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A B S T R A C T   

The study objective is to propose the optimal shape of the flexural buckling curves for stainless steel circular 
hollow cross-section (CHS) members. It has been pointed out by several researchers, that the currently utilized 
buckling curves do not fulfil the required structural reliability level, and several provisions have already been 
proposed. Following this research, our proposals are based on a numerical investigation of the ultimate limit 
state of geometrically imperfect stainless steel CHS columns of three different material grades (Austenitic 1.4307, 
Ferritic 1.4003 and Duplex 1.4462) using the statistical characteristics of input initial imperfections, material 
and geometric parameters. The statistical characteristics are considered according to the results of published 
research. The first-order reliability method (FORM) supported by the advanced finite element method – 
geometrically and materially nonlinear imperfect analysis (GMNIA) – is used. The values of the ultimate resis-
tance obtained using FORM are compared with the values of the design resistance determined according to the 
corresponding European standards and are used to determine the optimal shape of flexural buckling curves. 
Additionally, the influence of linear correlation between the ultimate resistance of CHS stainless steel columns 
exposed to flexural buckling and input imperfections is discussed. Studies have shown that the maximum effect 
of initial axial curvature on resistance occurs at higher slenderness compared to carbon steels. The obtained 
results present provisions to optimize the flexural buckling curves of stainless steel CHS members and could 
significantly improve the structural efficiency, resulting in material savings, while preserving the required level 
of structural reliability.   

1. Introduction 

Circular hollow section (CHS) steel members, also commonly called 
round tubes, are widely used because of their wide range of applications 
in civil engineering. Apart from their aesthetics favoured by architects, 
structural engineers also appreciate their superior torsional resistance 
and enhanced bi-axial bending resistance due to the uniform material 
distribution through the cross-section around the polar axis. From a 
geometrical point of view, the shape of a circle minimizes the surface 
area exposed to environmental influences, hence the maintenance re-
quirements are reduced. The application of stainless steel CHS are 
numerous, ranging from the utilization of tubes as hollow members to 
various composites, e.g., enhancement of the load-bearing capacity 
upon filling with concrete [1], carbon fibre-reinforced polymer (CFRP) 
concrete [2], or even double skin concrete-filled CHS members [3], often 
utilized in offshore structures [4]. 

Stainless steel as a material was originally introduced as “rustless 

steel” in 1912–1913 [5]. Several grades of stainless steel exist. The most 
commonly used are duplex, austenitic and ferritic (other grades include 
martensitic and precipitation hardening stainless steel). The grades 
differ in microstructure and chemical composition, most importantly in 
the nickel and chromium content [5]. 

The utilization of stainless steel is cost-effective for structures 
exposed to aggressive environments due to its corrosion resistance [6], 
e.g., for the load-bearing structures of the composite duplex stainless- 
steel arch bridge in Cala Galdana on the island of Menorca, Spain 
(2005) [7], or offshore structures [4]. 

Recent research into stainless steel CHS members includes the study 
of the application of 3D printing methods (additive manufacturing) by 
Zhang et al. [8], the investigation of the buckling resistance of CHS 
members exposed to fire load, e.g., studies by Mohammed and Afshan 
[9], Mohammed and Cashell [10], Martins et al. [11], He et al. [12], or 
the study of residual strengths after fire-exposure by He et al. [13]. The 
flexural buckling capacity of CHS members after fire exposure was 
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smaller than the estimation of the appropriate European standard (EC3) 
[14] for a significant number of specimens [9–13]. 

However, the design methods of the EC3 [14] do not appear to be 
conservative enough, and are even rather unsafe for certain values of 
member slenderness under standard temperature loading conditions, as 
has already been discussed by several researchers, e.g., Young and 
Ellobody [15,16], Rasmussen and Rondal. [17], Young and Hartono 
[18], Ashraf et al. [19], Shu et al. [20] or Theofanous et al. [21]. The 
flexural buckling performance of hot-rolled seamless austenitic stainless 
steel CHS columns has been recently investigated by Ning et al. [22], 
and hot-rolled duplex stainless steel CHS columns also by Ning et al. 
[23], with the conclusion that the predictions of structural resistance 
based on EC3 are overestimated for certain column slenderness values. 
This is mainly due to the absence of appropriate experimental data for 
stainless steel CHS members at the time of publication of the corre-
sponding EC3 standard [17], where mostly experimental data of rect-
angular or square hollow section members (RHS, SHS) were considered 
for the EN flexural buckling curve calibration. However, the overall 
performance of RHS or SHS differs from the performance of CHS mainly 
due to increased material strength in hardened RHS or SHS corner areas 
[24]. 

The production technology of stainless steel has been improving over 
the last decades and is in general better and more precise than previous 
carbon steel technology of production. Therefore, the coefficients uti-
lized in the current EC3 design approach might be influenced, especially 
for shorter members, where the buckling resistance does not have a 
major impact on global structural resistance. More precise calibration of 
the current EC3 [14] design approach of stainless steel members is still 
required, calibration of the coefficients utilized throughout the design 
process, e.g., partial safety factors, or (which is also an objective of this 
study) calibration of limit slenderness values λ0 and imperfection factor 
α [14]. 

Experimental data on stainless steel CHS members in compression 
have been documented. Predominantly austenitic stainless steel (and 
stub column tests) grades were investigated, e.g., by Talja [25], Ras-
mussen and Hancock [26], Rasmussen [27], Burgan et al. [28], Gardner 
and Nethercot [29], Kuwamura [30], Lam and Gardner [31], Zhao et al. 
[32,33], Uy et al. [34] or Ning et al. [22] (with a focus on flexural 
buckling). The duplex stainless steel grades CHS stub column tests were 
conducted by Paquette and Kyriakides [35] and Bardi and Kyriakides 
[36], and flexural buckling was investigated by Ning et al. [23]. Ferritic 
stainless steel material grades were tested by Stangenberg [37]. Ample 
numerical and experimental studies of CHS columns of several material 
grades (Austenitic, Ferritic and Duplex) under flexural buckling have 
been carried out by Buchanan et al. [38]. A wide range of column 
slenderness was considered, and additional loading eccentricities were 
subsequently introduced in the continuous study by Buchanan et al. 
[39]. 

Various design provisions to determine the CHS flexural buckling 
capacity have been proposed, e.g., certain alternations of flexural 
buckling curves were recommended by Young and Ellobody [15], Ras-
mussen and Rondal [17], Theofanous et al. [21], Ning et al. [22,23] or 
Buchanan et al. [38]. A unified approach to assess the structural 
behaviour of CHS columns has been proposed by Ma et al. [40] (for 
Austenitic and Ferritic stainless steel grades), and a machine-learning 
algorithm to develop a unified design method suitable for various ma-
terial grades of CHS members was adopted by Xu et al. [41]. 

In the study presented here, the flexural buckling resistance of CHS 
columns is investigated utilizing advanced numerical geometrically and 
materially nonlinear analyses with imperfections (GMNIA) using the 
ANSYS software [42]. Members of various slenderness and three 
different material grades are analysed: Austenitic 1.4307, Ferritic 
1.4003 and Duplex 1.4462. The first-order reliability method (FORM) 
utilizing the European standard EN 1990-1-1 [43] is conducted to 
determine the flexural buckling design resistances based on numerical 

finite element analyses. All the necessary statistical values of material 
parameters along with mutual correlations are adopted according to the 
statistical research of stainless steel members by Arrayago et al. [44]. A 
sub-study on the sufficiency of the number of random realizations 
(sample size) for the FORM is conducted and documented as well. For 
this sub-study, 4 additional Austenitic material grades were considered. 
In total, 10 random input parameters are considered (6 material, 3 
geometrical and 1 to determine the initial global imperfection), and the 
statistical distributions are considered as either normal or lognormal, as 
recommended by Arrayago et al. [44]. 

