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Flexural buckling of stainless steel CHS columns: Reliability analysis 
utilizing FEM simulations 
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A B S T R A C T   

This paper presents a numerical investigation of the ultimate limit state of imperfect columns under axial 
compression; the columns are made of stainless steel with a circular hollow cross-section (CHS). The subject of 
interest is the statistical analysis of the ultimate resistance. Statistical characteristics of input material and 
geometric imperfections are taken from the results of experimental research published in the literature. The first- 
order reliability method (FORM) along with geometrically and materially nonlinear imperfect numerical analysis 
(GMNIA) is conducted. The ultimate resistances of CHS columns in flexural buckling obtained from the finite 
element analyses are compared with the design resistances based on the corresponding European standard, 
considering various slenderness values. Two approaches of the initial geometrical imperfection amplitude 
consideration are presented. The influence of correlation between the ultimate resistance of stainless steel col-
umns in compression and input parameters is discussed, with a focus on the geometrical imperfection influence. 
The results may be useful for the verification of the European standard where the flexural buckling curves of 
stainless steel columns are relatively new and thus are based on a relatively weaker theoretical and experimental 
basis compared to carbon steel.   

1. Introduction 

Round tubular steel sections also commonly known as circular hol-
low sections (CHS) are popular due to their multi-purpose possibilities in 
civil engineering. The uniform distribution of the material within the 
section around the polar axis increases the torsional resistance, improves 
the bi-axial bending resistance, and minimizes the exposed external 
area, therefore reducing maintenance requirements. The possibilities of 
CHS applications for engineering purposes are numerous, from more 
common structural members to composite steel-concrete members used, 
e.g., in offshore structures [1]. 

The material of stainless steel was first introduced as “rustless steel” 
in 1912–1913 [2], and ever since the popularity of this material has been 
rising. The most frequently used grades of the stainless steel materials 
are ferritic, austenitic, and duplex; all differing in chemical composition 
(most importantly in the content of chromium and nickel) [2]. The 
corrosion resistance is convenient for various facade applications of this 
material, e.g., in Nascar Hall of Fame (2010), in Charlotte, North Car-
olina, U.S., Museum of Contemporary Art (2012), Cleveland, U.S., or 
Investcorp Building at St. Anthony’s College (2015), Oxford, U.K. From 

the structural engineering point of view, a more suitable use of this 
material for load-bearing members is involved, e.g., in the composite 
duplex stainless-steel arch bridge in Cala Galdana on the island of 
Menorca, Spain (2005) [3], or in the UK’s first stainless-steel vehicular 
bridge in Pooley Bridge (2020). The use of stainless steel is cost-effective 
in structures exposed to aggressive environments [4], e.g., in the con-
struction of bridges or offshore structures. Recently, even methods of 
additive manufacturing (also referred to as 3D printing) have been 
experimentally and numerically investigated. The cross-sectional 
behaviour of CHS produced by powder bed fusion (PBF) from Grade 
316 L stainless steel powder is presented in a study by Zhang et al. [5]. 

Several recent studies of the stainless steel CHS members in buckling 
deal with the fire resistance performance of these members, e.g., the 
study by He et al. [6], Martins et al. [7], Mohammed and Cashell [8], or 
by Mohammed and Afshan [9] who investigated not only CHS but also 
SHS and RHS (square and rectangular hollow section, respectively). 
Residual strengths of stainless steel CHS columns after fire exposure 
were studied by He et al. [10]. These studies [6–10] concluded that, for a 
significant fraction of specimens, the design rules of the appropriate 
European standard (EC 3) [11] provide rather scattered and often unsafe 
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predictions of flexural buckling strengths for stainless steel CHS mem-
bers after fire exposure. 

Not only might the standardized design not be conservative enough 
under extreme loading conditions, but the EC3 [11] design methods are 
unsafe in predicting the flexural buckling resistance of CHS members for 
certain slenderness values in general, as has already been pointed out in 
several studies, e.g., by Young and Hartono [12], Rasmussen and Ron-
dal. [13], Ashraf et al. [14], Theofanous et al. [15], Shu et al. [16] or 
Young and Ellobody [17,18]. Also, the flexural buckling performance of 
hot-rolled duplex stainless steel CHS columns has been recently inves-
tigated using a comprehensive experimental and numerical program by 
Ning et al. [19], with the same conclusion, which was mainly caused by 
a lack of appropriate CHS experimental data at the creation time of the 
corresponding EC 3 standard [13]. Mainly RHS and SHS experimental 
data were considered for the EN flexural buckling curve calibration, 
however, increased material strength in hardened corner areas of the 
RHS and SHS profiles resulted in an overall different performance 
compared to that in CHS sections [20]. The current stainless steel pro-
duction technology is different and generally better than the former 
carbon steel technology. Also, the technology of stainless steel produc-
tion has been improving over the last decade, and this might influence 
the coefficients utilized in the current design approach especially for 
short bars where buckling does not play an important role. Therefore, 
the current design approach of stainless steel members per the EC 3 
standard [11] still requires more precise calibration of the coefficients 
utilized throughout the design process itself, such as the partial safety 
factors, or more suitable values of limit slenderness (which is the main 
objective of this study), or various other coefficients to sustain the 
required level of structural reliability. 

Existing test results of the stainless steel CHS members in compres-
sion have been documented, e.g., by Rasmussen and Hancock [21], Talja 
[22], Burgan et al. [23], Rasmussen [24], Kuwamura [25], Gardner and 
Nethercot [26], Lam and Gardner [27], Uy et al. [28], or Zhao et al. 
[29,30]. The major focus of these researchers was predominantly on 
austenitic grades of stainless steel stub column results. The duplex grade 
of stainless steel CHS stub column tests were conducted, e.g., by Bardi 
and Kyriakides [31], or Paquette and Kyriakides [32], while the ferritic 
material was tested by Stangenberg [33]. Comprehensive experimental 
and numerical studies of different CHS columns in compression of a wide 
range of member slenderness (considering several material grades) were 
carried out by Buchanan et al. [34]. Loading eccentricities of the CHS 
members exposed to flexural buckling were later introduced and 
investigated in detail in a subsequent study of Buchanan et al. [35]. 

Several design provisions in CHS member compression capacity were 
recommended. Different flexural buckling curve alternations were pro-
posed, e.g., by Rasmussen and Rondal [13], Theofanous et al. [15], 
Young and Ellobody [17], or Buchanan et al. [34]. In a recent study by 
Xu et al. [36], a machine learning algorithm was adopted to develop a 
unified design method suitable for various stainless steel grades and 
failure modes of CHS columns. Another unified approach for assessing 
the structural behaviour of austenitic and ferritic stainless steel CHS 
columns under eccentric loading was proposed by Ma et al. [37]. 

In this paper, failure due to flexural buckling of austenitic stainless 
steel CHS columns is being investigated using advanced numerical 
geometrically and materially nonlinear analyses with imperfections 
(GMNIA) using the ANSYS software [38]. The first-order reliability 
method (FORM) by the European standard EN 1990-1-1 [39] is con-
ducted to obtain the flexural buckling design resistances based on the 
finite element analyses. The required statistical values of material pa-
rameters are adopted in accordance with the recent statistical research 
of stainless steel members by Arrayago et al. [40]. 

The ultimate design resistances of CHS columns in flexural buckling 
obtained from the advanced numerical analyses are compared with the 
design resistances based on EN 1993-1-4 [11], for different slenderness 
values. Moreover, the EN design resistance with consideration of the 
conditions for the flexural buckling curve proposed by Buchanan et al. 

[34] is discussed. This design provision was chosen by researchers from 
the available ones [13,15,17,36,37] based on its very simple utilization 
and probably the most feasible possibility of future implementation into 
the current European standard EC 3 [11]. 

