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The accuracy of the interaction methods for combined flexural and lateral torsional buckling are investigated
using statistical data, which has become available after the introduction of Eurocode EN1993-1-1:2005. The
freely available statistical data for geometric and material parameters for standard profiles are quite limited
and as background documents are based on IPE 160 profile, our investigations are also based on this profile. A
semi-probabilistic first order reliability approach is used and the resistance of themember is treated as a stochas-
tic variable. Latin Hypercube Sampling is used for population sampling. This simulation approach for determina-
tion of the buckling interaction surface has not previously been reported. The Eurocode handles buckling
interaction through two interaction equations. These equations include a number of interaction factors. The
calculation of the interaction factors may be performed by one of two methods, referred to as Method 1 and
Method 2. Both interaction methods make use of the buckling curves for determination of reduction factors for
both flexural and lateral torsional buckling. The flexural buckling curve is well calibrated; however, this is not
the case for lateral torsional buckling. It turns out that themethodsmay lead to unsafe designswhen a lateral tor-
sionally slender column is loaded predominantly in bending. The present paper investigates how the Eurocode
emulate the complex behavior also for very slender beam-columns. The 0.1% quantile interaction curves are com-
pared to those resulting from the use of Method 1 and Method 2.
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1. Introduction

When steel members are subjected to both axial compression and
strong axis bending the structural response is highly complex and de-
pends on many factors such as for example initial geometric imperfec-
tions, which can vary in both amplitude and shape, residual stress,
plasticity and second order effects. This in turn as a consequence
makes the modelling of such behaviour a difficult task, which has
been under scrutiny ever since the work with the Eurocodes started
over 40 years ago. A comprehensive historical review of the develop-
ment of the European column buckling curves and finite element
modelling can be found in Jönsson & Stan [1] and the theoretical re-
search on stability of beam-columns with combined compression and
bending has thoroughly been described in the ECCS background docu-
ment [2]. As described in the background document the current
Eurocode EN 1993-1-1, [3], handles the interaction between axial
compression and bending moment through two separate interaction
formulae including interaction factors which can be calculated using ei-
ther Method 1 or Method 2. These methods were developed over a
90 Brno, Czech Republic
period of nine years by two separate research teams from different uni-
versities in Austria, Germany, France and Belgium. The methods share
the same theoretical background as outlined by Snijder [4], but employ
different philosophies in their derivation of the coefficients leading to
the interaction factors. Method 1 aims for transparency by having ef-
fects represented by individual factors, while Method 2 aims at being
simple and user friendlywith compact interaction factors. The Eurocode
EN 1990 [5] provides the basis of structural design and contains specific
guidelines for the level of reliability of structures. The resistance of
structures is traditionally found by deterministic methods using safety
factors and conservative estimators of the variables that influence the
load carrying capacity, however the reliability of structures is usually
expressed in probabilistic terms, see [5,6]. The Eurocode provides the
necessary guidelines for determining the reliability using a semi-
probabilistic or even a fully probabilistic approach. The European test
series andMonte Carlo simulationswere performed on IPE160 sections,
see for example Strating & Vos [7]. Therefore, in the present investiga-
tion an IPE 160 beam-column is subjected to a reliability analysis
according to the Eurocode [5]. The reliability analysis is performed
using a First Order Reliability Method (FORM) with a semi-
probabilistic approach where the resistance of the beam-column is
treated as a stochastic variable, which has a Gaussian probability distri-
bution. The resistance found in the analysis as the 0.1% quantile is then
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compared to the Eurocode interaction formulae calculated using both
Method 1 and Method 2. This is done in order to determine whether
or not the formulae, and their respective coefficients, meet the required
level of reliability. The reliability analysis will be carried out by using
Geometrically and Materially Nonlinear Imperfect Analyses (GMNIA)
in the Finite Element (FE) software Abaqus [8].

The ability to replicate and perform accurate deterministic nonlinear
finite element modelling of the European column buckling curves as in
Jönsson & Stan [1] and the ability to perform stochastic analysis based
on a well-defined numerical model and new statistical information
has motivates us to perform the present work. The complexity of inter-
actional column buckling formulations in the Eurocode has triggered us
to investigate the accuracy of the buckling interaction formulae accord-
ing to the safety requirements and probabilistic assumptions of the
Eurocode itself. The design resistance of the Eurocode [3] has been ver-
ified by 0.1% quantile, which is based on the use of EN 1990 [5] and an
advanced stochastic model. The novelty in this work lies in the fact
that the whole interaction surface of flexural buckling and lateral tor-
sional buckling has been established using the semi-probabilistic first
order reliability approach with Latin Hypercube Sampling and that
this has been done based on a pure numerical and well-defined basis.
The load interactions and slenderness, where Eurocode prescribes an
unsafe design, are identified.