The results (ultimate design resistances expressed in a normalized 
way) obtained from FORM based on advanced numerical analyses are 
compared with the design resistances in accordance with EN 1993-1-4 
[14], for different slenderness values and material grades. Addition-
ally, the results are compared with the flexural buckling curve utilizing 
design provisions proposed by Buchanan et al. [38] (chosen due to easy 
potential future implementation into the current EC3 approach [14]). 
Based on the FORM design resistances and least square method, opti-
mized flexural buckling curves are proposed for the three discussed 
material grades: Austenitic 1.4307, Ferritic 1.4003 and Duplex 1.4462, 
which is the main objective of this study. Furthermore, correlations 
between the ultimate resistance of stainless steel CHS columns in 
compression and all the input parameters are discussed. 

2. Ultimate resistance determination 

2.1. Eurocode based design resistance of members in flexural buckling 

The European standard EN 1993-1-4 [14] was used to determine the 
design resistance values of structural members under compressive loads 
exposed to flexural buckling. The design buckling resistance of a mem-
ber in compression Nb,Rd for cross-section classes 1–3 is determined as: 

Nb,Rd =
χ • A • σ0.2,n

γM1
, (1)  

where γM1 (γM1 = 1.1 is recommended for stainless steel members) is a 
partial factor for resistance of members to instability assessed by 
member checks (buckling resistance) [14]. σ0.2,n is the 0.2% proof stress 
(nominal value), A is the cross-section area (nominal value), and the 
reduction factor for the relevant buckling mode χ is defined as: 

χ = min

{

1.0;
1

ϕ +
[
ϕ2 − λ2]0.5

}

, (2)  

where the parameter ϕ is determined as: 

ϕ = 0.5
[
1+ α(λ − λ0)+ λ2 ]

, (3)  

where λ is the global slenderness, λ0 is the limiting slenderness with the 
value λ0 = 0.4 [14], and α is an imperfection factor considered as α =
0.49 [14]. 

In this paper, a validation sub-study (to determine the suitability of 
the statistic group size) of 6 different global slenderness λ is conducted, 
analysing the same CHS 80 × 1.5 cross-section geometry and 6 different 
material grades. Subsequently, the main analyses of tubular members of 
10 different global slenderness λ exposed to flexural buckling are per-
formed. In accordance with EN 1993-1-4 [14], the classification of the 
analysed cross-sections fits within classes 1–3 (for the main part of the 
study), however, in case of the CHS 80 × 1.5 utilized for the validation 
sub-study, the classification covers also section class 4 (for Duplex 
1.4462 material grade). The global slenderness values λ are calculated 
using Eq. (4) [14] for section classes 1–3, and Eq. (5) for section class 4. 

λ =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
A • σ0.2,n • L2

π2 • E • I

√

, (4) 
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λ =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
Aeff • σ0.2,n • L2

π2 • E • I

√

, (5) 

where L is the effective structural length of the column (knife-edge 
included), E is elastic Young's modulus, σ0.2,n is the 0.2% proof stress 
(nominal value), I is the second-moment area, A is the cross-section area 
and Aeff is the effective cross-sectional area determined in accordance 
with BS 5950–1 [45]: 

Aeff =

[(
90

D/t

)

•

(
235
σ0.2

•
E

210000

)]0.5

. (6) 

For the evaluation of the structural resistance, the nominal material 
parameters were considered according to EN [46]. The product form of a 
hot-rolled plate is considered. The values are summarized in Table 1 
(index “n” stands for nominal value, σu,n is the ultimate stress). 

The analysed slenderness ratios are summarized in Table 2 and 
Table 3 for the validation sub-study and the subsequent main study 
respectively. Note: some values in the Table 3 are in brackets. It means 
the results of these cases have not been utilized for further processing, as 
closely described in chapter 5. 

2.2. Structural reliability – First order reliability method (FORM) 

In the European standard EN 1990 [43], the reliability design con-
ditions are based on the first-order reliability method (FORM). FORM is 
one of the most important for the evaluation of structural reliability, 
mainly in combination with numerical analysis methods, e.g., the finite 
element method (FEM) as discussed by Faber [47] or Zhao and Ono 
[48]. The concept of FORM is also described in more detail in studies by 
Kala [49–51] and Jönsson [52]. The concept of FORM allows the 
assumption of the Gauss probability density function (PDF) for resis-
tance and load. Since the random variables for the description of the 
resistance and loading are statistically uncorrelated, the resistance can 
be studied independently of the load. In this paper, FORM is used to 
analyse the design resistance of columns under axial compression. 

The structural reliability is expressed as a function of random resis-
tance R and random load effect E. The safety margin M is defined as: 

M = R − E ≥ 0. (7) 

The failure probability Pf is expressed as: 

Pf = P(R < E) = P(R − E < 0) = P(M < 0), (8)  

where E and R are statistically independent variables; both defined by 
Gauss PDF with the mean values μE, μR, and the standard deviations σE, 
σR respectively. M (the safety margin) is described by Gauss PDF defined 
by mean value μM and standard deviation σM expressed as: 

μM = μR − μE, (9)  

σM =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
σR

2 + σE
2

√
. (10) 

The probability of R − E = M < 0 is expressed by the integration of 
PDF of random variable M as: 

Pf =

∫ 0

∞
fMdm = Φ

(
0 − μM

σM

)

= Φ( − β), (11)  

where the ratio μM/σM is the reliability index β, and Φ() is the normal-
ized cumulative Gauss distribution. In accordance with the European 
standard EN 1990 [43], the required value of the reliability index for 
structural members is βd = 3.8 considering the reliability class RC2, 
which corresponds with the consequence class CC2, and the reference 
time of 50 years, see Chapter B.3.2(2) of annex B [43] or application 
[53]. The failure probability is then equal to Pf = Φ(− 3.8) = 7.2 ⋅ 10− 5. 
In general, the structural reliability can be verified by the reliability 
index: 

β =
μM

σM
≥ βd. (12) 

The probabilistic design condition Pf < Pfd (where Pfd is the target 
value of the failure probability [43]) is obtained by the substitution of 
Eq. (12) into Eq. (11). Eq. (10) might be transformed by the introduction 
of FORM sensitivity factors αE, and αR: 

σM =
σR

2 + σE
2

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
σR

2 + σE
2

√ =
σR

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
σR

2 + σE
2

√ σR +
σE

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
σR

2 + σE
2

√ σE, (13)  

σM = αRσR + αEσE. (14) 

In accordance with the European standard [43], for common design 
conditions (Gauss PDF, common values of σR and σE) it is allowed to use 
constant values αR = 0.8 and αE = 0.7 (Chapter C.7(3) of annex C of EN 
1990 [43]). This simplification results in σM ≈ 0.8 σR + 0.7 σE. The 
design condition of reliability is obtained by substituting Eq. (9) and Eq. 
(14) into Eq. (12): 

μE + αEβdσE ≤ μR − αRβdσR. (15) 

The design load Ed and the design value of the resistance Rd are 
expressed by the left and right sides of Eq. (15) respectively. For αR =

0.8, the design resistance is: 

Rd = μR − 0.8βdσR. (16) 

The probability that the structural resistance is smaller than the 
design value is expressed as: 

P(R ≤ Rd) = Φ
(

μR − αRβdσR − μR

σR

)

= Φ( − αRβd). (17) 

In this research, the FORM sensitivity factor for the resistance αR =

0.8 and the value of the reliability index β = βd = 3.8 are adopted. The 
probability, that the structural resistance determined by this approach is 
smaller than the design resistance is Φ(− 0.8⋅3.8) = 0.118%. This value is 
approximately applicable as a 0.1% quantile of resistance PDF [54–57], 
hence the values of resistances discussed in this study based on FORM 
are determined by the use of Eq. (16). 

Table 1 
Summary of nominal material parameters for the stainless steel in a product 
form of hot rolled plate based on EN 1993-1-4.  

Material grade σ0.2,n [MPa] σu,n [MPa] En [GPa] 

Austenitic 1.4307 200 500 200 
Ferritic 1.4003 250 450 220 
Austenitic 1.4318 330 630 200 
Austenitic 1.4301 210 520 200 
Austenitic 1.4311 270 550 200 
Duplex 1.4462 460 640 200  

Table 2 
Summary of analysed slenderness values for sample size study.  