Two approaches with different statistical values of the initial 
geometrical imperfection amplitude e0 are presented, lognormal and 
normal distributions referred to as the #LN and #G approach, respec-
tively. Correlation between the ultimate resistance of stainless steel 
columns in compression and input parameters is discussed, with a focus 
on the influence of e0. 

Lognormal distribution of geometric imperfection has also been 
considered in a study by Chen et al. [41], who analysed concrete-filled 
steel tubular (CFST) trusses under flexural loading, where the initial 
steel imperfection amplitude was randomly scaled using Monte-Carlo 
and LHS methods, based on corresponding statistics. In addition to the 
steel imperfection, two other concrete imperfections were introduced 
[41] (binominal to determine its presence and Weibull for the ampli-
tude). In this paper, there is only one geometrical imperfection, which is 
always present, and in the #LN approach, the values are based on 
suitable statistic data [40]. The initial imperfection could also be 
modelled as a linear combination of several scaled buckling modes, as 
described by Chen et al. [42], where this approach has been utilized for 
more complex structures with several components (truss structure). In 
this study, only one buckling mode is utilized to introduce the 
geometrical imperfection. This is sufficient due to the rather simple 
geometry of the pin-ended column analysed in this study. 

2. Determination of the ultimate resistance 

2.1. Design resistance values of members in flexural buckling 

The design process in accordance with Eurocode EN 1993-1-4 [11] 
was used to determine the design resistance values of the members 
exposed to flexural buckling under the compressive loading. The design 
buckling resistance of a compression member Nb,Rd for cross-section 
classes 1–3 is considered as: 

Nb,Rd = χ∙A∙σ0.2,n

γM1
(1)  

where γM1 is a partial factor for resistance of members to instability 
assessed by member checks (buckling resistance) [11]. The recom-
mended value for stainless steel members γM1 = 1.1 was used. A is the 
cross-section area, σ0.2,n is the 0.2% proof stress (nominal value), and χ is 
the reduction factor for the relevant buckling mode defined as: 

χ = min

⎧
⎪⎨

⎪⎩
1.0;

1

ϕ +
[
ϕ2 − λ2

]0.5

⎫
⎪⎬

⎪⎭
(2)  

where the value of ϕ is defined as: 

ϕ = 0.5
[

1+ α
(

λ − λ0

)

+ λ2
]

(3)  

where α is an imperfection factor considered as α = 0.49, λ0 is the 
limiting slenderness with the value λ0 = 0.4, and λ is the global 
slenderness. 

In this study, columns exposed to flexural buckling of 15 different 
global slenderness λ are analysed. According to EN 1993-1-4 [11], the 
analysed cross-section CHS 80 × 1.5 is classified as class 1, therefore the 
global slenderness values λ are calculated using Eq. (4), which is suitable 
for cross-sections of classes 1–3 [11]: 

λ =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
A∙σ0.2,n∙L2

π2∙E∙I

√

, (4) 
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where σ0.2,n is the 0.2% proof stress (nominal value), E is elastic Young’s 
modulus, A is the cross-section area and I is the second-moment area of 
the CHS 80 × 1.5. L is the effective structural length of the column 
(knife-edge included). 

The austenitic stainless steel of material grade EN 1.4307 [43] is 
considered for the evaluation of the structural resistance (in the product 
form of a hot rolled plate). Nominal values of this material were 
considered by Eurocode [11]: the 0.2% proof stress σ0.2,n = 200 MPa and 
the ultimate stress as σu,n = 500 MPa. Young’s modulus value of the 
considered austenitic steel is E = 200 GPa (chapter 2.1.3. from [11]). 

The analysed slenderness ratios are summarized in Table 1. 

2.2. Structural reliability 

In order to perform the reliability analysis of the CHS 80 × 1.5 col-
umns loaded axially in compression, the first-order reliability method 
(FORM) along with a semi-probabilistic approach is adopted. In this 
approach, only the distribution of the structural resistance is known and 
is treated as a stochastic variable. A fully probabilistic approach would 
entail the modelling of the load as a stochastic variable as well. Since 
random variables are statistically uncorrelated, the resistance can be 
studied independently of the load. 

Reliability design conditions of the European standard EN 1990 [39] 
are based on the FORM method, which has become one of the most 
important methods to evaluate structural reliability, especially when 
combined with the finite element method (FEM), as discussed, e.g., by 
Faber [44] or Zhao and Ono [45]. The concept of the FORM method is 
described, e.g., in [46–48] 

The expression of the structural reliability is stated as a function of 
the random load effect E and the random resistance R. Safety margin M 
is defined as: 

M = R − E ≥ 0 (5) 

The probability of a failure is then expressed as: 

Pf = P(R < E) = P(R − E < 0) = P(M < 0) (6) 

It is assumed that E, R are statistically independent variables; both 
with Gauss probability density functions (pdf) with the standard de-
viations σE, σR and mean values μE, μR, respectively. The safety margin M 
is also in the shape of Gauss pdf defined by standard deviation σM and 
mean value μM, and is expressed as: 

μM = μR − μE (7)  

σM =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
σR

2 + σE
2

√
(8) 

The integration of the probability density function (pdf) of a random 
variable M expresses the probability of R − E = M < 0 as: 

Pf =

∫ 0

− ∞
fMdm = Φ

(
0 − μM

σM

)

= Φ( − β) (9)  

where Φ() is the normalized cumulative Gauss distribution and the ratio 
μM/σM is the reliability index β. The required value of the reliability 
index of structural members (50 years reference time, safety level of 
reliability class RC2) according to the standard EN 1990 [39] is βd = 3.8, 
and the probability of failure is then determined as Pf = Φ(− 3.8) = 7.2 ⋅ 

10− 5. The reliability is in general verified by the formula: 

β =
μM

σM
≥ βd (10) 

This equation, when substituted into the Eq. (9), represents the 
condition of the probabilistic design Pf < Pfd, where Pfd is the target 
value of the failure probability [39]. Eq. (10) can be transformed for 
feasible practical use by the introduction of the FORM sensitivity factors 
αE, and αR. These are obtained from the Eq. (8): 

σM =
σR

2 + σE
2

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
σR

2 + σE
2

√ =
σR

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
σR

2 + σE
2

√ σR +
σE

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
σR

2 + σE
2

√ σE (11)  

σM = αRσR +αEσE (12) 

The European standard [39] allows the use of αR and αE as constants 
with values αR = 0.8 and αE = 0.7. For common values of σR and σE 
(conditions of the common design), this simplification leads to σM ≈ 0.8 
σR + 0.7 σE. By substituting the Eqs. (7) and (12) into the Eq. (10), the 
design condition of reliability is obtained as: 

μE + αEβdσE ≤ μR − αRβdσR, (13)  

where the left side expresses the design load Ed and the right side the 
design value of the resistance Rd: 

Rd = μR − 0.8βdσR (14) 

The expression for the probability that the structural resistance is 
lower than the design value is: 

P(R ≤ Rd) = Φ
(

μR − αRβdσR − μR

σR

)

= Φ( − αRβd) (15) 

In this study, for the FORM sensitivity factor for the resistance αR =

0.8 and the adopted value of the reliability index β = βd = 3.8, the 
probability that the structural resistance is lower than the design resis-
tance determined by Eq. (13) is Φ(− 0.8⋅3.8) = 0.118%. This value can 
be approximately applied as a 0.1% quantile of resistance pdf [49–52]. 
Therefore, the quantile resistance values discussed in this study are 
determined by the use of Eq. (13). 