A condensed introduction is given to the basic beam-column inter-
action factors found in the Eurocode and to the probabilistic theory uti-
lized in the reliability analysis. The FE-model is explained in detail in
order to facilitate reproduction of the results that are presented. Then
a short investigation into the shape of the initial geometrical imperfec-
tions is givenusing bucklingmode shapes and its effect on the structural
carrying capacity. This is done to ensure that the most conservative ap-
proach to the initial imperfect geometry of the steel member is chosen
as the basis for the simulations used for the reliability analysis. Finally
the procedure of the reliability analysis is explained along with the
given statistical geometric and material data, before the results of the
analysis are presented and compared to the analytically calculated
values from the Eurocode.

Details and elaborate explanations of the theories and investigations
reported in this paper can be found in the master thesis by Gamst &
Müller [9], supervised by Jönsson and visiting PhD-studentVales atDTU.
Fig. 1. Location of the maximum bending moment when both first (MI) and second order
bending moments (MII) are present.
2. Preliminary theory

2.1. Beam-column interaction factors

The design equations for beam-column interaction in the Eurocode
are written in a linear format, meaning that non-linear effects need to
be accounted for through the interaction factors utilized in the equa-
tions. The design effects of loadings on beam-columns are given as the
normal force NEd, the moments about the strong andweak axes respec-
tively My, Ed and Mz, Ed and the changes of strong and weak axis mo-
ments due to shift of the neutral axis ΔMy, Ed and ΔMz, Ed. The design
resistances are given as NRd for the normal force and My, Rd and Mz, Rd

for the moments about the strong and weak axes respectively. Essen-
tially the utilisation with respect to each section force load effect is
given by the ratio of the section force load effects and its design resis-
tance. However in case of flexural buckling (FB) the normal force resis-
tance is reduced by the buckling reduction factors, χy or χz

corresponding to strong or weak axis buckling depending on which
case is considered. Furthermore in cases where lateral torsional buck-
ling (LTB) is relevant the strong axis moment resistance is reduced by
the LTB reduction factor χLT. In order to take moment amplifications
caused by second order effects from axial force, plasticity, imperfections
and the shape of the moment diagram into account interaction factors
kyy, kyz, kzy, and kzz are introduced in the Eurocode. With the introduced
parameters the two beam-column interaction equations which have to
be fulfilled according to the Eurocode [3] are:

NEd

χyNRd
þ kyy

My;Ed þ ΔMy;Ed

χLTMy;Rd
þ kyz

Mz;Ed þ ΔMz;Ed

Mz;Rd
≤1 ð1Þ

NEd

χzNRd
þ kzy

My;Ed þ ΔMy;Ed

χLTMy;Rd
þ kzz

Mz;Ed þ ΔMz;Ed

Mz;Rd
≤1 ð2Þ

Due to the somewhat complex process of including all the above
mentioned effects into the four factors, the beam-column interaction
factors are quite complex andmay be calculated by one of two indepen-
dent methods referred to asMethod 1 andMethod 2 located in annex A
and B of Eurocode 1993-1-1 [3]. Method 1 is developed by a French-
Belgian research team and is characterized by its use of individual
coefficients to describe each effect involved in beam-column interac-
tion. This is also part of the continuity aspect of the method, where
the equation reduces to a cross section check when effects are not pres-
ent. Method 2 on the other hand is developed by a German-Austrian re-
search team and is more compact as it is derived mostly from GMNIA
testing, meaning it is more suitable for hand calculations. It is important
to note that the two Eqs. (1) and (2) are not related to a simple physical
utilisation ratio, they are a result of equational manipulation of the clas-
sic stress utilisation ratio for the deformed situation. It is however clear
from the ECCS background document [2] that both methods are based
the same stress utilisation equation, which can be written in a classic
format as:

NEd

NRd
þ 1

1−
NEd

Ncr

NEdu
MRd

þ 1

1−
NEd

Ncr

CmM
I
Ed; max

MRd
ð3Þ

where u is the initial bow imperfection in the member, MEd, max
I is the

first order moment, and Cm is the equivalent moment factor. The equiv-
alent moment factor is implemented in order to avoid having to locate
the maximum bending moment along the member length, caused by
the addition of an axial force to a member already loaded in bending.
This problem is illustrated in Fig. 1. This is solved inMethod 1 by assum-
ing a sinusoidal shape of the first ordermoment, and inMethod 2 by as-
suming a constant value of thefirst ordermoment. Both approacheswill
ensure a maximum total bending moment at mid-span of the beam-
column. This concludes the brief introduction to the stability equations
related to Method 1 and Method 2.

2.2. Structural reliability

A first order reliability method with a semi-probabilistic approach is
used in this paper to perform a reliability analysis on an IPE 160 beam
loaded in axial compression and bending.

There are twomethods of conducting a probabilistic reliability anal-
ysis; fully probabilistic or semi-probabilistic. A fully probabilistic ap-
proach entails modelling both the load and the resistance as stochastic
variables before performing a Monte Carlo simulation in order to



Fig. 2. Design reliability condition.

Fig. 3. Design point p and reliability index β.

Fig. 4. Illustration of the normal distributed resistance and the 0.1% quantile.
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determine the failure surface, i.e. the intersection between the two
probability distributions. In a semi-probabilistic approach only the dis-
tribution of the resistance is known and the probability of failure can
be estimated using the First Order Reliability Method (FORM), which
will be elaborated on the following.