Material 
grade 

CHS 
section 

Length (mean 
value) [mm] 

Slenderness 
λ 

Cross-section 
class (EN) 

Austenitic 
1.4307 

80 × 1.5 1350 0.49 1 

Ferritic 
1.4003 

80 × 1.5 1350 0.52 2 

Austenitic 
1.4318 

80 × 1.5 1350 0.63 3 

Austenitic 
1.4301 

80 × 1.5 1350 0.50 2 

Austenitic 
1.4311 

80 × 1.5 1350 0.57 2 

Duplex 
1.4462 

80 × 1.5 1350 0.71 4  
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3. Numerical finite element models (FEM) 

ANSYS Classic technology (v.20) [42] with APDL (ANSYS parametric 
design language) scripts have been utilized to create a parametrized 
numerical finite element model of tubular members. There were ten 
input variable parameters: one parameter to describe the amplitude of 
the initial global geometrical imperfection e0, three geometrical pa-
rameters, and seven material parameters (as described further in detail). 

3.1. Geometry of the model and boundary conditions 

The tubular columns of the circular hollow section (CHS) are 
considered as simply supported (pin-ended). The hinges at both ends of 
the column allow rotation in one direction (roty ∕= 0, see Fig. 1). The 
cross-section analysed in the validation sub-study is CHS 80 × 1.5, and 
the cross-section geometries for the subsequent study are summarized in 
Table. 3. 

A large number of different values of the effective structural length L 
(additional knife edge lengths l included) are considered to analyse the 
sufficiently large scale of the slenderness and CHS geometries (for the 
sub-study L = 1350 mm - Table. 2 and for the main study additional 139 
unique lengths - Table. 3). 

To simulate the pin-ended column boundary condition, the circum-
ferential nodes of the CHS tube end were connected with a single node 
located on the longitudinal axis of the tube. This is applied at both tube 

ends. The distance of this single node from a plane defined by a cross- 
section of the column end is known as the knife-edge length l and is 
considered as 15 mm or 75 mm for structural lengths L smaller than 400 
mm or larger than 400 mm respectively. The beam connections are 
modelled utilizing almost ideally stiff elements (in comparison with the 
tube stiffness). Boundary conditions are introduced through these single 
nodes. Only rotation along the y-axis of the global coordinate system 
(GCS) is allowed for these nodes, all other degrees of freedom are con-
strained. Except of the translation along the z-axis of the GCS (CHS tube 
axis) of the upper node, which is used for introduction of the loading 
conducted by a prescribed displacement. 

The tubular CHS members are modelled utilizing four-nodal struc-
tural shell finite elements (SHELL 181). These elements possess six de-
grees of freedom (DoF) per node (three translational and three 
rotational). Reduced integration formulation (one integration point in a 
planar view, three through the element thickness) has been considered 
along with the hourglass control feature. The stiffness of these finite 
elements consists of membrane and bending parts (Mindlin-Reissner 
theory), with the linear transverse shear deformation effect. To alleviate 
shear locking, the Bathe-Dvorkin shear strain formulation is utilized 
[42]. 

Geometrically, the shell elements used to model the tubular wall of 
the CHS columns are rectangles, with a maximal edge size of D/4 in the 
longitudinal direction and D/10 in the tangential direction (along the 
circumference) Fig. 1. The parameter D is the outer diameter. 

It has been previously validated, that numerical FEM analyses 
adopting the above-described element formulation (and mesh geome-
tries) resulted in a good agreement with the experimental data [58]. 
Also, a reasonable balance between the computational time demand and 
the accuracy of results is obtained. 

3.2. Introduction of initial geometrical imperfections 

The lowest global buckling modal shapes (the 1st eigenmodes) ob-
tained from the prior modal analyses were utilized to implement the 
initial global geometrical imperfections e0 (in the shape of a half-wave 
sine function). Based on the statistical research by Arrayago et al. 
[44], the utilized statistical values of mean value e0,mean = L/3484 and 
standard deviation of e0,st.dev = L/6056 are independent of the stainless 
steel grade or type. 

The local initial geometrical imperfections were neglected, due to 
their rather negligible influence on the ultimate resistance value and 
overall global structural response of the analysed CHS columns [58]. 
When compared with cold-rolled stainless-steel sections, hot-formed 
members usually have cross-sections with smaller values of local slen-
derness and in general, the interactions of local and overall buckling 

Table 3 
Summary of structural lengths L [mm] (mean values) of the analysed columns and slenderness ratios (numbers in brackets represent model cases which are not 
considered for further processing).  

Mat. grade CHS section (EN class) Slenderness λ 

0.15 0.30 0.45 0.60 0.75 0.90 1.05 1.20 1.35 1.65 

Austenitic 1.4307 21.3 × 2.3 (1) – (202) 303 403 504 605 706 807 908 1109 
48.3 × 4.0 (1) – 469 703 937 1172 1406 1640 1875 2109 2578 
88.9 × 3.2 (1) – 904 1356 1807 2259 2711 3163 3615 4067 4970 
139.7 × 4.0 (1) – 1431 2146 2861 3576 4292 5007 5722 6437 7868 
193.7 × 5.0 (1) – 1989 2984 3978 4973 5967 6962 7956 8951 10,940 

Ferritic 1.4003 21.3 × 2.3 (1) – (189) (284) 378 473 568 662 757 851 1041 
48.3 × 4.0 (1) – 440 660 879 1099 1319 1539 1759 1979 2418 
88.9 × 3.2 (1) – 848 1272 1695 2119 2543 2967 3391 3815 4662 
139.7 × 4.0 (1) – 1342 2013 2684 3355 4026 4697 5368 6039 7381 
193.7 × 5.0 (1) – 1866 2799 3732 4665 5598 6531 7464 8397 10,263 

Duplex 1.4462 21.3 × 2.3 (1) – (133) 199 266 332 399 465 532 598 731 
48.3 × 4.0 (1) (155) 309 464 618 773 927 1082 1236 1391 1700 
88.9 × 3.2 (2) 598 596 894 1192 1490 1788 2086 2383 2681 3277 
139.7 × 4.0 (3) 472 943 1415 1887 2358 2830 3301 3773 4245 5188 
193.7 × 5.0 (3) 656 1312 1967 2623 3279 3935 4590 5246 5902 7214  

Fig. 1. Numerical FEM model of CHS column; mesh geometry.  
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modes are not involved in failures [61]. 
For the initial geometrical imperfection, a lognormal statistical dis-

tribution of the input parameter has been considered [44]. Lognormal 
distribution has been also utilized for concrete-filled steel tubular 
(CFST) members by Chen et al. [59]. For more complex structures with 
several components, e.g., truss structure, the imperfection might be 
implemented as a linear combination of several scaled buckling modes, 
as performed e.g. by Chen et al. [60]. In this study, only the first 
buckling mode is utilized, as the geometry is rather simple, hence this 
approach is sufficient. 