3. Numerical finite element model 

Parametrized numerical finite element models were created utilizing 
the ANSYS Classic technology (v.20) [38] along with APDL macros. The 
number of input variable parameters was ten (three geometrical pa-
rameters, the amplitude of the initial global geometrical imperfection, 
and seven material parameters, as described in detail in the following 
chapters). 

3.1. Model geometry and boundary conditions 

The columns of the circular hollow section (CHS) are considered pin- 
ended, therefore simply supported, with hinges in one direction at both 
ends of the columns (roty ∕= 0, see Fig. 1). The cross-section is CHS 80 ×
1.5 (the reason for this geometry is explained in chapter 3.4). The 
parameter D (nominal value of outer tube diameter) is defined by the 
mean value of 80 mm and the coefficient of variation (CoV) equal to 
0.44%. The parameter t (nominal value of tube wall thickness) is 
considered by the mean value of 1.5 mm, and the CoV of 4.58%. The 
mean values and CoV of diameter D and the thickness t are considered 
based on the research by Kala et al. [53]. Fifteen different values of the 
effective structural length L (additional knife edge lengths included) are 
considered, to analyse the sufficiently large scale of the slenderness 
(0.2–1.8). The standard deviation of the structural length is 0.5 mm 
(considered as half of the smallest part of the regularly used length of 
measuring devices). 

The pin-ended column boundary condition was simulated by 

Table 1 
Structural lengths L of the analysed columns and slenderness ratios.  

λ [− ]  L [m] λ [− ]  L [m] λ [− ]  L [m] 

0.20 550 0.69 1900 1.20 3300 
0.31 850 0.80 2200 1.29 3550 
0.40 1100 0.89 2450 1.38 3800 
0.49 1350 0.98 2700 1.60 4400 
0.60 1650 1.09 3000 1.81 5000  
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connecting the circumferential nodes of the CHS tube end in the radial 
direction with a single node located on the tube longitudinal axis (at 
both ends). The distance of this node from the cross-sectional plane of 
the column end is known as the knife-edge length, considered as 75 mm 
for both ends of the column. These connections between nodes are 
modelled adopting rather stiff beam elements. For the bottom node, only 
rotation along the y-axis of the global coordinate system (GCS) is 
allowed, all other degrees of freedom are constrained. For the upper 
node, the translation along the z-axis of the GCS (CHS tube axis) is 
prescribed to provide the loading conducted by a displacement. 

Four-node structural shell finite elements (SHELL 181), with six 
degrees of freedom (DoF) per node (three translational and three rota-
tional), were used for the description of the geometry of the CHS col-
umns numerical model. One integration point in a planar view (three 
through the element thickness) has been considered (reduced integra-
tion), along with the hourglass control feature. The stiffness of these 
elements consists of membrane and bending parts (Mindlin-Reissner 
theory), and the transverse shear deformation effect is adopted as linear. 
Bathe-Dvorkin shear strain formulation is utilized to alleviate shear 
locking [38]. 

Geometrically, all the shell elements of the CHS columns along the 
tube are rectangles, with a maximal edge size of 8 mm along the tube 
circumference (in the tangential direction) and 10 mm in the longitu-
dinal direction parallel to the z-axis of the GCS (in Fig. 1). 

A previous study by Jindra et al. [54] revealed, that FEM analysis 
using the element formulation described above resulted in a good 
agreement with the experimental data, and provided a sufficient balance 
between the accuracy of results and the computational time demand. 

3.2. Initial geometrical imperfections 

The forms of the lowest global buckling modal shapes obtained from 
the prior modal analyses were utilized to incorporate the initial global 
geometrical imperfection e0 into the numerical finite element model. 
The imperfection has the shape of a half-wave sine function with an 
amplitude e0, see Fig. 2. The e0 limits L/750 or L/1000 according to the 
standards [55–57] are independent of the steel grade or type [58]. 

In this article, two approaches with different distributions of the 
initial geometrical imperfection amplitudes are used, the lognormal 
(approach #LN) and normal (Gauss, approach #G). 

The approach #G is based on the tolerance limits ±L/1000. The 
approach #G uses the mean value of the initial geometrical imperfection 

e0,mean = 0, and the standard deviation e0,st.dev = L/1960, where 95% of 
observations of amplitude e0 lie within the tolerance limits ±L/1000, see 
e.g. [46,48,59,60]. Although these statistics are used for hot-rolled 
carbon steel members [46,48,59,60], they may not be valid for stain-
less steel members, see the statistical research by Arrayago et al. [40]. 

The #LN approach is based on statistical research [40], where a non- 
zero value of e0,mean = L/3484 was utilized along with e0,st.dev = L/6056. 

The standard deviation of stainless steel members is up to three times 
lower. This can have a great effect on the design resistance of the col-
umns with intermediate slenderness. Based on statistics [40], it is 
possible to propose the introduction of a new tolerance limit L/1666 for 
stainless steels, which can replace the classic tolerance limit L/1000, see 
Fig. 3. This article highlights this difference and compares the effect of 
both approaches on the design resistance using statistical analysis. 

The local initial geometrical imperfections were neglected. In com-
parison to cold-rolled stainless steel sections, hot-formed columns 
typically have cross-sections with lower values of local slenderness and 
generally do not fail through the interactions of local and overall 
buckling modes [61]. The influence of the local geometrical 

Fig. 1. Numerical FEM model of CHS column; mesh geometry.  

Fig. 2. Example of modal analysis results; 1st eigenmode to determine global 
imperfection. 

Fig. 3. Example of tolerance limits and statistics of approaches #G and #LN for 
strut with non-dimensional slenderness one. 
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imperfections is not so significant for the global structural response of 
the analysed CHS columns [54]. 

3.3. Material model 

A stress-strain relation proposed by Ramberg and Osgood [62] is 
suitable to describe the material behaviour of the austenitic stainless 
steel. The relation was modified by Hill [63] and was adopted in this 
study as: 

ε =
σ
E0

+ 0.002∙
(

σ
σ0.2

)n

(16)  

where ε and σ are engineering strain and stress, respectively, σ0.2 is the 
0.2% proof stress, E0 is the elastic Young’s modulus of the material, and 
n is an exponent parameter to describe the strain-hardening. It was 
revealed that the stress values above the σ0.2 are overestimated when 
using this one-stage material curve [64]. Therefore, a compound two- 
stage stress-strain relation devised by Mirambell and Real [65] was 
later adopted, which provided a better agreement with the experimental 
data for stresses larger than the 0.2% proof stress value. A certain 
modification of the second stage was proposed by Gardner [26]: 

ε =
σ − σ0.2

E0.2
+

(

εtu − εt0.2 −
σu − σ0.2

E0.2

)

∙
(

σ − σ0.2

σu − σ0.2

)m

+ εt0.2 ⇔ σ > σ0.2

(17)  

where σu is the ultimate stress of the stainless steel material, εtu is the 
total strain at the ultimate stress, εt0.2 is the total strain at the 0.2% proof 
stress, m is an exponent parameter to describe the strain hardening 
above the σ0.2 value, and E0.2 is the tangent modulus (stiffness) at the 
σ0.2 stress defined as: 

E0.2 =
E0

1 + 0.002∙n∙
E0

σ0.2
(18) 

The multilinear material model with isotropic hardening (Von Mises 
plasticity yield surface criterion) was adopted during the numerical 
analyses. The analytical material curve is discretized considering a 
sufficiently small step in order to utilize the multilinear description. A 
more detailed description of this material model implementation pro-
cess is described in the author’s previous study [66]. The transfer from 
the nominal (engineering) stress-strain material curves into the true 
(logarithmic) stress-strain material dependences were considered to be 
in match with the process of the geometrically nonlinear analysis [38]: 

σtrue = σnom∙(1+ εnom) (19)  

εtrue = ln(1+ εnom) (20)  

where σnom and εnom are nominal (engineering) stress and strain 
respectively, σtrue is the true stress and εtrue is the true total (mechanical) 
strain. Values of the εnom were introduced with the negative sign for the 
compressive material properties, which results in a negative tangent of 
the stress-strain material curve from a certain point. Such a definition is 
however not feasible utilizing the isotropic hardening [38]. Therefore, 
the definition of ideal plasticity (small positive tangent practically close 
to 0.0) was used after the point of the peak stress (Fig. 4). 