Design conditions of reliability of standard EN 1990 are based on the
FORM method, which was first introduced in the 1960s. It has now
evolved to become one of the most important methods for evaluating
structural reliability see Faber [10] and Zhao and Ono [11] especially
in combination with the finite element method.

Structural reliability is expressed as a function of the random resis-
tance R and random load effect E:

M ¼ R−E≥0 ð4Þ

where M is the so-called safety margin. Probability of failure can be
expressed by the equation

P f ¼ P RbEð Þ ¼ P R−Eb0ð Þ ¼ P Mb0ð Þ ð5Þ

Let us assume that R, E are statistically independent variables with
Gauss pdf with mean values μR, μE and standard deviations σR, σE.
Under these assumptions,M also has Gauss probability density function
(pdf) with mean value μM and standard deviation σM, which can be
expressed as:

μM ¼ μR−μE ð6Þ

σM ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2

R þ σ2
E

q
ð7Þ

The probability thatM= R− E b 0 is expressed by the integration of
the pdf fM of random variable M:

P f ¼
Z 0

∞
f M dm ¼ Φ

0−μM

σM

� �
¼ Φ −βð Þ ð8Þ

where Φ() is the cumulative normalized Gauss distribution and μM/σM

is the so-called reliability index β, see Fig. 2. For a target value of the re-
liability index, for example β= βd=3.8, the probability of failure is de-
termined as Pf = Φ(−3.8) = 7.2 ⋅ 10−5. In standard EN 1990 [5],
reliability is generally verified by the inequality

β ¼ μM

σM
≥βd ð9Þ

which upon substituting into (8) represents the probabilistic design
condition Pf b Pfd, where Pfd is the target value of failure probability [5].
For practical use, inequality (9) can be transformed by introducing the
so-called FORM sensitivity factors αR, αE, which are obtained from the
treatment of (7) as:

σM ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2

R þ σ2
E

q
¼ σ2

R þ σ2
Effiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

σ2
R þ σ2

E

q :

¼ σRffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2

R þ σ2
E

q σR þ σEffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2

R þ σ2
E

q σE

¼ αRσR þ αEσE

ð10Þ

The standard [5] permits the introduction of αR, αE with constant
values αR = 0.8, αE = 0.7, which for commonly occurring values σR

and σE (common design conditions) lead to an approximately constant
value σM≈ 0.8σR+0.7σE. Substitution of (6) and (10) into (9) leads to
thedesign condition of reliabilitywith formally separated sides express-
ing the design load and the design resistance:

μE þ αEβdσE ≤μR þ αRβdσR ð11Þ

The design value of the resistance Rd is expressed as

Rd ¼ μR−0:8βdσR ð12Þ

The design load effect can be determined in the samemanner by in-
troducing μE, σE and αE=0.7. The principle is illustrated in Fig. 3, which
has been reproduced from standard EN 1990. The probability that the
resistance is lower than the design value is then expressed as.

P R≤Rdð Þ ¼ Φ
μR−αRβdσR−μR

σR

� �
¼ Φ −αRβdð Þ ð13Þ

As in this paper, when the reliability index is taken as β= βd = 3.8
and the FORM sensitivity factor for resistance as αR = 0.8 then the



Fig. 5. FE mesh, coordinate directions and nodal degrees of freedom.
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probability of having a resistance that is lower than the design resis-
tance found by Eq. (12) as Φ(−0.8 ⋅ 3.8) = 0.118%, which approxi-
mately corresponds to the 0.1% quantile of the resistance pdf. The
quantile resistance curves shown in this paper are thus found using
Eq. (12), see Fig. 4. The specific choice of these parameters will be
discussed in a later section.

3. Finite element modelling

For this paper multiple GMNIA analyses have been executed using a
finite element model in the software Abaqus, [8]. The presence of natu-
rally occurring imperfections in the beam-columnand in thematerial it-
self is approximately included in themodel. The finite elementmodel of
the IPE 160 beam-column is made using rectangular shell elements re-
ferred to in the Abaqus as the S4 type element. Shell elements are used
as they appropriately model the desired behaviour of structures in
which one of the dimensions is significantly smaller than the other.
The S4 element is a general purpose quadrangular 4-node shell element
without reduced integration, which is not sensitive to distortion and
provides accurate solutions to buckling problems. The element density
is chosen to be 16 elements along the flange width, and 16 elements
along theweb height as illustrated in Fig. 5. This correlateswith the rec-
ommendation from DNV [12] of using 3–6 elements per expected half
wave. To avoid element deformation deficiencies along the member
length from non-ideal ratios between element width and length, the
Fig. 6. Constrained degrees of fr
number of elements in the longitudinal direction varies from 100 for
the first few slenderness values, to 140 between λLT = 0.4 and λLT =
1.4, and finally 180 elements for the final range up to λLT = 2.1.

