1 × 1 depicted in the Fig. 13. Note: equivalent Von Mises 
strains are considered. 

6.3. Correlations 

The examples of correlation matrixes (linear, Pearson) for the model 

case #1 × 1 × 4_LF_RSP (for correlation length of 11.7 m) are depicted 
considering the absolute values of the parameters in the Fig. 14. 
Analogically, for the case #1 × 1 × 4_LF_RSS, the correlations are in the 
Fig. 15 and Fig. 16, in absolute values and respecting the signs 
respectively. 

The variables in matrixes are considered in the absolute value in 
order to capture the correlations between the imperfect parameters 
(either sway or cumulative tolerances) and the output ultimate resis-
tance Nu (Fig. 14, Fig. 15). A correlation matrix with parameter values 
respecting the signs for the case #1 × 1 × 4_LF_RSS is depicted in the 
Fig. 16, as the correlations between the sway inputs and the achieved 
cumulative deviations will be further discussed. It is evident there are 
practically 0 correlations between the ultimate resistance and the sway 
imperfection in the matrix where the signs are being respected (Fig. 16). 

Not all the input parameters are plotted in these matrixes, as the local 
imperfections of columns LIx1 – LIx4 and LIy1, − LIy4, because the matrix 

Fig. 10. Comparison of the ultimate resistances between EC3 and 
FORM approaches 

Fig. 11. Comparison of the ultimate resistances between #RSS and #RSP 
method of the FORM approach 

Fig. 12. Example of the failure mode – displacements in the global y direction 
for the frame #3 × 3 × 8_AF 

Fig. 13. Example of the plastic strains for the frame #1 × 1 × 1_AF one step 
before the failure 
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would be too large to plot, and also the values of these correlation were 
essentially very close to 0. Note: sw1 is the abbreviation for the sway1. 
Additionally, the parameter of the cumulative deviation of the 1st floor, 
Δ1 is in the matter of mutual correlations the same as the sway parameter 
for the 1st floor, sway1 (for each of the corresponding directions x or y, 
see also Fig. 1). Therefore, for the #RSP method (Fig. 14), only the input 
parameter Δ1 is provided, and vice versa for the #RSS method (Fig. 15, 
Fig. 16), where sway1 is provided. Linear correlations appeared to be 
sufficient enough to describe the mutual correlations, an examples of 
ant-hill plots for selected correlations are provided next to each matrix 
in these figures. 

7. Discussion 

7.1. Stochastic FORM approach and EC3 assumptions 

From the results of the Table 3 and Fig. 10 it is evident, that such 
geometries of the steel frame might be established, where the ultimate 
resistance Nu,EN, determined in accordance with the EC3 assumptions 
[11] appears not to be conservative enough compared to the ultimate 
resistance determined by the more precise stochastic FORM method, Nu, 

FORM. The main reason of this is rather high correlation between the 
ultimate resistance Nu and the elastic Young's modulus E, as depicted e.g. 
in the correlation matrixes for the case #1 × 1 × 4_LF in the Fig. 14 – 
Fig. 16. The parameter E was for the FORM method considered as sto-
chastic with mean value of 210 GPa and the coefficient of variation CoV 
= 5%. However, for the EC3 calculation, the standard procedure is to 

Fig. 14. Correlation matrix of the selected input parameters for the case #1 × 1 × 4_LF_RSP (all the parameters in absolute values are considered)  

Fig. 15. Correlation matrix of the selected input parameters for the case #1 × 1 × 4_LF_RSS (all the parameters are considered in the absolute values)  
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consider this material parameter by the mean value. For the FORM 
method, the decrease of the 0.1% quantile of the Nu is strongly affected 
by the stochastic values of the E modulus. In case of the EC3 approach, 
the “safety reserve” of these cases is then only on the side of considered 
loads. 

From the analysed cases, the ultimate resistance based on EC3 as-
sumptions appeared to be conservative only for #1 × 1 × 24_AF and #3 
× 3 × 8_AF (see Table 3). 

For the 24-floor frame of #1 × 1 × 24_AF, the EC3 resistance is Nu,EN 
= 9.17 MN, and the values by the FORM are 9.67 MN or 10.89 MN for 
#RSS and #RSP methods respectively. The EC3 appears to be conser-
vative enough with 5.2% or 15.8% reserve respectively. This is mainly 
due to the fact, that EC3 considers inclination of the whole structure in 
one direction – all the sways are defined by the same angle (Eq. 1), so 
called the “worst case” scenario. The more realistic initial imperfection 
considered in FORM method is not so overly conservative. 