The maximum sensitivity of ultimate resistance to the residual stress 
occurs for the non-dimensional slenderness of 0.8 in the case of flexural 
buckling of a hot-rolled member with cross-section IPN 200 [60]. The 
maximum sensitivity to initial geometric imperfection occurs for non- 
dimensional-slenderness of 1.1 [60]. The sensitivity to the residual 
stress and initial geometric imperfection is low for very short or very 
slender columns, independent of the cross-section. The absolute effect 
on resistance is given by the magnitude of the residual stress and 
redistribution across the cross-section during stressing. Not very signif-
icant values of the membrane residual stresses were observed in hot 

rolled CHS members, therefore it is possible to neglect these stresses 
[67]. Besides initial geometric imperfection, welding residual stress and 
deformation can also affect the column resistance, which might be 
crucial for intermediate slenderness (non-dimensional slenderness 
around 1.0). The resistance of very slender columns is less sensitive to 
these influences, because the stress at the load level, which is equal to 
the ultimate resistance, is relatively small. Through-thickness residual 
stresses are implicitly incorporated by considering the measured values 
of the material properties [68] (in this study values based on statistical 
data) or indirectly incorporated by initial geometrical imperfections 
[40]. The mean values and CoV of the material parameters utilized in 
this study are based on the comprehensive statistical study by Arrayago 
et al. [40]. The parameter values are based on the corresponding tables 
from this study for the austenitic stainless steel material. 

3.4. Numerical model validation 

The numerical finite element model of the CHS column in flexural 
buckling analysed in this study was previously validated in a study by 
Jindra et al. [54]. Data from a comprehensive experimental program 
conducted at Imperial College London (ILC) and Universitat Politècnica 
de Catalunya (UPC) have been obtained from a study by Buchanan et al. 
[34]. The physical experiments included 37 various stainless steel col-
umns subjected to flexural buckling. The specimens differed in structural 
length, material grades, and cross-sectional dimensions. Five different 
CHS cross-sections have been experimentally analysed and are well 
documented by Buchanan et al. [34]: 80 × 1.5, 88.9 × 2.6, 101.6 × 1.5, 
104 × 2, and 106 × 3. In this study, one of the CHS geometries previ-
ously utilized for the numerical model validation [54] was considered 
for the subsequent reliability analysis presented in this paper. CHS 80 ×
1.5 was preferred due to its smallest cross-sectional area, resulting in 
shorter columns (for each of the fifteen considered slenderness values) 
compared to CHS of larger geometries. Therefore, fewer finite elements 
were considered for the adopted mesh size resulting in savings in the 
computational time of each random realization. This is generally more 
effective when a large number of numerical analyses need to be 
conducted. 

In both studies [34,54], two sets of material property values (noted 
as TP - based on tensile properties, and SCP – based on the stub column 
properties) were considered, which is explained in more detail in the 
study by Buchanan et al. [54], and the numerical models are validated 
for each of these sets of material parameters separately in both studies 
[34,54]. Both validations are conducted utilizing the mean (averaged) 
value of the normalized ultimate resistances, which is determined as: 

Fig. 4. Material model verification by one element uniaxial tests.  
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Nu,norm,AM =
1

37
∑37

i=1

(
Nu,FE,i

Nu,exp,i

)

(21)  

where Nu,exp,i is the ultimate resistance based on the physical i-th 
experiment, Nu,FE,i is the ultimate resistance obtained from the corre-
sponding i-th numerical FEM simulation, and the number 37 indicates 
the total number of conducted experiments. The average value of the 
normalized ultimate resistance along with the standard deviation bars of 
the normalized resistances set utilizing the SCP material properties are 
graphically depicted in Fig. 5. The performance of the TP material 
properties had only a slightly higher standard deviation [34,54]. The 
average value of the normalized ultimate resistance is 0.998 (standard 
deviation 0.050) in the validation study [54] and 1.013 (standard de-
viation 0.047) in the study by Buchanan et al. [34]. These normalized 
values are very close to 1, with rather small values of the standard de-
viation. This indicates, that a very good agreement between the physical 
experiments and numerical simulations was achieved. Therefore, the 
numerical FEM models might be considered as properly validated [54] 
and suitable for the reliability analysis presented in this paper. 

4. FEM simulations and statistic verification 

4.1. Statistical parameters 

The statistical information about the material and geometric 
parameter values of the analysed CHS columns is required to conduct a 
reliability analysis utilizing GMNIA (geometrically and materially 
nonlinear analyses with imperfections). 

All the required statistics for material parameters were based on the 
comprehensive statistical study by Arrayago et al. [40], as well as the 
initial imperfection amplitude e0 for the #LN approach. The statistics for 
geometrical parameters were based on a study by Kala et al. [53]. In the 
#G modelling approach, it is assumed that 95% of the random imper-
fection realizations are within the tolerance limits of ±L/1000. The 
standard deviation of the initial geometrical imperfection σe under this 
assumption results in L/1960, see e.g., Jönsson et al. [46]. The mean 
values along with the standard deviations of all the input parameters are 
summarized in Table 2, as well as the utilized distribution type of the 
parameter’s pdf. The mutual dependence between material parameters 
is adopted in accordance with the correlation matrix provided by 
Arrayago et al. [40]. The correlations between material and all other 
parameters, geometrical parameters D, t, L, and the initial geometrical 
imperfection e0, are neglected. Also, these remaining parameters are 
considered as mutually statistically independent. An example of a cor-
relation matrix of all the input parameters is provided in Fig. 6. 

For the stainless steel material, the Poisson ratio is used as constant v 

= 0.3. This constant is assumed analogically to the standard carbon steel 
material in accordance with the results of a stochastic sensitivity anal-
ysis by Kala [69]. 

4.2. Numerical FEM simulations 

Numerical finite element simulations are performed for all the 15 
different flexural buckling relative slenderness ratios λ (Table 1), each 
with 200 samples of the CHS columns. 

These 200 random realizations of the 10 random inputs (6 material 
parameters, 3 geometric, and the initial imperfection e0) were generated 
using the Advanced Latin Hypercube Sampling (ALHS) method. Utiliz-
ing ALHS, the correlation errors are minimized by the strategies of 
stochastic evolution [70]. In the standard Latin Hypercube Sampling 
(LHS) method [71], the representation of the input distributions and the 
specified input correlations is also very accurate, and the minimization 
of undesired correlations is performed utilizing the method in accor-
dance with Iman and Conover [72]. For a smaller number of input 
variables, ALHS is recommended [73]. Software OptiSLang [73] was 
used to manage the ALHS sampling and communication with the ANSYS 
solver. 

Each numerical simulation was conducted using both approaches of 
distribution type (#G and #LN) of the initial geometrical imperfection 
e0. This corresponds with 15⋅2⋅200 = 6000 numerical simulations in 
total. For each of the 15 slenderness values of each e0 modelling 
approach (#LN, #G), brand new values for all 200 random realizations 
of each input parameter were generated. 