In the Abaqus model the global x-axis is parallel to the longitudinal
direction of the beam-column, the y-axis is parallel to the height of
the web, and the z-axis is parallel to the flange width. Both external
loads and boundary conditions are applied to themember ends utilising
the kinematic constraints. These constraints allow for the degrees of
freedom (DOF) of coupled nodes to be restricted to the movement of
a master node. The beam-column boundary conditions correspond to
the so called fork end-conditions and they are modelled using two
multi point kinematic constraints at each end. The orientation of the
nodal displacements and rotations are shown in Fig. 5. The kinemati-
cally constraints are illustrated in Fig. 6. It can be seen that in the end
cross sections the nodal displacements Ux and Uy along the flange
widths are constrained to displace as the central flange node. Further-
more the nodal displacements Ux, Uz and Rx are constrained along the
web height to displace as the central web node (master node). This en-
ables the application of the global boundary conditions at the central
master web node and to apply the external force and moment load at
this same master node. The boundary conditions applied to the two
master web nodes ensures that the member is free to compress along
its length whilst at the same time preventing the in-plane, lateral, and
rotational movement at the member ends (but allowing transverse ex-
pansion of the web and flange). To constrain themodel frommoving as
eedom in web and flanges.



Fig. 7. Nominal cross-section dimensions.
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a stiff body in the axial x-direction a simple constraintUx is placed atmid-
span of the beam-column. As stated the use of kinematic coupling con-
straints allows external forces to be applied at a single point at the
beam-column ends, and furthermore it is worth noting that thereby one
avoids having to use specific linear, non-linear or rigid plastic stress distri-
butions as loads on the end cross sections. The model is loaded simulta-
neously with both axial force and bending moment at the central master
web node at the member ends using a proportional loading scheme.

The model of the IPE160 cross section profile is not modelled to in-
clude the fillets usually present in such hot rolled profiles. This is done
in order to reduce the complexity of the model. When I-profiles are
modelled using shell elements the thickness of the elements leads to
an overlap of material in the connection points between the flanges
and the web, illustrated in Fig. 7. This overlap is present in the finite el-
ement model and it is included in the analytical calculations according
to Eurocode.

The 0.1% quantile results from the GMNIA analyses are to be com-
pared to the carrying capacity (resistance) found using the Eurocode
formulae calculated using the nominal values of the cross-section and
material parameters. These are calculated including the added area
from the overlap of the shell elements, and can be seen in Table 1.

IPE160 Properties.
In the nonlinear finite element analysis the carrying capacity, i.e. the

resistance, is determined as the maximum peak load obtained in the
analysis as recommended in Eurocode 3 part 1–5 [13] for structures sus-
ceptible to buckling.
3.1. Material model

Detailed material properties such as statistically determined stress-
strain curves for the steel behaviour are not a part of the data-set uti-
lized in the presented reliability analysis. However a material model
has to be implemented in the finite element model in order to ade-
quately simulate thematerial behaviour. This is done by choosing an ap-
proximate simplified material stress-strain curve that models the
Table 1
Nominal cross-section properties of the IPE160 profile model.

IPE 160 Properties

E 210 [GPa]
fy 235 [MPa]
A 1.98 [103mm2]
Wy, el 107 [103mm2]
Wy, pl 121.7 [103mm2]
Iy 8.55 [106mm4]
Iz 681.7 [103mm4]
K 28.82 [103mm4]
Iω 4352 [106mm6]
expected behavior sufficiently. The plastic hardening properties of the
material may add to the ultimate capacity past the elastic and first
yield limit. In Eurocode 3 part 1-5 [13] four different assumptions for
the material behaviour are proposed.

a) Elastic-plastic without strain hardening
b) Elastic-plastic with a nominal plateau slope of E/1000
c) Elastic-plastic with a linear strain hardening slope of E/100
d) True stress-strain curve modified from test results

Regarding sophisticated stochastic models, of the aforementioned
options for the material stress-strain behaviour option (d) from the
Eurocode is not feasible due to lack of test data. Buckling is largely an
elastic phenomenon, meaning it is more critical at higher slenderness
values, and the hardening behaviour is relevant at lower slenderness
values. Thus, the plastic properties of the materials could be of impor-
tance to the ultimate capacity when performing non-linear buckling
analyses. The case (c) with a hardening slope of E/100 is chosen for
the analyses carried out in this paper. A Von Mises plasticity model
with isotropic hardening is used. The uniaxial behaviour of the material
model is shown in Fig. 8. Thematerial yield stress in this paper is chosen
to correspond to the nominal value of 235MPa used in the S235 type
steel. The slope of the stress-strain ratio from zero to the value of the
material yield stress, represented by the Young's modulus E, is chosen
to correspond to the nominal value of 210GPa. Both The Young's modu-
lus E and the yield stress fy are sampled with respect to the assumed
probability density distributions.

Jönsson& Stan [1] studied alternativematerial curves and found that
introducing a proportionality limit is irrelevant for practical structural
steel buckling applications and the limit should correspond to the
yield stress. Furthermore, comparison between the use of a bilinear
and a trilinear material curve with material hardening shows that
there is no significant difference between behavior and resistance for
column buckling. This shows that the bilinear material curve chosen is
a sufficient approximation for the stress-strain relationship.