3.3. Utilized material model 

A suitable stress-strain material relation for stainless steel was pro-
posed by Ramberg and Osgood [61], later modified by Hill [62] and was 
adopted in this study as the first stage of the material curve: 

ε =
σ
E0

+ 0.002 •

(
σ

σ0.2

)n

, (18)  

where σ is the engineering stress and ε is the engineering strain, E0 is the 
elastic modulus of the material (Young's modulus), σ0.2 is the 0.2% proof 
stress and n is an exponent parameter for strain-hardening description. 
In the case of using only Eq. (18), the stress values above the 0.2% proof 
stress σ0.2 would be overestimated [63]. Hence, a compound two-stage 
stress-strain relation by Mirambell and Real [64] was introduced, 
which provides a much better agreement with the experimental data for 
stress values above the 0.2% proof stress value. A certain modification of 
the second stage was proposed by Gardner [29] and utilized in this study 
as well: 

ε =
σ − σ0.2

E0.2
+

(

εtu − εt0.2 −
σu − σ0.2

E0.2

)

•

(
σ − σ0.2

σu − σ0.2

)m

+ εt0.2 ⇔ σ > σ0.2,

(19)  

where εt0.2 and εtu are the total strain at the 0.2% proof stress and the 
total strain at the ultimate stress σu respectively. An exponent parameter 
m describes the strain hardening above the proof stress value σ0.2, and 
E0.2 is the stiffness (tangent modulus) at the proof stress σ0.2 defined as: 

E0.2 =
E0

1 + 0.002 • n • E0
σ0.2

, (20) 

To implement these stress-strain dependencies, a material model 
with Von Mises plasticity yield surface criterion (isotropic hardening) 
was adopted. The analytical material curve has been discretized into a 
multilinear function, considering a sufficient number of small steps. The 
multilinear material model implementation is described in more detail 
in the material relation study of the stainless steel [65]. It is also 
important to note, that the engineering stress-strain material relation 
(nominal stress and strain) has been transformed into the logarithmic 
(true) stress-strain notations, as these are required when the geometri-
cally nonlinear analysis is involved [42]: 

σtrue = σnom • (1+ εnom), (21)  

εtrue = ln(1+ εnom), (22)  

where the values of stress σ and strain ε (total mechanical strain) are 
noted with the index “nom” for the engineering notation and with the 
index “true” for the logarithmic notation. For the compressive material 
properties, the values of the engineering strain εnom were introduced 
with a negative sign. This causes a negative tangent of the stress-strain 
relation from a certain point, which is in conflict with the standard 
utilization of the multilinear isotropic hardening material definition 
[42]. Therefore, a very small positive tangent (ideal plasticity) was 
considered after the point of the peak logarithmic stress σtrue (Fig. 2). The 
analytical true stress-strain relations are determined considering the 

compressive strain (negative values of εnom in Eq. (22)). The verification 
results based on one element test depicted in Fig. 2 are based on a 
compression of this finite element. 

Eq. (19) was used in the second stage of the material model, where 
the ultimate stress σu is utilized to describe the material behaviour, what 
is well applicable for tensile loading [29]. For compression however, 
there is no ultimate stress. Hence, more suitable would be to use slightly 
modified Eq. (23) proposed by Gardner [29], which is in general rec-
ommended for combined tension and compression loading as well: 

ε =
σ − σ0.2

E0.2
+

(

0.008 −
σ1.0 − σ0.2

E0.2

)

⋅
(

σ − σ0.2

σ1.0 − σ0.2

)m0.2,1.0

+ εt0.2 ⇔ σ > σ0.2,

(23)  

where σ1.0 is the 1% proof stress value, and corresponding exponent 
parameter m0.2,1.0 is used. For the purpose of ultimate resistance 
determination (with focus on only maximal bearing capacity), it appears 
to be quite feasible to use both of these Eqs. (19) or (23), with relatively 
small difference in the results. Comparison of the performance is pre-
sented in previous study [66], where stainless I-beam in three point 
bending test is analysed and material description by both Eqs. (19) and 
(23) is considered (σ1.0 value was provided by the inspection certificate). 
In previous research [76], the Eq. (19) was used, and the final results 
(buckling curves) were very similar to those presented by Buchanan 
et al. [38]. It is not assumed there is a significant difference in the results 
of numerical simulations of CHS members in flexural buckling while 
using Eqs. (19) or (23), where the main interest is the ultimate resistance 
value rather than the whole shape of the force-displacement curve. 

Advantage of using Eq. (19) in this study is the direct definition of the 
ultimate stress values σu (nominal values) for various material grades in 
the table 2.1 of EN 1993-1-4 [14], and subsequently the ratios provided 
by Arrayago et al. [44] to obtain the statistical parameters (mean values 
and CoV) for σu and correlation matrixes between σu and the other pa-
rameters. On the other hand, 1.0% proof stress is not directly provided in 
the EN [14], what makes the utilization of Eq. (23) while considering the 
material values for the corresponding stainless steel grades as defined by 
the EN [14] less feasible, and would require additional steps in the 
analysis workflow. 

3.4. Residual stresses 

During the sectioning process, the released material strips may 
exhibit curvature and axial deformation, corresponding to bending 
(through-thickness) and membrane residual stresses, respectively. In 
general, bending residual stresses dominate in cases of cold-formed 
sections, and membrane residual stresses are dominant in hot-rolled 

Fig. 2. Material model verifications by one element uniaxial tests.  
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sections [67]. The reason for these residual stresses in cases of the hot- 
rolled steel strips is related to changes in the microstructure during 
the uneven cooling process [68]. However, in case of the global analysis 
performed in this study, the residual stresses are incorporated implicitly 
by the utilization of the measured values of the material properties [69] 
(more precisely by statistical values based on experimental data) or also 
considered by the initial geometrical imperfections indirectly [44]. The 
statistical values (standard deviation and mean value) of all the utilized 
stainless steel material parameters are based on the study by Arrayago 
et al. [44], based on data from experimental measurements. 

3.5. Validation of the numerical model 

The FE model utilized in this study has been previously validated 
[58], based on experimental data from research conducted by Buchanan 
et al. [38], where five different cross-sectional geometries of CHS sec-
tions have been analysed experimentally and numerically. In total, 37 
different stainless steel CHS columns were physically exposed to flexural 
buckling [38] and force-displacement curves (axial load versus mid- 
height lateral displacement) were obtained. Two sets of material prop-
erty values were considered for validation separately. One set is based 
on the stub column properties (noted as SCP), and the second set is based 
on tensile properties (TP), as described in more detail by Buchanan et al. 
[38]. Validation of each set is performed utilizing the arithmetic mean 
(AM) of the normalized ultimate resistances Nu, which is determined as: 

Nu,norm,AM =
1

37
∑37

i=1

(
Nu,FE,i

Nu,exp,i

)

, (24)  

where Nu,exp stands for the experimentally obtained ultimate resistance 
and Nu,FE is the ultimate resistance based on FEM simulation. The vali-
dation average values Nu,norm,AM along with its standard deviation bars 
are graphically depicted for both sets of material properties (SCP, TP) in 
Fig. 3. All of these normalized values are very close to 1, with small 
standard deviations, which indicates a very nice match between the 
numerical simulations and conducted physical experiments [38]. The 
numerical finite element models utilized in this study can be considered 
as properly validated [58], hence suitable for the presented reliability 
analysis. 

4. FEM simulations, verifications and reliability analysis 

4.1. Input values of statistical parameters 

To conduct the first-order reliability analysis (FORM) utilizing 
GMNIA (geometrically and materially nonlinear imperfect analyses), 
statistical data on input parameters (material, geometric and imperfec-
tion) is required. All of these values are adopted in accordance with the 
statistical research conducted by Arrayago et al. [44]. 

Statistical values of all 6 material input parameters (mean values, 
standard deviation including the utilized distribution type of the prob-
ability density function PDF) are summarized in Table 4., which con-
tains the material input data of 3 selected material grades considered for 
the determination of the buckling curves (the main objective of this 

study). Before the main task of this paper was performed, an investi-
gation of the random realization number (sample size study) for the 
subsequent reliability analysis was conducted. For this, 3 additional 
material grades of Austenitic steel were considered (1.4301, 1.4311 and 
1.4318), and the statistical values are summarized in Table 5. Note: 
values of parameters E, m, n and εu are uniform for all grades of 
Austenitic stainless steel [44], hence depicted only in the first four rows 
of Table 4. Statistical values of the geometrical input parameters and the 
initial global imperfection are summarized in Table 6. These were 
considered independent of the material grade. Note: the mean values for 
the structural length L are summarized in Table 2 and Table 3 for the 
“sample size study” and the “main objective of the paper” respectively. 
The standard deviation of the structural length L was considered as 0.5 
mm, which is half of the smallest unit of standardly used measurement 
devices. 

Correlations between the material input parameters themselves are 
based on the correlation matrices by Arrayago et al. [44] – see also 
Fig. 4, Fig. 5 and Fig. 6 for Austenitic, Ferritic and Duplex material 
grades of stainless steel respectively. Note: the positive correlations are 
depicted in the shade of blue, the negative ones in red and the larger the 
correlation, the darker the colour. The correlations between geometrical 
parameters (D, t, L) are neglected [44], as well as the correlations be-
tween initial geometrical imperfection e0, and all the other input 
parameters. 