In case of the rather realistic frame geometry of the case #3 × 3 ×
8_AF, the ultimate resistance based on EC3 is 50.7 MN, with FORM 
method of 51.1 MN (negligible difference in the #RSS and #RSP 
method). The value by EC3 appears to be rather realistic, only negligibly 
conservative with the reserve approximately 0.8%. For frame geometry 
#3 × 3 × 8_AF, the most significant linear correlation is observed be-
tween the Nu and the yield stress fy, 0.72. Secondly, significant corre-
lation is between Nu and E-modulus of 0.57, and a negative correlation 
of − 0.14 between the Nu and the absolute value of input sway parameter 
swy1 – the global imperfection of the first floor in the GCS y-direction 
(considering the correlation matrix for the #RSS method). Very similar 
values for correlation between Nu and fy and between the Nu and E are in 
case of the #RSP method, 0.73 and 0.56 respectively. The whole matrix 
is not depicted due to size. These values explain the slightly more con-
servative resistance by EC3 method, as the resistance is predominantly 
dependent on the yield stress, which for the FORM calculations is 
considered with the mean value of 393.8 MPa (standard deviation of 22 
MPa), and for the EC3 approach with the design value of 355 MPa. On 
the other hand, due to still significant dependence on the E modulus, the 
results by FORM are not too conservative (only 0.8% difference). 

7.2. #RSS and #RSP methods for stochastic modelling of imperfections 

In most cases, the differences in the ultimate resistances determined 
by FORM method using either #RSS or #RSP approach of the stochastic 
imperfection modelling are rather negligible (Table 3, Fig. 11). This 
statement will be probably valid only if the optimal correlation length 
Lcor is used to determine the initial correlation between the input storey 
deviations in case of the #RSP method. The workflow how to consider 
this optimal Lcor is described in the chapter 3.2.3, Eqs. 18–20. In case 
different Lcor is considered, the results of the #RSP approach might 
significantly deviate from the results by #RSS method, as shown in case 
of #1 × 1 × 4_LF_RSP, where the inputs of 0 m, 11.7 m and 999 m Lcor 
resulted in ultimate resistances of 3.98 MN, 4.56 MN and 4.88 MN 
respectively (see Table 3). However, if the optimal Lcor is considered, the 
difference between 4.56 MN and 4.62 MN (#RSP and #RSS method) is 
rather negligible. These various Lcor inputs have been tested only on this 
simple case, for the other cases, always only the optimal Lcor was used. 

It is pointed out, that for certain geometries, for example structures 
with larger number of storeys, as 24-floor frame in case #1 × 1 × 24_AF, 
the difference in the ultimate resistance determined by FORM between 
the #RSS and #RSP approach might be more significant. The values for 
this case are 9.67 MN and 10.89 MN using the #RSS and #RSP method 
respectively, what is approximately 12% difference (more precisely 11.2 
or 12.6%, depends which value is considered as the base value). 

In general, the #RSS method is easier to use, as it does not require 
any input correlations. However, the #RSP method might be used for 
verification of the result for certain geometries, e.g. in case of frames 
with larger numbers of floors, under specific loading conditions, as in 
some cases, the #RSP method might have certain advantages to #RSS 
from the statistical “2 sigma rule” point of view [39]. Both methods are 
feasible to be used in case of stochastic analysis utilizing FORM method. 
Based on the provided results, it is expected, that larger differences in 
results between these two methods (considering the optimal Lcor is used 
for the #RSP) will be achieved for structures of larger number of stories, 
whereas for smaller number of stories, the differences are expected to be 
rather negligible. 

Fig. 16. Correlation matrix of the selected input parameters for the case #1 × 1 × 4_LF_RSS (all the parameters are considered with the corresponding signs, plus 
or minus) 
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7.3. Correlations between the parameters in the FORM method 

The same pattern is being observed considering the correlation be-
tween ultimate resistance Nu and the other parameters for the #RSP and 
#RSS method (Fig. 14 and Fig. 15 respectively). 