3.2. Geometric imperfections

Geometric imperfections refers to the initial out-of-straightness of
the member and is sub-divided into two distinct types; global and
local imperfections. Local imperfections mean imperfections which are
related to the individual plate parts of the profile, such as initial defor-
mations of the flange or the web. Analogously, global imperfections
are imperfections related to the member as a whole such as initial de-
flections of the entire member. This paper considers the IPE160 profile,
which is in cross section class 1 for pure compression and bending. This
means that plastic stresses and an elastic plastic stress distribution may
Fig. 8. Bi-linear stress-strain curve used in the material model.



Fig. 9. Buckling mode for weak axis flexural buckling (FBz).
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develop in both the flanges and the web without local buckling. Thus
local imperfections are neglected in the simulations, see [14], under
the assumption that their influence is negligible. Therefor in the present
text the term geometrical imperfections only refers to the global
imperfections.

The Eurocode allows that the geometric imperfections of a member
analysedwith FE-tools can be based on the shape of the critical buckling
modes [13]. Examples of geometric imperfection shapes based on the
buckling modes can be seen in Figs. 9 and 10. These examples are
taken from one analysis performed in this paper. As the scale of this de-
formation is normalized and an imperfection scale factor is introduced
to give the member appropriate amplitude of the out-of-straightness.
The nominal value of the scale factor of the imperfections in advanced
finite element analysis is usually set to L/1000, as residual stresses are
modelled separately in the model see [1,15–17]. From EN1090–2 [18]
themaximumallowed out-of-straightness, or amplitude of the bow im-
perfection, is given as L/750. This implies that the value of L/1000 corre-
sponds to 75% of themaximum allowed geometric imperfection, which
is a value that existing literature generally agrees is a fitting approxima-
tion [14,19]. The imperfection and statistical modelling used in the sim-
ulations of this paper are described later in section 4. The recommended
values of the geometrical imperfection in table 5.1 in EC1993-1-1 [13]
yields a much larger amplitude of the initial imperfection. This is be-
cause these values are meant to model the combined effect of both
out-of-straightness and residual stress, and thus the use of these
would be incorrect in thismodel where these effects are separated. Fur-
thermore these values are too conservative as discussed in [1].
Fig. 10. Buckling mode for lateral torsional buckling (LTB).
3.3. Residual stress

Themanufacturing process of steel beams leaves material imperfec-
tions in the form of residual stress in the profiles which in turn affects
the buckling capacity [2]. This residual stress is assumed to be uniform
along the member and varies across the flanges and web. The height
to width ratio and the thicknesses of the flanges and web has an influ-
ence on the residual stress distribution. The residual stress distribution
is considerably affected by how the cross section is made, that being
welded or rolled, and there are many proposals as to how this should
be modelled in an FE-analysis throughout existing literature, e.g.
[14,17,20], see also the discussion in [1]. A typical approximate linear
shape of the residual stress distribution for a hot-rolled profile can be
seen in Fig. 11, see [20], and it is this shape which is utilized in the anal-
yses carried out in this paper. The ratio between height and width h/b
determines the amplitude of the residual stress. A value of h/b b 1.2
gives an amplitude of 0.5 ⋅ fy, while more ‘slender’ cross sections at h/b
N 1.2 have an amplitude of 0.3 ⋅ fy as described in [20]. The IPE 160 pro-
file investigated in this paper falls under the latter case, and thus the
nominal value of the amplitude of the residual stress is set to 0.3fy.
The Eurocode states that the residual stresses may be represented by a
stress pattern from the fabrication process with amplitudes equivalent
to the expected values [13].

In this paper the residual stress distribution, σr, is implemented in
the FE- model using an equivalent temperate load. The procedure con-
sists of giving the model a temperature load in an initial step. The rela-
tion between the material stress, here σr, caused by temperature
induced strain gives

σ r ¼ EαΔT ⇒ ΔT ¼ σ r

Eαs
ð14Þ

Where E is the material Young's modulus, ΔT is the temperature in-
crement, and αs is the thermal expansion coefficient. By solving for the
temperature increment, a temperature load ΔT can be applied to the
model. It should be noted that the software and finite element calcula-
tion is based on the use of interpolation points at which stresses are
found. For the chosen element the membrane stresses are approxi-
mately constant within each element, but the software may average
these between elements. This means that the correctly obtained resid-
ual stresses obtained in the model are only precise at the interpolation
points and not necessarily at the edges.

3.4. Imperfection shapes and proportional loading

In nonlinear finite element analyses the buckling mode shape from
an initial linear buckling analysis is most often used as a basis for the as-
sumed geometrical imperfections in a beam-column. Fig. 12 shows the
results of GMNIA analysis with different choices of imperfection mode
shapes for proportional loading paths with combined moment and
Fig. 11. Linear residual stress distribution σr assumed in IPE160 profiles.