Poisson ratio has been considered with the constant value of v = 0.3 
for all stainless steel grades, analogically to the standard carbon steel 
material, as discussed in the stochastic sensitivity study by Kala [70]. 

4.2. FE simulations for the “sample size sub-study” 

The sub-study to verify the number of random realization samples 
per one batch, which is noted as the “sample size sub-study” was con-
ducted before the initiation of the vast number of nonlinear analyses 
utilized for the subsequent determination of the buckling curves. In this 
sub-study, 6 material grades (4 Austenitic, one Ferritic and one Duplex) 
were analysed (summarized in Table 2). One cross-section geometry 
(CHS 80 × 1.5) along with one structural length of 1350 mm was 
considered, thus resulting in 6 different slenderness values λ (dependent 
on material parameters). For each of the 6 material grades, the ultimate 
resistance based on FORM was determined three times, each time uti-
lizing one of three unique sample sets of 200 random realizations of all 
of the 10 input parameters (6 for material, 3 geometrical and one 
imperfection). These random realizations were generated using the 
Advanced Latin Hypercube Sampling (ALHS) method, where the cor-
relation errors are minimized by the stochastic evolution strategies [71]. 
The representation of the specified input correlations and the input 
distributions is also very accurate when the standard Latin Hypercube 
Sampling (LHS) method [72] is utilized, where a method by Iman and 
Conover [73] is implemented to minimize the undesired correlations. 
ALHS was preferred, as it is recommended for a smaller number of input 
parameters [74]. To manage the ALHS sampling along with the ANSYS 
solver, the software OptiSLang [74] was utilized. 

In total, 6⋅3⋅200 = 3600 numerical simulations were conducted for 
the sample size study. For each one of these numerical simulations, the 
ultimate compressive force Nu considered as the maximal value of the 
force-displacement curve was obtained. A database for the subsequent 
probabilistic determination of the 0.1% quantile of the Nu was created. 

4.3. FE simulations for the buckling curves determinations 

After the sample size sub-study had been conducted, it was 
concluded (see chapters 5.1, 6.1. and 7) that the number of 200 random 
realizations is sufficient to determine the ultimate resistance based on 
FORM of a certain model case (unique geometry and material of the CHS 
column). Hence, in order to obtain a database of results for the subse-Fig. 3. Numerical finite element model validation.  
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quent determination of buckling curves, the same approach as described 
above (Chapter 4.2.) is adopted, with the difference, that only one batch 
of 200 random realizations of input parameters is performed per model 
case. For each model case, the unique set of 200 random realizations of 
10 input parameters remains. Three different material grades (Austen-
itic 1.4307, Ferritic 1.4003 and Duplex 1.4462) were investigated. For 
each material grade, CHS columns of 9 different slenderness λ values of 5 
different cross-sectional geometries are analysed. Additional slenderness 
of 0.15 for 4 different CHS geometries was considered for the Duplex 
material grade. Therefore, the total number of numerical simulations 
was equal to 27,800 (3⋅9⋅5⋅200 + 4⋅200). The summary (according to 
the mean value of structural length) is also in Table 3. The physical time 
required for the analysis of one batch of 200 realizations, where re-
alizations were not solved in parallel, ranged from approximately 4 h 
(for CHS 88.9 × 3.2 of slenderness 0.5) to approximately 7 h (for CHS 
88.9 × 3.2 of slenderness 1.65). For each random realization, 4 parallel 
processes were requested with a single thread per process, with a total of 
4 CPU cores requested. A PC with a CPU of 3.6 GHz with 4 cores and 4 
threads was utilized. 

An example of the correlation matrix of all 10 randomly generated 
parameters for the model case of Duplex 1.4462 material grade, CHS 
88.9 × 3.2, slenderness 1.2 is depicted in the left part of the Fig. 7. The 
force-displacement curves of all 200 numerical analyses of this model 
case are depicted in the middle of the Fig. 7. The equivalent plastic strain 
and horizontal displacement ux are then provided for a single random 
realization (order number #125) in the last analysed sub-step (the end of 
the curve, where ux = 23.204 mm) in the right part of the Fig. 7. 

Table 4 
Statistical values of material parameters by Arrayago et al. [44].  

Parameter  Unit Austenitic 1.4307 Ferritic 1.4003 Duplex 1.4462 Distribution type (PDF) 

Mean St. dev. Mean St. dev. Mean St. dev. 

Elastic modulus E [GPa] 195.416 11.175 203.738 14.764 206.233 11.957 Normal 
Exponent par. m [− ] 2.3 0.3 2.9 0.3 3.6 0.5 Lognormal 
Exponent par. n [− ] 10.6 1.8 16.3 4.9 6.6 2.4 Lognormal 
Ultimate strain εu [− ] 0.49 0.06 0.17 0.05 0.29 0.05 Normal 
Ultimate stress σu [MPa] 575 20 504 44.55 704 16.64 Lognormal 
0.2% proof stress σ0.2 [MPa] 244 15 305 15.75 510.6 44.62 Lognormal  

Table 5 
Statistical values of material parameters by Arrayago et al. [44].  

Parameter  Unit Austenitic 1.4301 Austenitic 1.4311 Austenitic 1.4318 Distribution type (PDF) 

Mean St. dev. Mean St. dev. Mean St. dev. 

Ultimate stress σu [MPa] 598.00 20.80 632.50 22.00 724.50 25.20 Lognormal 
0.2% proof stress σ0.2 [MPa] 256.20 15.75 329.40 20.25 402.60 24.75 Lognormal  

Table 6 
Statistical values of geometry and imperfection by Arrayago et al. [44].  

Parameter  Unit Mean 
value 

Standard 
deviation 

Distribution type 
(PDF) 

Diameter D [mm] 0.999⋅Dn 0.003⋅Dn Normal 
Thickness t [mm] 0.982⋅tn 0.035⋅tn Normal 
Structural 

length 
L [mm] various 0.5 Normal 

Initial 
imperfection 

e0 [mm] L/3484 L/6056 Lognormal  

Fig. 4. Input correlation matrix for Austenitic stainless steels by Arrayago 
et al. [44]. 

Fig. 5. Input correlation matrix for Ferritic stainless steels by Arrayago 
et al. [44]. 

Fig. 6. Input correlation matrix for Duplex stainless steels by Arrayago 
et al. [44]. 
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4.4. Statistical verification 

In order to check the statistical validity of the results, the Gaussian 
distribution of the results was verified utilizing the Chi-square distri-
bution test or the so-called “goodness-of-fit” test [75]. The purpose of 
this test is to confirm, that a certain probability distribution (e.g., normal 
distribution) might be feasibly utilized for the description of a popula-
tion sample. It was revealed, that the hypothesis of Gauss distribution of 
the results (ultimate resistance Nu) was not rejected (1% significance 
level). Therefore, the conclusion of this test is that ultimate resistances 
Nu based on the finite element simulations might be considered as 
normally distributed. 

4.5. Structural resistance based on first-order reliability method (FORM) 

Reliability as described by EC0 [43] is understood as the ability of a 
structural member (or structure in general) to fulfil certain specified 
requirements during the whole design lifespan. In case of the ultimate 
limit state, reliability is considered as the ability to resist the load effects 
applied on the member. 

Following the assumptions of chapter 2.1 of this paper (reliability 
class RC2, consequence class CC2, 50 years of reference period [43]), the 
minimal value of the reliability index is βd = 3.8, and it is possible to 
utilize the constant sensitivity factor for the resistance as αR = 0.8. The 
probability that the resistance is smaller than the design value is then: 

Φ( − αRβd) = Φ( − 0.8 • 3.8) = 0.1183%. (25) 

This value approximately corresponds to the 0.1% quantile of the 
resistance distribution. Therefore, the comparison of the results between 
the reliability analysis based on FORM and the design resistances 
calculated according to EC3 [14] is applicable. 