In case of the #RSP, the inputs are cumulative deviations Δ1,x – Δ4,x, 
and Δ1,y – Δ4,y, whereas the sways are considered as the outputs (are 
determined based on the input cumulative deviations) – the negative 
correlations between the Nu and the cumulative deviations in y direction 
(Δy) are increasing with the increasing floor number, being − 0.08, 
− 0.12, − 0.27 and − 0.50 for the 1st, 2nd, 3rd and 4th floor respectively 
(Fig. 14). However, considering the sways, the largest influence on Nu is 
for the sway of the 3rd floor, − 0.60. The same pattern in observed in 
case of #RSS, where the sways are the direct inputs, with the largest 
correlation of the 3rd floor sway equal to − 0.35 (Fig. 15). The corre-
lations between Nu and the cumulative deviations are also increasing for 
higher floors, as − 0.02, − 0.13, − 0.31 and − 0.45 for the 1st to 4th floors 
respectively. These values might differ, as the #RSP method introduces 
certain correlations between the sways, whereas in the #RSS method, 
these correlations are 0 (Figs. 15, 16). On the other hand, the #RSS 
method with these 0 mutual correlations for the sway parameters 
resulted in certain correlations between the cumulative deviations (the 
values in red dashed frames in the Fig. 16). It is likely that these indi-
rectly obtained correlations from the #RSS method would be feasible for 
utilization in case of the #RSP method, as a replacement of the corre-
lations determined in accordance with the proposed workflow – Eqs. 
18–20 and the optimal ω ratio values (Table 1). This however would 
probably result in the same problematic of the #RSS method, where the 
number of random realizations violating the cumulative tolerance cri-
terion for the high floor number might decrease under 5% threshold too 
much (chapter 3.2.2.). 

The mutual correlations of the other analysed frames are not 
depicted, as the patterns were rather similar to the provided example. 

8. Summary 

In this study, ultimate resistances of several steel frames of different 
geometries have been analysed, more precisely frames noted as: #1 × 1 
× 1, #1 × 1 × 2, #1 × 1 × 3, #1 × 1 × 4, #1 × 1 × 24 and #3 × 3 × 8, 
where the notation of #x × y × z denotes the number of spans in the 
corresponding direction, e.g. #3 × 3 × 8 is an 8-storey steel frame with 3 
spans in both horizontal directions. The loading of the frames was 
introduced in points of column-beam intersections, in all the floors “AF” 
variant, or only in the last uppermost floor, “LF” variant of loading. The 
summary of the analysed cases is in Table 3, and the geometries are 
depicted in the Figs. 2–7. 

Advanced numerical analyses utilizing the finite element method 
(FEM) with consideration of geometrical and material nonlinearities and 
initial imperfections (so called GMNIA – geometrically and materially 
nonlinear imperfect analyses) have been conducted in order to obtain 
the ultimate resistance Nu of each frame. 

Two approaches to estimate the ultimate resistance Nu were 
considered, first one in accordance with the European standard EC3 
assumptions [11], where the input parameters are considered as deter-
ministic. The obtained resistance is noted as Nu,EN. The second approach 
utilizes stochastic input parameters of the initial geometrical imperfec-
tions and material properties, along with the first order reliability 
method (FORM) from the EC0 standard [29]. Ultimate resistance is 
hence noted as Nu,FORM. The stochastic values of the initial geometrical 
imperfections, mean value and the standard deviation, are derived from 
the EN 1090–2:2018 [38] standard for execution of the steel structures. 
Based on the defined tolerance criteria of this standard, two methods to 
model the initial sway imperfections of the frame storeys are feasible, in 
this study noted as the #RSS (random storey sway) and #RSP (random 
storey position). The #RSS considers the sways of each i-th floor as 
random input swayi (or Δdif,i,i− 1), whereas in the #RSP method, the 

position of each floor relative to the base position Δi is the input (see 
Fig. 1). The point is, these inputs are derived from two different toler-
ance criteria, Eq. 15 and Eq. 16. 

Both of these methods (#RSS and #RSP) are discussed in the chapter 
3 of this study. The advantage of the #RSS is absence of the mutual 
correlation inputs for the sway imperfections, however it is questionable 
whether this would be suitable for larger number of floors (above circa 
16th floor). The #RSP method requires input of the mutual correlations 
between the input storey deviations, making it less robust for usage, but 
might provide certain benefit for structures of larger number of floors. 
The recommended correlations for up to 24 floors, the ω ratio are ob-
tained from the Table 1, based on the Eq. 19 and Eq. 20. 

The differences in the ultimate resistances Nu,EN and Nu,FORM 
(determined utilizing the #RSS and #RSP methods) are summarized in 
the Table 3, and discussed. For majority of the model cases analysed in 
this study, the ultimate resistance in accordance with the EC3 [11] 
appeared to be larger than the more realistic resistance value deter-
mined by stochastic FORM method. The main reason of this was strong 
positive correlation between the resistance and the input elastic 
modulus of the steel material E. In case of the frame geometry #3 × 3 ×
8, the EC3 resistance was only slightly more conservative, and for the 
rather unreal frame #1 × 1 × 24, the FORM method resulted in 5.4% 
and 18.7% larger resistances (using #RSS and #RSP methods respec-
tively) then the Nu,EN value. 