Fig. 12. N-M-diagram for an IPE 160 profile where three different mode shapes: LTB, FB,
and interactional between the two, are used tomodel the imperfections in the simulation.
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normal force. The load pathswith inclinations of α=1.0 and α=0.667
have been included to illustrate the proportional loading paths. The
GMNIA results shown in the Fig. 12 corresponding to the maximum
value of the load proportionality factor are found for a relative slender-
ness of λz =1 and otherwise identical parameters. The main difference
is seen for high relative magnitudes of compression. In this area the
upper results curve corresponds to the use of the LTB mode shape, the
intermediate curve corresponds to the interactional mode shape
found by buckling analysis (standard choice) and finally the lowest
curve corresponds to the use of the weak axis FB mode as imperfection
shape. It can be seen that the choice of global imperfection shape has an
influence on the final capacity. In situations dominated by bending the
pure LTB shape most often gives more conservative results and in situ-
ations dominated by compression use of the pure FB shape for buckling
about the weak axis (FBz) often gives conservative results.

The main difference between the mode shapes is that the flexural
buckling mode consists only of lateral deformation u, while the LTB
mode also includes rotation ϕ of the cross-section. And since the buck-
ling mode shape is normalized with respect to maximum displacement
before it ismultiplied by the imperfection factor, i.e. for example L/1000,
to get the imperfection shape, the ratio between the amount of lateral
and rotational deformation is the key to the difference in thefinal capac-
ity. The maximum geometrical imperfection e at the top of the web,
when both rotational ϕ and lateral deformation u are present, is
Fig. 13. Lateral and rotational imperfection parameters in LTB.
shown in Fig. 13 and can be written as

e ¼ uþ ϕ
h
2

ð15Þ

when assuming small rotations.
As seen in Fig. 12 the results for the conventionally “combined

mode” imperfection shape follows the results for the LTB imperfection
shape closely for load paths with “inclinations” greater than one, i.e. α
≥ 1. For load paths with “inclinations” lower than one, α b 1, the use of
an imperfection mode corresponding to the weak axis buckling mode
(FBz) seems to give the most conservative results. This suggests that
the use of an interactional standard “combined” buckling mode shape
may be non-conservative in the range of high axial force. In the pre-
sented implementations it has therefore been decided to use the LTB
imperfection shape for high bending moments corresponding to α ≥ 1,
and the FBz imperfection shape for high axial forces corresponding to
α b 1, where the load proportionality ratio (inclination) is given by

α ¼ My=My;R

N=NR
ð16Þ

where the cross section plastic compression resistance and the strong
axis moment resistance respectively are given by

NR ¼ Af y ð17Þ

My;R ¼ Wy;pl f y ð18Þ

As described the non-linear finite element simulations are per-
formed using proportional load increments in which the ratio between
normal force and moment load is kept constant. Since the problem is of
a non-linear character non-proportional load paths will change the re-
sults due to a changed plastic energy dissipation. In the following
GMNIA finite element results are presented for 11 load paths. Table 2
defines the different load paths used in the simulations and the imper-
fection shape used.

3.5. Column lengths and slenderness ratios

The length of the beam-columns investigatedwas chosen in order to
represent lengths which could be used in a real world scenario, where
the λLT values ranged from 0.2 to 2.1, equivalent to lengths of around
0.397 m to 9.14 m. The finite element simulations are performed
using 20 different values of λLT.

Since results given in the following are related to these specific
values of the LTB slenderness, λLT, and thereby enable comparison to
Eurocode, the length of themember used in each finite element simula-
tion is determined through the related critical LTB length of the
Table 2
Proportional compression and moment loading.

Path n = N/NR m = My/My, R α = m/n Imp.

1 0.0 1.0 ∞ LTB
2 0.1 0.9 9.00 LTB
3 0.2 0.8 4.00 LTB
4 0.3 0.7 2.33 LTB
5 0.4 0.6 1.50 LTB
6 0.5 0.5 1.00 LTB
7 0.6 0.4 0.667 FBz
8 0.7 0.3 0.428 FBz
9 0.8 0.2 0.250 FBz
10 0.9 0.1 0.111 FBz
11 1.0 0.0 0 FBz



Table 3
λLT values and corresponding λz and beam lengths, L.

λLT λz ∼L [m] λLT λz ∼L [m]

0.2 0.226 0.397 1.2 1.907 3.358
0.3 0.343 0.603 1.3 2.175 3.829
0.4 0.466 0.820 1.4 2.466 4.342
0.5 0.596 1.049 1.5 2.782 4.897
0.6 0.736 1.296 1.6 3.122 5.496
0.7 0.889 1.564 1.7 3.487 6.139
0.8 1.055 1.858 1.8 3.877 6.825
0.9 1.239 2.180 1.9 4.291 7.554
0.0 1.440 2.530 1.0 4.729 8.326
0.1 1.663 2.927 1.1 5.192 9.140

Table 4
Statistical geometric and material parameters for the IPE 160.