The ultimate compressive force Nu was obtained for every single 
simulation in order to create the database for the subsequent probabi-
listic determination of the 0.1% quantile. The ultimate compressive 
force Nu of each numerical simulation is considered as the maximal 
value of the force-displacement curve. An example of force- 
displacement curves is provided also in Fig. 7. In this example, the 
curve marked as the “mean value” of the force-displacement curves is 
determined by techniques of averaging the corresponding values of the 
function range f(ux) for the values of the function domains ux [73]. The 
maximum of the “averaged curve” is not considered for further 
processing. 

4.3. Statistic verification 

The Gaussian distribution of the results was verified to check the 
statistical validity of the results. This was conducted by testing the data 
from each relative slenderness value for each approach (#G and #LN) 
separately. The Chi-square distribution test or the so-called “goodness- 
of-fit” test [74] was utilized to confirm the assumption that the 
considered population sample has a certain probability distribution. The 
testing result revealed that the hypothesis of Gauss distribution of the 
results (1% significance level) was not rejected. The test was also con-
ducted with the shifted lognormal and Hermite distributions. The Chi- 
square distribution testing concluded that the ultimate resistance re-
sults obtained from the numerical finite element simulations can be 
considered as normally distributed in all slenderness cases. In most (but 
not all) cases, Hermite or shifted lognormal distributions could be 
feasibly adopted in accordance with the conducted “goodness-of-fit” 
test. 

5. Reliability analysis 

The ability of a structure or a structural member to fulfil the specified 
requirements during the whole design working life of this member is 
known as reliability, as described by EC 0 [39]. Regarding the ultimate 
limit state, the reliability could be interpreted as the ability to withstand 
the load effects of the member. 

In accordance with B.3.2(2) of annex B from the EN 1990 [39], the Fig. 5. Numerical FEM model validation.  
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reliability classes RC1-RC3 may be associated with the consequence 
classes CC1-CC3, respectively. For the RC2 (corresponds with the CC2) 
and 50 year reference period, table B2 [39] recommends a minimal 
value of the reliability index βd = 3.8. Chapter C.7(3) of annex C of EN 
1990 [39] then allows consideration of the FORM sensitivity factor for 
the resistance as αR = 0.8. The probability that the resistance would be 
lower than the design value is: 

Φ( − αRβd) = Φ( − 0.8∙3.8) = 0.1183% (22) 

The value corresponds approximately with the 0.1% quantile of the 
resistance distribution and is applicable for the comparison of the results 
between the reliability analysis and the resistances calculated in 
accordance with the EC 3 [11] (also described in chapter 2.1 of this 
paper). For each data set, the resistance simulation database, the stan-
dard deviation σR, and the mean value μR of the 200 realizations are used 
to determine the 0.1% resistance quantile R0.1%, defined as: 

R0.1% = μR − αRβdσR = μR − 0.8∙3.8∙σR (23)  

6. Results 

The results of all the numerical simulations (ultimate compressive 
forces Nu) in the form of statistical parameters (standard deviation, 
mean value, 0.1% quantiles, etc.) are summarized in Table 3 and Table 4 
for modelling approaches #LN and #G respectively. For several slen-
derness values, the standard skewness resulted in negative values. 
Therefore, the shifted lognormal distribution (along with the corre-
sponding 0.1% quantile of the pdf) is not applicable for these cases. The 
values in the “EC 0” columns of these tables are obtained utilizing Eq. 
(14) (analogically Eq. (23)), and the values in the “EC 3” columns are 
calculated using Eq. (1) (chapter 2.1 of this paper). 

The standard skewness and standard kurtosis show a relatively high 
statistical error due to a relatively small number of ALHS simulations 
(200 runs). This is reflected also in the 0.1% quantile estimations for the 
Shifted lognormal and Hermite distributions. Consequently, the con-
clusions are made using only Gauss pdf along with the 0.1% quantile of 
Gauss distribution. 

The graphical comparison of the GMNIA FORM results with the 
continuous flexural buckling curve in accordance with the EC 3 design 
approach is depicted in Fig. 8. Additionally, the flexural buckling curve 
in accordance with the EC 3 considering the design provisions proposed 
by Buchanan et al. [34] is plotted. The only difference between these 
two flexural buckling curves is in the adoption of a different limit 
slenderness value λ0. For the “EC 3” curve, this value is considered as 0.4 
[11], and for the “EC 3 + Buchanan” curve as 0.2 [34]. The value is used 
in Eq. (3) (see chapter 2.1). 

The Pearson (linear) correlation between Nu and e0 was investigated, 
and the values are graphically depicted in Fig. 9 and Fig. 10 for the e0 
modelling approaches #LN and #G respectively. 

Some specific aspects of modelling can be commented on in more 
detail. As a consequence of the zero mean value of the initial global 
geometrical imperfection e0 (modelling approach #G), few random re-
alizations of e0 resulted in very small values of e0, essentially 0. Load- 
deflection curves for 3 of these cases (of slenderness 0.2, 0.3, and 1.1) 
are depicted in Fig. 11. Horizontal displacements (in global x-direction) 
of the slenderness 0.3 are graphically depicted in Fig. 12 in 3 different 
points (#A0, #A1, and #A2). Point #A0 is the point with the maximal 
value of the mid-height lateral deflection ux in the direction opposite to 
the direction of the introduced initial global geometrical imperfection 
e0. Hence the minus value in the graph (Fig. 11), even though according 
to the GCS the displacement is positive (Fig. 12). The introduced 

Table 2 
Statistical geometric and material parameters.  

Approach Parameter Unit Mean value St. dev. Distribution type 

#G, #LN Diameter D [mm] 80 0.3538 Normal 
#G, #LN Thickness t [mm] 1.5 0.0687 Normal 
#G, #LN Structural length L [mm] various 0.5 Normal 
#G, #LN Young’s Elastic modulus E [GPa] 195.416 11.175 Normal 
#G, #LN Exponent parameter m [− ] 2.3 0.3 Lognormal 
#G, #LN Exponent parameter n [− ] 10.6 1.8 Lognormal 
#G, #LN Ultimate strain εu [− ] 0.49 0.06 Normal 
#G, #LN Ultimate stress σu [MPa] 575 20 Lognormal 
#G, #LN 0.2% proof (yield) stress σ0.2 [MPa] 244 15 Lognormal 
#G Initial imperfection e0 [mm] 0 L/1960 Normal 
#LN Initial imperfection e0 [mm] L/3484 L/6056 Lognormal  

D e 0 E L t σ u ε u σ 0.2 m n
1, 000 0, 013 0, 012 0, 029 0, 009 0, 019 - 0, 061 0, 036 0, 035 0, 015

1.00 0.01 0.01 0.03 0.01 0.02 -0.06 0.04 0.04 0.01
1, 000 0, 013 0, 012 0, 029 0, 009 0, 019 - 0, 061 0, 036 0, 035 0, 015

0, 013 1, 000 - 0, 006 0, 054 0, 040 - 0, 018 0, 060 - 0, 044 - 0, 028 - 0, 034

0.01 1.00 -0.01 0.05 0.04 -0.02 0.06 -0.04 -0.03 -0.03
0, 013 1, 000 - 0, 006 0, 054 0, 040 - 0, 018 0, 060 - 0, 044 - 0, 028 - 0, 034

0, 012 - 0, 006 1, 000 - 0, 046 - 0, 019 - 0, 114 0, 300 - 0, 158 - 0, 201 0, 028

0.01 -0.01 1.00 -0.05 -0.02 -0.11 0.30 -0.16 -0.20 0.03
0, 012 - 0, 006 1, 000 - 0, 046 - 0, 019 - 0, 114 0, 300 - 0, 158 - 0, 201 0, 028

0, 029 0, 054 - 0, 046 1, 000 - 0, 040 - 0, 018 - 0, 001 - 0, 011 - 0, 007 0, 048