For each data set of the 200 random realizations (chapters 4.2. and 
4.3.), the standard deviation σN, and the mean value μN of the ultimate 
resistance Nu is used to determine the 0.1% resistance quantile R0.1% 
considered as the design resistance based on FORM: 

R0.1% = μN − αRβdσN = μN − 0.8 • 3.8 • σN . (26) 

Due to the comparison of several different CHS cross-sectional ge-
ometries and various material grades, the ultimate resistance is 
expressed using the reduction factor χFORM by substituting R0.1% for Nb,Rd 
in Eq. (1): 

χFORM =
R0.1% • γM1

A • σ0.2,n
. (27) 

The nominal values of proof stress σ0.2,n and area A are adopted. The 
value of the reduction factor χFORM is determined, which would yield the 
same design buckling resistance of a member in compression Nb,Rd as the 
resistance based on FORM (R0.1%), utilizing the design approach of the 
EN [14] and keeping the same value of the partial factor γM1 = 1.1. This 
value is compared with the reduction factor χ determined according to 
the approach of European standard [14] (see chapter 2.1), or with the 
buckling curve based on EN 1993-1-4 [14]. 

5. Results 

5.1. The sample size sub-study 

This sub-study is conducted to investigate the sufficiency of the 
number of random realizations per one batch (model case). For each of 
the 6 material grades, 3 different batches of 200 random realizations of 
all 10 input parameters were analysed, and the ultimate resistance R0.1% 
was expressed relatively through the reduction factor χFORM. The 
average value of these three reduction factors along with the standard 
deviation σ and coefficient of variation (CoV) are provided in Table 7, 
and graphically in Fig. 8, where the values of χ based on EN [14] are also 
provided. Note: in Table 7, the pure value of the standard deviation is 
provided (1⋅σ), however, in Fig. 8, 3⋅σ was considered in order to plot 
the standard deviation bars (due to the small values of σ itself). 

5.2. Correlations between the ultimate resistance and input parameters 

In order to determine the correlation between ultimate resistance Nu 
and all the 10 random input parameters, Pearson (linear) correlation 

Fig. 7. Example of chosen model case.  

Table 7 
Reduction factor χFORM for CHS 80 × 1.5, L = 1350 mm.  

Material grade Slenderness 
λ 

χFORM 

mean 
χFORM standard 
deviation 

χFORM CoV 
[%] 

Austenitic 
1.4307 

0.49 0.8604 0.0029 0.34 

Ferritic 1.4003 0.52 0.9085 0.0018 0.20 
Austenitic 

1.4318 
0.63 0.8467 0.0011 0.14 

Austenitic 
1.4301 

0.50 0.8612 0.0027 0.31 

Austenitic 
1.4311 

0.57 0.8511 0.0036 0.42 

Duplex 1.4462 0.71 0.7287 0.0056 0.76  
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coefficient is determined. The values of Pearson correlation coefficient 
have been averaged for various cross-sectional geometries of the same 
material grade and slenderness λ value (average of 5, 4 or 3 values). The 
arithmetic mean of these correlation coefficients (± the standard devi-
ation) are provided in Fig. 9, Fig. 10, and Fig. 11 for Austenitic 1.4307, 
Ferritic 1.4003 and Duplex 1.4462 material grades respectively. Note: in 
some cases of smaller slenderness, the average is calculated either from 4 
or 3 values. The cases which are represented by numbers in brackets in 
the Table 3 are excluded for statistic evaluation. For example, in the 
model case of Duplex 1.4462 material grade and slenderness 0.15, the 
average is made of 3 different cross-sectional geometries (Table 3). The 
reason of this is, that some random realizations cases of small slender-
ness and small structural lengths L resulted in the significantly larger 
value of ultimate resistances Nu than the average values of that group. As 
an example, load-deflection curves of the Ferritic grade 1.4003 CHS 
21.3 × 2.3, slenderness 0.3 are depicted in Fig. 12. Right part of the 
Fig. 12 depicts the deformed shape along with equivalent plastic strain 
of FE model of one random realization out of 200 of that case. Different 
buckling shapes have been mostly observed in cases of smaller values of 
the initial geometrical imperfections e0 (smaller structural lengths L) 
and small slenderness, as discussed also in the previous study [76]. In 
this study, it has been decided to exclude these cases from further 
processing. 

An example of Anthill plots of random realizations for model cases of 
Ferritic 1.4003 grade CHS 88.9 × 3.2 through all the analysed 

slenderness values is provided in the left part of the Fig. 13. Right part of 
the Fig. 13 represents all the other analysed cross-sections for selected 
slenderness case 1.05 of this material grade. Pearson's correlation co-
efficients for these selected cases are available in the Fig. 14, and the 
cells in the matrix corresponds with the cells of the matrix in the Fig. 13. 
For comparison with linear Pearson's correlations, Kendall τ coefficients 
of correlation have been determined for these selected cases and are 
depicted in the matrix in Fig. 15. 

Note: For a more transparent graphical depiction (Fig. 9, Fig. 10, 
Fig. 11, Fig. 14 and Fig. 15), the positive correlations are in shades of 
blue, negative ones are plotted in red and the darker the colour, the 
larger the absolute value of the correlation (mean value of the correla-
tion itself for Fig. 9–Fig. 11). 

5.3. Determination of the proposed buckling curves 

The summary of the reduction factors χFORM is provided for all ana-
lysed model cases (slenderness values, CHS geometries and material 
grades) in Table 8. In several cases of smaller CHS geometries and 
smaller slenderness λ (therefore lengths), the value of the reduction 
factor happened to be significantly different from the remaining values 
of the same group (more precisely in 5 cases out of the total 139). For 
example, CHS 21.3 × 2.3, slenderness 0.3 and 0.45 for Ferritic 1.4003 
material grade. These values are in brackets in Table 8, as these were not 
considered for the subsequent averaging and buckling curve determi-
nation (the reason in closely described in previous chapter 5.2). For 
example, in case of CHS 21.3 × 2.3, slenderness 0.3 for Ferritic 1.4003 
material grade, the mean value μN was equal to 40.2737 kN, with the 
standard deviation of σN, = 5.9160 kN (CoV = 14.69%). This results in 
the reduction factor of 0.714. If 18 of the random realization with the 
significantly larger Nu (see Fig. 12) were excluded from the set, the mean 
value μN would decrease to 38.8476 kN, and standard deviation σN, to 
2.6373 kN (CoV = 6.79%), resulting in the reduction factor of 0.988, 
what is in a nice match with the rest of the group. However, exclusion of 
the whole set was preferred rather than manual alternation of the sta-
tistical set. The values of χFORM (Table 8) of the various cross-sectional 
geometries (of the same material grade and slenderness value) are 
averaged (mostly averages of 5 values). Arithmetic means along with 
standard deviations bars (3⋅σ) are then graphically plotted in Fig. 16 
(squares with deviation bars noted as “FORM” in the graph legend). 
Additionally, the EN buckling curve is provided, as well as the buckling 
curve based on the provisions proposed by Buchanan et al. [38]. In order 
to determine a unique buckling curve for each of the three material 
grades, the least square method has been utilized to optimize the 

Fig. 8. Determination of reduction factor based on FORM.  

Fig. 9. Correlation between the ultimate resistance and input parameters for Austenitic 1.4307 material grade.  
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buckling curve parameters λ0 (limiting slenderness) and α (imperfection 
factor). Note: for the least square method, values based on Table 8 were 
used (not the averaged values). The optimal values of λ0 and α are 
provided in the legend of Fig. 16. 