Parameter Mean St. dev. Unit

Cross-section height h 160 0.71 [mm]
Cross-section width b 82 0.81 [mm]
Web thickness tw 5 0.2 [mm]
Flange thickness tf 7.4 0.34 [mm]
Youngs modulus E 210 10 [GPa]
Yield stress fy 297.3 16.8 [MPa]
Residual stress σr 89.19 17.83 [MPa]
Normalized imp. e 0 1
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member. The definition of the LTB relative slenderness gives us

Mcr ¼ My;R

λ2
LT

ð19Þ

and the classic solution for the critical LTB moment for constant mo-
ment is given by:

Mcr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π2EIz
L2

þ GK þ π2EIω
L2

� �s
ð20Þ

in which Iz is the weak axis bending stiffness, G is the shear modulus, K
the torsional stiffness and Iω is the warping stiffness. Solving for the
length L in the classic eq. (20) and introducing the critical moment
expressed from eq. (19) determines the length to use in the simulation
as:

L ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π2λ4

LT

2M2
y;R

EIzGK þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EIzGKð Þ2 þ 4EIωEIzM2

y;R

λ4
LT

vuut
0
@

1
A

vuuut ð21Þ

In the analysis performed beams are analysedwith statistically vary-
ing cross-section geometry and material properties. Since results are
normalized there will be small changes in the length of the beam-
column as the slight differences in geometry andmaterial properties af-
fect the length. Having the length of the beam column and the specific
geometry, then the related weak axis FB slenderness ratio λz can be
found. Table 3 gives the values of the 20 different LTB slenderness ratios,
the FBz slenderness ratios and the nominal column lengths.

4. Statistical parameters

A reliability analysis carried out using GMNIA analyses requires sta-
tistical information about geometric and material properties of the in-
vestigated beam-column in order to reflect the naturally occurring
variation such a beam-column would have in real life. Information on
the statistical parameters, which are used in the population sampling
for the IPE 160 profiles have been provided by Faculty of Civil Engineer-
ing, Brno University of Technology, and are taken from the same data
base used in the paper by Melcher et al. [21]. The data are more than
ten years old and have been used even though there is a possibility
that advancements in steel production over the past decade might
have changed these data. However steel producers no longer disclose
such data and newer information does not seem to be available. Rela-
tively little recent statistical data on the metallurgical products is avail-
able, see for example [22,23].

In total there are eight randome input parameters which all are mu-
tually statistically independent and are considered to have a Gaussian
probability distribution. These parameters are listed in Table 4 along
with their mean value and standard deviation. According to the results
of the stochastic sensitivity analysis [24] the Poisson ratio was assumed
to be constant ν = 0.3. All other cross section properties are governed
by these geometrical and material parameters. Meaning that e.g., a
dataset with a small cross section height andwidthwould have a corre-
sponding smaller area, moment of area, critical elastic moment, etc.

Except for the yield stress the mean values given in Table 4 corre-
spond to the characteristic value. In the present simulations the yield
stress fy is assumed to be a stochastic variablewith a normal distribution
with a characteristic value of 235MPa corresponding to the 5% fractile of
the distribution [5]. It should be noted that a different probability distri-
bution such as the log-normal distribution could alternatively have
been chosen. The steel producers only have to guarantee that the yield
stress meets this 5% fractile requirement and as a result of this the
mean yield stress of steel with a quality of S235 will have a significantly
higher value than 235MPa. A consequence of this is that the yield stress
of the steel used in this reliability analysis is quite a bit higher than
235MPa as they are sampled from a population with a mean value of
297.3MPa [21].

So far in this paper the magnitude of the global geometrical imper-
fection has been introduced as being L/1000, a choice based on recom-
mendations from [14] and practice used in developing the Eurocode
buckling curves [19]. However, that would imply that all beams of the
same length and thus the same slenderness would have the same im-
perfections, which of course does not reflect real beams adequately.
The imperfection magnitude is therefore assumed to be a Normal dis-
tributed random variable with a mean value, μe and a standard devia-
tion, σe. The model imperfection is thus given by

e ¼ μe þ e � σe ð22Þ

inwhiche is assumed to be a normalized imperfection parameterwhich
is normally distributed with a standard deviation of one. Note that the
model imperfection e contains both the lateral imperfection u and the
torsional imperfection ϕ, for the LTB shape of global initial imperfec-
tions, and only u in the FBz shape of imperfections. Given that the aver-
age beam is considered to be a perfectly straight beam which might
have imperfections in both positive and negative directions, the mean
of the imperfection is zero

μe ¼ 0 ð23Þ

It is then assumed that 95% of the realizations of the imperfection are
within the tolerance limits of ±L/1000, i.e. that a 95% confidence inter-
val is used to derive the standard deviation of the geometrical imperfec-
tions, see [6,24,25]. Let

P X≤xð Þ ¼ F−1 xð Þ ð24Þ

where F−1(x) is the cumulative distribution function for the imperfec-
tion magnitude x = e. The confidence interval can be written as