In case the mutual correlations are input in accordance with the 
provisions of the chapter 3 of this document, the differences in results of 
Nu,FORM with #RSS and #RSP method are rather negligible. The signif-
icant difference appeared in case of the 24 storey frame #1 × 1 × 24, 
approximately 12%. It is not excluded this difference might be larger in 
case structure of more storeys is being analysed. It is also assumed that 
diagonal bracing elements would be implemented for frame structures 
of large number of storeys. Hence the difference between the result by 
#RSS and #RSP method might be also smaller, as was in case of the 
frame #3 × 3 × 8. 

The provisions for analogical numerical analyses of steel frame 
structures by FROM method are provided in this study, mainly for the 
#RSP method, where the definition of the mutual correlations between 
the random input parameters is required. These mutual correlations are 
expressed by the ω ratio (Eq. 19), which is summarized in the Table 1 for 
frames up to 24 equidistantly spaced floors. 

The global numerical analysis of the whole steel structures with 
utilization of stochastic FORM approach might be useful as a replace-
ment for multiple large-scale physical experiments which would be too 
costly. Alternatively, it might serve as a verification and helping tool of 
such large-scale experiments, as the full-scale blast test of three-story 
steel structure documented in a study by Hadjioannou et al. [62]. The 
advanced large-scale numerical models might be validated using these 
experimental data. Subsequently, stochastic methods might be intro-
duced to estimate resistances with required reliability index. Or several 
variants of numerical models might be analysed, which might reduce the 
cost of multiple large-scale experimental studies. 

9. Conclusion 

This paper presents an examination of the ultimate resistance (Nu) of 
steel frames with varying geometrical configurations under loading 
scenarios that lead to compression in the columns. The core of the study 
lies in the adoption of the first-order reliability method (FORM), inte-
grated with geometrically and materially nonlinear imperfect analyses 
(GMNIA), to assess the impact of stochastic methods on accounting for 
the randomness of initial imperfections in the 3D frame geometry. The 
research fills the gap in stochastic models of initial geometric imper-
fections of 3D frame structures. 

Findings can be presented in several key points: 
Stochastic Modelling Techniques: The authors proposed and 

compared two stochastic modelling techniques, Random Storey Sway 
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(RSS) and Random Storey Position (RSP), providing frameworks for 
modelling the random nature of initial imperfections. In both methods, 
the statistical values (mean and standard deviation) of the imperfections 
are derived from the tolerance criteria of the standard EN 1090–2:2018 
[32]. While the RSS approach simplifies modelling by treating storey 
sway as an independent random variable, the RSP method integrates a 
correlation structure for positional deviations across floors, potentially 
offering a more detailed model of structural behaviour. 

Numerical Analysis and Ultimate Resistance: Utilizing Advanced 
Latin Hypercube Sampling (ALHS), 2000 random realizations for each 
structural configuration underwent numerical analysis to determine 
their ultimate resistances (Nu,FORM), computed as the design quantile of 
random resistance. These ultimate resistance values Nu,FORM were then 
compared with the deterministic Nu,EN values derived from the EN 1993- 
1-1 standard. 

Influence of Elastic Modulus (E): The correlation analysis showed 
that for slender column geometries, the elastic modulus (E) significantly 
affects Nu, exhibiting a strong positive correlation. The deterministic 
EC3 approach, which employs mean values for parameters such as E, 
was observed to yield slightly higher resistances in some instances 
compared to the more nuanced FORM method. This is attributed to the 
FORM method's inclusion of variability in E, leading to a more conser-
vative estimate of Nu as it accounts for random realizations of E also 
below the mean value. 

Comparison of Stochastic and Deterministic Methods: In seven frame 
geometries, the study found relatively small discrepancy between re-
sistances obtained from stochastic and deterministic methods (maxi-
mally circa 15%). This suggests that, for these cases, the standard EC3 
assumptions adequately reflect the crucial factors that govern structural 
resistance. Nonetheless, the FORM method's comprehensive nature, 
which encompasses material and geometric randomness, offers a finer 
gauge of structural reliability. 

Enhanced Understanding of Structural Behaviour: The application of 
the FORM method has demonstrated its efficacy as an analytical tool for 
assessing ultimate resistance in the presence of geometrical imperfec-
tions. It enhances the understanding of the probabilistic nature of 
structural behaviour, providing a more realistic design approach 
compared to conventional deterministic methods. Findings from this 
study underline the importance of considering variability of material 
properties and geometric imperfections to achieve an economical and 
reliable design. 

The findings of the study show the advantages of incorporating 
variability in material properties and geometric imperfections to ach-
ieve reliable structural designs. The use of stochastic methods, especially 
the FORM approach, offers valuable insights, supporting a more realistic 
design approach compared to traditional deterministic methods. 
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