6. Discussion 

6.1. Random realization sample size for FORM analyses 

Three different values of reduction factors χFORM are obtained using 
three random realizations of R0.1%, where each random realization of 
R0.1% is calculated using new 200 samples (random realizations) of input 
parameters from Tables 4, 5 and 6. This means that each CoV was 
determined based on a statistic group of three ALHS realizations of 200 
samples of random input parameters with the same statistical parame-
ters. The variance of these three random realizations of R0.1% and χ is 
relatively small. A variance of zero would theoretically be achieved by 
increasing from 200 to ∞ samples. For the 200 samples, based on the 
relatively small values of the coefficients of variation (CoV, Fig. 8 and 
Table 7), which are below 0.5% for both, Austenitic 1.4307 and Ferritic 
1.4003 stainless steels considered in this study, and below 1% for the 
Duplex 1.4462 stainless steel, the sample size of 200 random realizations 
is considered to be sufficient enough for the determination of the 
buckling curves. These values are determined for the slenderness values 
around 0.5–0.7 (in dependence on the material grade). The largest CoV 
of 0.76% was obtained for the Duplex stainless steel (slenderness of 
0.71). This is also in agreement with the larger standard deviation of 
χFORM for the Duplex material grade 1.4462, mainly for the slenderness 
values of 0.6 and 0.75, when the averaged results are obtained based on 

Fig. 10. Correlation between the ultimate resistance and input parameters for Ferritic 1.4003 material grade.  

Fig. 11. Correlation between the ultimate resistance and input parameters for Duplex 1.4462 material grade.  

Fig. 12. Example of Ferritic 1.4003 grade, CHS 21.3 × 2.3, slenderness 0.3.  
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different cross-sectional geometries (Fig. 16). Moreover, the linear cor-
relations between the ultimate resistance and several input parameters 
with the largest influence for slenderness value 0.6 (e.g., proof stress) 
are larger (absolutely) for the Duplex material grade (Fig. 11) than 
Austenitic or Ferritic of the same slenderness value of 0.6 (Fig. 9 and 
Fig. 10). The standard deviations of the reduction factor χFORM have 
been observed smaller for larger values of slenderness, where the results 
based on different cross-sectional geometries have been averaged 
(Fig. 16), therefore it is expected that the standard deviations would also 
be smaller for the ALHS samples of the same statistic values of the input 
parameters. 

6.2. Correlations between the ultimate resistance and input parameters 

The results of the linear correlation between the ultimate resistance 
Nu and input parameters for the Austenitic stainless steel 1.4307 (Fig. 9) 
are in a good agreement with the previous research [76], where only one 
cross-sectional geometry of Austenitic stainless steel was analysed (see 
Fig. 9 in paper [76]). The correlation between the ultimate resistance Nu 
and the material parameters with a major focus on the description of the 
plastic behaviour (proof stress, σ0.2, ultimate stress σu, ultimate strain εu, 

Fig. 13. Example of Anthill plots of random variables for selected cases.  

Fig. 14. Pearson's correlation coefficients for the selected model cases.  

Fig. 15. Kendall τ correlation coefficients for the selected model cases, 
compared to Fig. 14. 
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and exponent parameters n and m) is larger for smaller values of slen-
derness, where the plastic behaviour of the material is prior to stability 
loss due to global buckling. Elastic modulus is however more significant 
for the members of larger slenderness, where the flexural buckling 
resistance is achieved in a member before reaching the yield stress 
(proof stress) in its material. From the geometrical parameters, a sig-
nificant influence on the results is observed for the thickness t, mainly 
due to its larger input value of the standard deviation (Table 6), which is 
approximately 12 times larger than the standard deviation of the 
diameter D, which is easier to sustain during the manufacturing process 
of the CHS members. 

The largest correlation between the resistance Nu and initial 
geometrical imperfection e0 is observed around slenderness values λ=
1.05–1.2 for Austenitic steel (Fig. 9), which is again in agreement with 
the previous research [76], where the maximum correlation of − 0.48 
was achieved for the slenderness λ = 1.20. 

In general, the correlations between the ultimate resistance Nu and 
input parameters follow the same pattern in case of the Ferritic (Fig. 10) 
and Duplex (Fig. 11) stainless steel grades. The differences are in the 
correlation values themselves, and corresponding slenderness values of 
correlation extremes for specific parameters. For example, the maximal 
correlation between the resistance Nu and initial geometrical imperfec-
tion e0 is obtained around slenderness of 1.00 for the Ferritic grade. The 
Ferritic steels grade 1.4003 is in this matter closer to ordinary carbon 
steel than the other grades of stainless steel. For carbon steels, the 

maximal influence of the geometrical imperfection e0 on the structural 
resistance was also observed around the slenderness of 1.0 [70,77]. In 
the case of Duplex stainless steel, the extreme value of correlation be-
tween Nu and e0 is expected around the slenderness λ value of 1.65 
(Fig. 11). This is an interesting finding that can be important for the 
design and calibration of buckling curves. However, further analyses 
would be required to confirm this assumption as the value of 1.65 is also 
the last analysed slenderness for the Duplex grade in this study. 

In this study, it was feasible to utilize linear Pearson's correlation 
coefficient to determine the correlation between Nu and input parame-
ters. The anthill plots (example in Fig. 13) have not resulted in a shape 
which would resemble other than linear dependency. The sensitivity 
ranking of input variables based on the Kendall τ is approximately the 
same compared to Pearson's correlation (see comparison of Fig. 14 and 
Fig. 15). 

6.3. Buckling curves for CHS stainless steel members 

In many of our observations, the design resistances based on FORM 
analysis have a smaller value than the design resistances according to 
the current European standard. Therefore, the EC3 design may not be 
safe enough. In Fig. 16 this might be observed by the data points lying 
under the EN buckling curve [14] (black curve), mainly for slenderness λ 
values around 0.4 for Ferritic 1.4003 stainless steel, and for values be-
tween 0.2 and 0.8 for Austenitic 1.4307 stainless steel. This has also 

Table 8 
Summary of reduction factors χFORM (numbers in brackets represent cases which are not considered for further processing).  

Mat. grade CHS section (EN class) Slenderness λ 

0.15 0.30 0.45 0.60 0.75 0.90 1.05 1.20 1.35 1.65 

Austenitic 1.4307 21.3 × 2.3 (1) – (0.870) 0.884 0.832 0.760 0.679 0.597 0.502 0.419 0.291 
48.3 × 4.0 (1) – 0.969 0.886 0.823 0.754 0.676 0.595 0.505 0.416 0.289 
88.9 × 3.2 (1) – 0.942 0.882 0.816 0.749 0.668 0.588 0.497 0.412 0.284 
139.7 × 4.0 (1) – 0.960 0.885 0.813 0.756 0.673 0.585 0.497 0.414 0.281 
193.7 × 5.0 (1) – 0.950 0.879 0.813 0.746 0.673 0.583 0.493 0.410 0.281 

Ferritic 1.4003 21.3 × 2.3 (1) – (0.714) (0.890) 0.892 0.816 0.718 0.603 0.486 0.396 0.265 
48.3 × 4.0 (1) – 0.989 0.942 0.882 0.804 0.719 0.599 0.484 0.393 0.260 
88.9 × 3.2 (1) – 0.992 0.936 0.876 0.801 0.709 0.595 0.483 0.388 0.260 
139.7 × 4.0 (1) – 0.980 0.936 0.879 0.800 0.715 0.601 0.487 0.387 0.258 
193.7 × 5.0 (1) – 0.981 0.944 0.872 0.799 0.707 0.592 0.489 0.388 0.254 

Duplex 1.4462 21.3 × 2.3 (1) – (0.864) 0.841 0.777 0.677 0.584 0.505 0.439 0.380 0.286 
48.3 × 4.0 (1) (1.137) 0.907 0.832 0.751 0.663 0.578 0.495 0.429 0.379 0.287 
88.9 × 3.2 (2) 1.004 0.920 0.830 0.747 0.664 0.577 0.496 0.431 0.373 0.285 
139.7 × 4.0 (3) 1.019 0.903 0.826 0.732 0.656 0.574 0.494 0.429 0.375 0.281 
193.7 × 5.0 (3) 1.012 0.914 0.823 0.717 0.655 0.575 0.492 0.426 0.370 0.282  

Fig. 16. Buckling curves for stainless steel: current state and proposed provisions.  
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been observed in the previous study [76]. Similar conclusions are made 
by fellow researchers, e.g. Buchanan et al. [38], and many others 
[15–23]. For the analysed Duplex stainless steel grade 1.4462, the 
design approach according to EN [14] is not conservative enough for 
slenderness λ values ranging from 0.2 to approximately 1.4. The design 
provisions of the EN buckling curve proposed by Buchanan et al. [38] 
have been checked as well (grey buckling curve in Fig. 16). These pro-
visions appear to be rather conservative for Austenitic 1.4307 (which is 
in agreement with the previous study [76]) and also for Ferritic 1.4003 
stainless steel grade. However, in the case of Duplex stainless steel 
1.4462, these provisions still are not satisfying enough to fulfil the 
required structural reliability level (for slenderness values 0.2–1.05). In 
the case of the Duplex 1.4462 material grade, the performance of the 
newly proposed buckling curve defined according to the approach of EN 
[14] with parameters λ0 = 0.1288 and α = 0.5005 appears to be more 
suitable. 