0.03 0.05 -0.05 1.00 -0.04 -0.02 0.00 -0.01 -0.01 0.05
0, 029 0, 054 - 0, 046 1, 000 - 0, 040 - 0, 018 - 0, 001 - 0, 011 - 0, 007 0, 048

0, 009 0, 040 - 0, 019 - 0, 040 1, 000 0, 009 0, 008 - 0, 008 0, 015 - 0, 020

0.01 0.04 -0.02 -0.04 1.00 0.01 0.01 -0.01 0.01 -0.02
0, 009 0, 040 - 0, 019 - 0, 040 1, 000 0, 009 0, 008 - 0, 008 0, 015 - 0, 020

0, 019 - 0, 018 - 0, 114 - 0, 018 0, 009 1, 000 - 0, 513 0, 801 0, 359 - 0, 325

0.02 -0.02 -0.11 -0.02 0.01 1.00 -0.51 0.80 0.36 -0.32
0, 019 - 0, 018 - 0, 114 - 0, 018 0, 009 1, 000 - 0, 513 0, 801 0, 359 - 0, 325

- 0, 061 0, 060 0, 300 - 0, 001 0, 008 - 0, 513 1, 000 - 0, 751 - 0, 435 0, 155

-0.06 0.06 0.30 0.00 0.01 -0.51 1.00 -0.75 -0.43 0.16
- 0, 061 0, 060 0, 300 - 0, 001 0, 008 - 0, 513 1, 000 - 0, 751 - 0, 435 0, 155

0, 036 - 0, 044 - 0, 158 - 0, 011 - 0, 008 0, 801 - 0, 751 1, 000 0, 466 - 0, 327

0.04 -0.04 -0.16 -0.01 -0.01 0.80 -0.75 1.00 0.47 -0.33
0, 036 - 0, 044 - 0, 158 - 0, 011 - 0, 008 0, 801 - 0, 751 1, 000 0, 466 - 0, 327

0, 035 - 0, 028 - 0, 201 - 0, 007 0, 015 0, 359 - 0, 435 0, 466 1, 000 - 0, 292

0.04 -0.03 -0.20 -0.01 0.01 0.36 -0.43 0.47 1.00 -0.29
0, 035 - 0, 028 - 0, 201 - 0, 007 0, 015 0, 359 - 0, 435 0, 466 1, 000 - 0, 292

0, 015 - 0, 034 0, 028 0, 048 - 0, 020 - 0, 325 0, 155 - 0, 327 - 0, 292 1, 000

0.01 -0.03 0.03 0.05 -0.02 -0.32 0.16 -0.33 -0.29 1.00
0, 015 - 0, 034 0, 028 0, 048 - 0, 020 - 0, 325 0, 155 - 0, 327 - 0, 292 1, 000

D

e 0

E

L

t

σ u

ε u

σ 0.2

m

n

Fig. 6. Example of correlation matrix of all the input parameters, slenderness 
1.0, #LN. 

Fig. 7. Example of Load vs. midheight lateral deflection curves, slenderness 
1.1, #LN. 
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direction of the e0 is opposite to the x-axis of the GCS, as indicated by the 
black arrow in Fig. 12. Points #A1 and #A2 are the global maximum of 
the curve (ultimate resistance Nu) and the last sub-step of the analysis 
respectively. Points #B1, #B2, #C1 and #C2 are marked analogically 
(Fig. 11). Equivalent plastic strains (Von Mises) of the CHS members in 
these selected points are depicted in Fig. 13 for the slenderness 0.3 
(#A1, #A2), Fig. 14 for the slenderness 0.2 (#B1, #B2) and in Fig. 15 for 
the slenderness 1.1 (#C1, #C2). 

For all cases, the scale for equivalent plastic strains was fixed (for 

better comparison) in the interval 0 to 0.25 (25%), with the dark blue 
colour for plastic strains up to 0.002 (0.2% indicating the equivalent of 
the yield point of the stainless steel). The smallest and largest values 
achieved on a specific model are listed above the SMN or SMX scale. The 
grey area (Fig. 14 #B2, for example) represents the zones where the 
upper fixed limit was exceeded. 

The load-deflection curves of two selected cases from all the re-
alizations of modelling approach #LN are depicted in Fig. 16. The global 
maximum of the case with the minimal ultimate resistance Nu from the 
random realizations of the slenderness 0.3 is described as point #D1, 
and the last converged sub-step as #D2 and the equivalent plastic strains 
of these points are depicted in Fig. 17. Analogically, Fig. 18 depicts the 
equivalent plastic strain in points #E1 and #E2 (global maximum and 
last sub-step) of the random realization of slenderness 1.2 which resul-
ted in the highest ultimate resistance value Nu. 

7. Discussion 

7.1. General applicability of the considered CHS cross-section dimension 

In this study, one specific geometry of the CHS cross-section, CHS 80 
× 1.5 has been utilized to conduct the reliability analysis. It is assumed 
that the modelling and the analysis results are also applicable for a wider 
range of CHS geometries. It is however presumed, that for the larger 
thickness of the CHS tube, the coefficient of variation will be slightly 
smaller, as it should be easier to fulfil the tolerance range of the 

Table 3 
Results of the ultimate resistance Nu (kN), approach #LN (lognormal pdf of the e0).  

λ 
[− ]  

Mean 
value 

Standard 
deviation 

Standard 
skewness 

Standard 
kurtosis 

0.1% quantile EC 0 (FORM) 
formula 

EC 3 design 
value 

EC 3 + Buchanan 
et al. [34] 

Hermite Shifted 
lognormal 

normal 

0.20 93.91 8.46 0.42 3.29 70.30 72.36 67.75 68.18 67.26 67.26 
0.31 84.17 6.60 0.10 2.51 67.70 64.73 63.77 64.10 67.26 63.56 
0.40 78.72 5.95 0.31 2.81 63.29 62.83 60.34 60.64 67.26 60.39 
0.49 74.26 5.36 0.06 2.86 58.50 58.17 57.68 57.95 63.65 57.09 
0.60 69.58 4.98 0.12 3.15 54.16 55.01 54.19 54.44 58.92 52.89 
0.69 65.92 4.70 0.39 3.62 51.51 53.80 51.40 51.64 54.66 49.20 
0.80 61.56 4.46 0.16 3.72 46.30 48.78 47.79 48.01 49.27 44.63 
0.89 57.75 4.22 0.20 3.09 45.37 45.88 44.73 44.94 44.73 40.82 
0.98 53.62 3.75 0.07 2.60 43.56 42.38 42.02 42.21 40.34 37.14 
1.09 48.30 3.47 − 0.05 2.44 38.57 # 37.57 37.74 35.47 33.01 
1.20 42.75 3.08 − 0.10 2.92 32.82 # 33.23 33.38 31.15 29.28 
1.29 38.30 2.79 − 0.16 2.89 29.12 # 29.68 29.82 28.00 26.52 
1.38 34.22 2.43 0.02 2.62 27.49 26.79 26.72 26.85 25.23 24.05 
1.60 26.34 1.90 0.04 2.79 20.81 20.57 20.46 20.55 19.91 19.20 
1.81 20.71 1.52 − 0.01 2.82 16.13 # 16.00 16.08 16.03 15.58  

Table 4 
Results of the ultimate resistance Nu (kN), approach #G (normal pdf of the e0).  

λ 
[− ]  

Mean 
value 

Standard 
deviation 

Standard 
skewness 

Standard 
kurtosis 

0.1% quantile EC 0 (FORM) 
formula 

EC 3 design 
value 

EC 3 + Buchanan 
et al. [34] 

Hermite Shifted 
lognormal 

normal 

0.20 93.64 8.43 − 0.02 2.81 68.26 # 67.59 68.01 67.26 67.26 
0.31 83.85 6.70 0.20 3.07 64.33 64.97 63.16 63.49 67.26 63.56 
0.40 78.32 5.77 − 0.04 2.45 62.43 # 60.49 60.78 67.26 60.39 
0.49 73.92 5.69 0.21 2.88 58.09 57.93 56.33 56.61 63.65 57.09 
0.60 69.02 4.93 0.02 3.32 52.53 53.96 53.80 54.05 58.92 52.89 
0.69 65.49 5.76 1.29 9.28 40.57 55.29 47.70 47.99 54.66 49.20 
0.80 60.60 5.02 0.18 2.54 48.60 46.36 45.09 45.35 49.27 44.63 
0.89 56.9 4.65 0.14 3.12 42.76 43.45 42.53 42.77 44.73 40.82 
0.98 52.76 4.45 0.15 2.57 41.57 39.92 39.00 39.22 40.34 37.14 
1.09 47.48 4.27 0.13 2.43 38.55 35.07 34.29 34.50 35.47 33.01 
1.20 42.00 3.91 0.15 2.58 32.15 30.76 29.93 30.13 31.15 29.28 
1.29 37.63 3.23 0.07 2.83 28.27 27.97 27.64 27.80 28.00 26.52 
1.38 33.68 2.99 − 0.09 3.33 23.23 # 24.45 24.60 25.23 24.05 
1.60 25.96 2.04 0.04 2.69 20.19 19.75 19.65 19.75 19.91 19.20 
1.81 20.46 1.66 0.17 2.46 16.89 15.72 15.34 15.42 16.03 15.58  

Fig. 8. Graphical comparison of the design resistances, FORM vs. EC 3 buck-
ling curve. 
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Fig. 9. Linear correlation between Nu and all 10 input parameters for different slenderness (#LN).  

Fig. 10. Linear correlation between Nu and all 10 input parameters for different slenderness (#G).  

Fig. 11. Load-deflection curves of chosen cases with very small initial e0 realization (#G).  
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thickness if a larger value is manufactured. It is assumed that the in-
fluence of different variation coefficients of the CHS thickness would be 
rather negligible on the global response. Thicker profiles, however, 
might have other manufacturing imperfections (geometric, or material), 
which might be worth considering during the analysis process. It is 
assumed that the modelling approach and the results are applicable for 
the most commonly used CHS profiles. 

This assumption might also be discussed based on the results 

Fig. 12. Horizontal displacements of column with very small initial e0 reali-
zation (#G), slenderness 0.3. 

Fig. 13. Equivalent plastic strain of column with very small initial e0 realiza-
tion (#G), slenderness 0.3. 

Fig. 14. Equivalent plastic strain of column with very small initial e0 realiza-
tion (#G), slenderness 0.2. 

Fig. 15. Equivalent plastic strain of column with very small initial e0 realiza-
tion (#G), slenderness 1.1. 

Fig. 16. Load-deflection curves of chosen cases (#LN).  
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presented in the figures in the study of Buchanan et al. [34] (page 308), 
where the ultimate axial load normalized by the yield load Nu/(A σ0.2) is 
determined for various slenderness values, utilizing results of FE anal-
ysis of various CHS geometries. There does not seem to be an evident 
pattern of different CHS geometries other than the mentioned exclusion 
of cross-sectional class 4 [11] from the data set, as for the 4th cross- 
sectional class, the effective area Aeff is used instead of the original 
cross-sectional area A [11], and the normalization of the cross-sectional 

class 4 denoted as Nu/(Aeff σ0.2) would result in particularly conservative 
resistance [34]. Therefore, for the CHS of cross-sections with a larger 
ratio of D/t (diameter to thickness), such as the cross-sectional classes 4 
[11], it might be more important to also introduce local geometrical 
imperfection (which has been neglected in this study). 

The material type of the stainless steel has a more significant influ-
ence on the suitability of the utilized values of the imperfection factor α 
and the limit slenderness λ0. The results of this study are limited to 
austenitic (normal strength) stainless steel. For example, the behaviour 
of duplex stainless steel CHS members is better predicted by the existing 
EN 1993-1-4 [11] buckling curve, as discussed by Buchanan et al. [34] 
or Ellobody and Young [18]. 

7.2. Design provisions of flexural buckling resistance of austenitic CHS 
members 

The EC 3 design method of predicting the flexural buckling resistance 
of the austenitic stainless steel (grade EN 1.4307) CHS columns does not 
fulfil the required safety level (probability of failure 7.2 ⋅ 10− 5) of the EC 
0 requirements for members of relative slenderness λ approximately in 
the range 0.2–0.9 (Fig. 8). This observation corresponds to similar pre-
vious research studies [12–19]. 

Proposed improvements: If the design provisions proposed by 
Buchanan et al. [34] are considered during the calculation of the flexural 
buckling design resistance value, the results fulfil the safety re-
quirements for all but one of the analysed λ values (Fig. 8). Only the 
design resistance based on FORM for approach #G and the relative 
slenderness of λ = 0.69 is noticeably below the resistance-slenderness 
curve (λ0 = 0.2) [34]. For this case, however, the standard skewness 
and standard kurtosis (Table 4) are of relatively high values, which in-
dicates an increased statistical error. Moreover, the results of approach 
#G use more conservative values of the initial geometrical imperfection 
e0, as well as its statistical distribution parameters. The values of e0 
based on the recent statistical research [40] are used in the approach 
#LN. The results of the #G approach are overall more conservative. 

7.3. Correlations between the ultimate resistance and input parameters 

The highest influence of e0 on the ultimate resistance Nu (in the 
matter of linear correlation) is observed for slenderness values around λ 
= 1.20 (Fig. 9 and Fig. 10). A higher coefficient of correlation between 
Nu and e0 is achieved for the #G approach, as the standard deviation for 
e0 was considered larger than in the #LN approach. The correlations 
between Nu and 0.2% proof stress σ0.2, ultimate stress σu, and strain εu 
are much higher for smaller values of slenderness. For large slenderness 
values, global buckling and therefore the ultimate resistance Nu is ach-
ieved before the stresses in the member reach the material 0.2% proof 
stress (alternative to the yield strength for the stainless steel material). 

The highest value of the correlation through all the analysed slen-
derness values is observed between Nu and the tube wall thickness t. 
Thickness has, of course, a high impact on the cross-section area. During 
the manufacturing process, it is much easier to produce a CHS member 
of a certain diameter D than of a given thickness t, as it is evident in the 
coefficient of variation for these geometrical parameters (CoV of the 
thickness t is much higher than CoV of the diameter D). The correlation 
between Nu and D is small but positive, sometimes rather negligible for 
all the slenderness values. 

With higher slenderness values, the correlation between Nu and 
Young’s modulus E increases. The behaviour of members of large slen-
derness is more similar to strings than columns in compression, the ul-
timate resistance force is closer to estimations based on the well known 
Euler critical force Ncr (graphically converges to the Euler hyperbole) 
(Fig. 8): 

Fig. 17. Equivalent plastic strain of column of realization (#LN) with the 
smallest Nu value from the group of slenderness 0.3. 

Fig. 18. Equivalent plastic strain of column of realization (#LN) with the 
highest Nu value from the group of slenderness 1.2. 
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Ncr = π2∙E∙I
(βcr∙L)

2 (24)  

where βcr is the effective length factor (for the pin-ended column equal 
to 1.0). Global stability loss occurs before the material yield strength is 
reached. The major factors influencing the ultimate resistance, or 
equivalently the critical force Ncr for large slenderness (except for the 
length L with its negligible standard deviation), are the elastic modulus E 
and the second moment of area I, dependent on the diameter D but more 
significantly (considering the coefficient of variation) on the thickness t. 