New buckling curves have also been proposed for the Austenitic 
1.4307 and Ferritic 1.4003 grades of stainless steel (orange and blue 
curves in Fig. 16 respectively), with parameters λ0 = 0.0817 and α =
0.2737 for grade 1.4307 (A) and λ0 = 0.337 and α = 0.3655 for 1.4003 
(F). These curves appear to utilize the capacity of CHS members in 
flexural buckling more effectively for slenderness values λ in the range 
0.45–1.2. Therefore, utilization of these new buckling curves might 
result in significant material savings in comparison with the buckling 
curve proposed by Buchanan et al. [38], and still retain a sufficient level 
of structural reliability. On the other hand, for the slenderness λ above 
approximately 1.3, the conservativeness of these new curves (A, F, 
Fig. 16) decreases, and the buckling curve proposed by Buchanan et al. 
[38] performs much better. 

The optimal solution appears to adopt the new proposal for the 
Duplex stainless steel grade 1.4462 for the whole range of slenderness 
(curve D, Fig. 16), newly proposed curves, A, F, Fig. 16 for the corre-
sponding material grades for slenderness up to the value of λ = 1.2, 
linear interpolation between curves A, F, and the buckling curve by 
Buchanan et al. [38] for slenderness λ in the range 1.2–1.35, and the 
curve proposed by Buchanan et al. [38] for the slenderness values over 
1.35 (for Austenitic 1.4307 and Ferritic 1.4003 material grades). 

Moreover, it appears to be appropriate to check, whether it would be 
useful to define a unique buckling curve for each grade of stainless steel, 
e.g., a unique buckling curve for various grades of Austenitic material 
grades. If the results of Austenitic stainless steel grades analysed in this 
study presented in Fig. 8 and Fig. 16 are graphically presented together – 
in Fig. 17, it appears that for the stainless steel grade 1.4318, this might 
result in a buckling curve of a different shape. It is important to note, 
that the results for 1.4318 are based only on one cross-sectional 

geometry, and also for only one slenderness value. Hence, a more 
detailed analysis would be required for a proper conclusion. This might 
be a subject of a future research. 

7. Summary 

In this study, advanced numerical analyses utilizing the finite 
element method (FEM) have been used to investigate the flexural 
buckling resistance of circular hollow section (CHS) stainless steel pin- 
ended (simply supported) columns of 3 different material grades: 
Austenitic 1.4307, Ferritic 1.4003 and Duplex 1.4462 (in the hot-rolled 
product form). In order to describe the nonlinear material behaviour of 
stainless steel, Eq. (19) which uses ultimate stress has been preferred 
rather than in general for compressive loading more suitable Eq. (23) 
which utilizes the 1% proof stress. The reasons are explained in more 
detail in chapter 3.3. 

For each material grade, columns of 9 different slenderness λvalues 
(within the range 0.2–1.65) have been analysed (with one extra slen-
derness of 0.15 for the Duplex material). For each of the 9 given slen-
derness and 3 material grades, numerical analyses of 5 different CHS 
cross-sectional geometries have been conducted (4 different CHS for 
the Duplex stainless steel of slenderness 0.15). Altogether, 139 model 
cases have been numerically analysed. For each model case, a batch of 
200 random realizations of 10 statistical input parameters (6 material 
parameters, 3 geometrical and one initial imperfection) have been 
calculated. This resulted in a total of 27,800 unique numerical simula-
tions utilizing the ANSYS classic environment. Statistical values of all 
the input parameters along with their mutual correlations have been 
utilized according to the comprehensive statistical study by Arrayago 
et al. [44], where these parameters are summarized based on numerous 
experimental data. 

Moreover, as a prerequisite to this analysis, a shorter sub-study 
concerning the suitability of the sample size was conducted, where a 
cross-sectional geometry of CHS 80 × 1.5 was considered for 6 different 
stainless steel material grades. For each of these 6 cases, the advanced 
Latin hypercube sampling (ALHS) method was utilized 3 times to create 
200 random realizations of the same input of statistical parameters 
(mean value, standard deviation and mutual correlations). This sub- 
study of an additional 3600 numerical simulations was conducted to 
check, whether 200 random realizations is sufficient for each model 
case, which appeared to be true. Hence the same approach was adopted 
for the main objective of this research. 

For both parts (sub-study and main objective), the advanced 
geometrically and materially FEM nonlinear analyses with initial im-
perfections (GMNIA) along with the EC0 approach of the first-order 
reliability method (FORM) were adopted to determine the design 

Fig. 17. Buckling curve: various grades of Austenitic stainless steel.  
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resistances of the columns in flexural buckling. The resistances deter-
mined according to this approach are practically the same as the 0.1% 
quantile of the Gauss distribution of the ultimate resistances Nu. 

The main objective of the paper was to determine the ultimate 
resistance of CHS stainless steel columns exposed to flexural buckling 
based on the first-order reliability method. These resistances have been 
expressed relatively by the EN reduction factor χ [14] to be comparable 
with the Eurocode buckling curve [14] and the buckling curve with 
design provisions proposed by Buchanan et al. [38] – see Fig. 16. For 
each of the 3 analysed material grades 1.4307 (A), 1.4003 (F) and 
1.4462 (D), a new buckling curve has been determined utilizing the least 
square method (LSM) and the relatively expressed structural resistances. 
The definition of these new buckling curves follows the same logic as the 
current EN [14] approach, where the values of parameters λ0 (limit 
slenderness) and α (imperfection factor) have been optimized (by LSM). 
The proposed values are summarized in the graph legend in Fig. 16. 

It also seems, that the results (buckling curves) based on FORM 
might follow a slightly different pattern for other grades of stainless 
steel, for example, Austenitic 1.4318 (Fig. 17), which was not investi-
gated in detail in this study, and will be an objective of future research. 

8. Conclusion 

New buckling curves for stainless steel columns have been proposed 
using numerical studies and the FORM reliability method. The perfor-
mance of the new buckling curves is compared and discussed with the 
current EN buckling curve for stainless steel and with the design pro-
visions by Buchanan et al. [38]. It is concluded, that for Duplex 1.4462 
grade, the new proposal appears to be more suitable than the current EN 
buckling curve. For Ferritic 1.4003 and Austenitic 1.4307 material 
grades, the new proposals perform better than the current EN buckling 
curve for slenderness values up to λ = 1.2. However, for values above λ =
1.35, the proposal by Buchanan et al. [38] appears to be the most 
suitable (compared with the current EN curve and the new proposals 
presented here). For values in the range 1.2–1.35, linear interpolation 
between these curves might be easily introduced. 

It also appears to be suitable to define a unique flexural buckling 
curve for several other grades of stainless steel, or at least to check the 
performance of CHS members of several slenderness values under flex-
ural buckling, e.g., for Austenitic grade 1.4318. This is an objective for 
future studies. 

The conclusions of this study are based on assumption there is very 
similar output in results while for the second stage of nonlinear material 
description of stainless steel, either the equation which uses 1% proof 
stress, or the equation which utilizes the corresponding ultimate stress is 
used. This assumption appears to be applicable in the scope of the 
research interest (ultimate resistance value) based on the previous 
research (chapter 3.3). 
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