Only a negligible linear correlation between the structural length L 
and the ultimate resistance Nu was observed. This is mainly caused by 
the rather small standard deviation of the column lengths. The corre-
lation balances around the value 0. This correlation is expected negative 
if the standard deviation of the length L is significant. 

The correlation between Nu and the exponent material parameters m 
and n is more complex to discuss, as both form the shape of the stress- 
strain relation of the stainless steel material (with the major impact 
for stresses above the 0.2% proof stress value). The influence of both (m 
and n) is rather negligible for large slenderness values, as the influence 
of material parameters (σ0.2, σu, and εu) is also rather small, and the only 
important parameter is the initial slope of the stress-strain curve defined 
by Young’s modulus E. The correlation between Nu and m decreases with 
increasing slenderness values. The correlation between Nu and n is less 
monotonous, with negative values for little slenderness, the highest 
positive values for slenderness around 1.0–1.1, and decreasing again for 
large slenderness. 

7.4. Amount of the plastic strain at ultimate resistance for slender and less 
slender members 

An example of the equivalent plastic strain of higher slenderness 
cases is depicted in Fig. 15 (slenderness 1.1, modelling approach #G) 
and Fig. 18 (slenderness 1.2, approach #LN). The points of the ultimate 
resistances are #C1 (Fig. 15) and #E1 (Fig. 18). The plasticity at the 
ultimate resistance of the columns of higher slenderness values is rather 
negligible also if the initial global geometrical imperfection e0 is very 
close to 0 (#C1 in Fig. 15). Equivalent plastic strains at the ultimate 
resistance point of smaller slenderness columns reach values higher than 
0.2% (therefore the stress is above the 0.2% proof stress value). An 
example for slenderness 0.3 is in Fig. 17 (#D1), or for a very small e0 
value in Fig. 13 (#A1) and Fig. 14 (#B1, slenderness 0.2). This corre-
sponds with the increasing correlation between the ultimate resistance 
Nu and 0.2% proof stress σ0.2 for less slender members, as discussed in 
chapter 7.3, and depicted in Fig. 9 and Fig. 10. 

7.5. Failure modes 

In general, the most common failure mode was the global stability 
loss, which by its shape resembles the lowest eigenvalue shape of the 
modal analysis. An example is shown in Fig. 18 (#E2) for the slenderness 
1.2, or in Fig. 15 (#C2) for the slenderness 1.1. 

Additionally, columns of smaller slenderness developed a local sta-
bility loss at the compressed side in the mid-height generally sooner (in 
the matter of decreasing value of the axial load Nz after the curve peak, 
the ultimate resistance Nu was reached). This is visible in the more 
sudden tangent change of the decreasing curves. For example, for the 
slenderness of 0.3 (Fig. 16), this occurred at the Nz value (corresponding 
to ux of circa 25 mm) which is relatively much closer to Nu than for the 
slenderness 1.1 (Fig. 11), where this occurred at Nz value (at ux of 
approx. 200 mm), which is further from the ultimate resistance (the 
curve peak) of that case. 

7.6. Small values of the initial geometrical imperfection 

In few realizations with very small initial geometrical imperfection 
value e0 (essentially almost zero value), the so-called “elephant foot” 
shape of the local stability loss developed near the end parts of the 
column. This occurred for small slenderness, exclusively. An example for 
the slenderness 0.2 is depicted in Fig. 14 (full circumference elephant 
foot), or for the slenderness 0.3, where the local stability loss occurred at 
the column ends only partially (not along the whole circumference), and 
also in the mid-height. The horizontal deflections of this case are also 
unique in the matter of initially opposite direction than the direction of 
the applied geometrical imperfection e0 (Fig. 12 #A0). The value of e0 
was very close to 0, and this behaviour might also be influenced by the 
numerical rounding during the analysis. Such behaviour was very rare 
and only occurred for a few cases of small slenderness with a very small 
e0 value (therefore only in the #G modelling approach). 

This shape of deformation, when a ring-like bulge is formed near one 
or both ends of the column (elephant foot buckling) is a very common 
local failure shape for compressed members of tubular cross-sections 
[29,34,75], and the most common shape for specimens with very low 
imperfections [76]. An example of this local failure mode after the 
physical experiment is shown in Fig. 19, where very short stub column 
test specimens were exposed to a compressive load in a study by Zhang 
et al. [5]. 

7.7. Initial geometrical imperfection provisions 

If the quality of production follows the statistical characteristics of 
the initial imperfection e0 [40], then the new tolerance limits L/1666 
could be considered in both metallurgical production and stochastic 
models. Compared to carbon steel, stainless steel products have different 
geometric and material characteristics, thus new research using updated 
probabilistic analysis [46,77] and new types of reliability-oriented 
sensitivity analysis can be done [52,78,79]. 

8. Conclusion 

Advanced finite element modelling was used to investigate the 
flexural buckling resistance of circular hollow section (CHS) austenitic 
stainless steel columns of 15 different relative slenderness λ within the 
range 0.2–1.8. 

Two sets of distributions of the initial geometrical imperfection 
amplitude e0 were introduced, the lognormal and normal (Gauss), here 
referred to as the #LN and the #G approach respectively. For the #G 
approach, the mean value of the initial geometrical imperfection was 
equal to 0, and there was a higher standard deviation compared to the 
approach #LN, where a non-zero mean value of the imperfection was 
utilized along with a smaller standard deviation. 

In order to determine the design resistances of the columns in flex-
ural buckling based on the geometrically and materially nonlinear 
imperfect FEM analyses (GMNIA), the EC 0 approach of the first-order 

Fig. 19. Example of deformed CHS stub column test specimens after physical 
experiment [5]. 
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reliability method (FORM) was adopted. The resistances determined this 
way are practically the same as the 0.1% quantile of the Gauss distri-
bution of the ultimate resistances Nu. 

The Eurocode 3 design values of the flexural buckling resistance (EC 
3) are in good agreement with the resistance values utilizing the FORM 
for the column slenderness above 1.40 for both presented approaches 
#LN and #G (Fig. 8). 

For the #LN approach, the EC 3 results are conservative for the 
slenderness values between 1.0 and 1.4 compared to the 0.1% quantile, 
however, the Eurocode design resistances tend to be rather non- 
conservative for the CHS columns of slenderness around 0.8, and even 
more unsafe for smaller slenderness values around 0.4–0.5. 

The results of the flexural resistance based on the #G approach 
follow a very similar pattern as the results of the #LN approach. In 
general, design resistances based on the #G approach are slightly more 
conservative for slenderness in the interval 0.4–1.4. 

The EC 3 approach using the design provisions recommended by 
Buchanan et al. [34] is much closer to the results based on FORM for 
smaller slenderness 0.2–0.6 (Fig. 8), more conservative for relative 
slenderness values λ around 1.0 and practically the same for large 
slenderness values. The only alternation proposed by this approach was 
to use the relative limit slenderness value of λ0 = 0.2 [34] instead of 0.4, 
which is currently defined by the EC 3 [11]. The value of 0.4 seems to be 
rather unsafe for austenitic stainless steel CHS members of the relative 
slenderness values in the range 0.2–1.0, for the CHS 80 × 1.5 (as ana-
lysed in this study), with practically the same performance expectations 
for the CHS members of cross-sectional classes 1, 2 and 3 defined by EC 3 
[11]. The implementation of this design approach by Buchanan et al. 
[34] into the EC 3 can be recommended. This design approach was 
chosen from the other proposed approaches and tested in this paper due 
to its simpler implementation into the current standards for the design of 
stainless steel (EC 3). 
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