0:95 ¼ P μe−
L

1000
≤e≤μe þ

L
1000

� �
ð25Þ

Then in order to use the inverse cumulative distribution function for
the standard Normal distribution Φ, the variable x which in this case
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corresponds to the limits of the confidence interval, has to be
standardised. Thus

P X≤xð Þ ¼ Φ
x−μe

σe

� �
ð26Þ

This facilitates solving for the standard deviation as follows

0:95 ¼ Φ
μe þ

L
1000

−μe

σe

0
B@

1
CA−Φ

μe−
L

1000
−μe

σ e

0
B@

1
CA

¼ Φ
L

1000σ e

� �
−Φ −

L
1000σe

� �

¼ 2 �Φ L
1000σ e

� �
−1

⇒ 0:975 ¼ Φ
L

1000σ e

� �

⇒ σe ¼ L
1960

ð27Þ

By substituting Eqs. (23) and (27) into eq. (22) the magnitude to be
used in the simulation becomes:

e ¼ e � L
1960

ð28Þ

In the sampled data the normalized imperfection parameter e is
given and according to eq. (28) it has to be multiplied by L/1960 to be
used in the finite element model. This approach is also the basis for
the studies in [6,24]. The maximum sampled value in the present reali-
zation isemax ¼ 2:22696which corresponds to about e= L/880,which is
a little smaller than the maximum allowed out-of-straightness of L/750
in EN1090–2 [18]. If the number of samples are increased this value will
probably increase.

The total 30 random realizations of the eight input variables of the
IPE160 steel member are simulated. The Latin Hypercube Sampling
(LHS) method is used, see Mckay et al. [26]. Input random variables
are introduced as statistically independent.

5. Finite element simulations and statistic verification

For each of the 20 different LTB relative slenderness ratios, λLT, given
in Table 3, finite element simulations are performed with the 30 sam-
pled IPE160 data sets for each of the 11 proportional load ratios between
Fig. 14. Three dimensional plot illustrating the re
axial force and bending moment given in Table 2. All in all this corre-
sponds to 20 ⋅ 30 ⋅ 11 simulations, i.e. 6600 in total.

For each of these simulations the maximum value of the propor-
tional load factor was extracted and used to find the maximum values
of the combined axial force and bendingmoment loading in order to ob-
tain the data pool used in the probabilistic treatment to find the 0.1%
quantile. Fig. 14 illustrates the resulting data pool as the axial force
and bending moment interaction space of the problem for each
analysed LTB slenderness, λLT, by connecting the results of the interac-
tion curves in each of the 30 data sets. Some results of the 30 input
sets are hidden by others, but the statistical variation is clear.

In order to show that the results are statistically valid it is verified
that the results have a Gaussian distribution. This is done by taking all
the data from each relative slenderness value in the simulations and
test them using an Anderson-Darling test with unknown mean values
and standard deviations. The Anderson-Darling test is a “goodness-of-
fit” test, see [27,28], which is used to check the hypothesis of a popula-
tion sample having a certain probability distribution. The test did not re-
ject the hypothesis of normal distribution of the results with a
significance level of 1%. To achieve this the maximum size of the incre-
ments in the finite element analysis had to be reduced to prevent result
fluctuations in the simulations due to difficulties in following the
correct buckling branch in cases with relatively small imperfections.
Further more it is important to note that the Anderson-Darling test
does not indicate that you definitely have the probability distribution
you are testing for. It only indicates that it is unlikely that you do not
have the distribution in question. Nevertheless it is concluded based
on the Anderson-Darling test that the load-carrying capacity results
from the beam-column simulations can be regarded as normal
distributed.
6. Reliability analysis

According to the Eurocode reliability is defined as “the ability of a
structure or a structural member to fulfil the specified requirements, includ-
ing the designworking life, for which it has been designed. Reliability is usu-
ally expressed in probabilistic terms” [5].With regard to the ultimate limit
state this can be interpreted as the ability of a member to resists the ef-
fects of actions exerted on themember. In this section the processing of
the simulation data pool and the basis for comparison with the
Eurocode will be briefly discussed before results are presented in the
next section.
sults of the 6600 finite element simulations.



Fig. 15. The interaction curves of the 30 input sets and the 0.1% quantile for λLT = 0.5.
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Annex B of Eurocode EN1990, [5], provides recommendations for a
reliability index, β, in the ultimate limit state in conjunction with
reliability classes and Clause B3.2(2) in EN1990 associates these reli-
ability classes with consequence classes. To be brief Table B2 in this
annex recommends a minimum value for β with a 50 year reference
period and reliability class 2 (corresponding to consequence class
2) of βd = 3.8. The FORM sensitivity factor for the resistance is
given in Annex C of the EN1990 in clause C.7(3) as αR = 0.8. Thus
the probability of the resistance being lower than the design value
can be written as

Φ −αRβdð Þ ¼ Φ −0:8 � 3:8ð Þ ¼ 0:1183% ð29Þ

Thismeans that the probability of having a lower design value of the
resistance is 0.1183%. This approximately corresponds to the 0.1%
quantile of the distribution of the resistance and therefore forms the
basis for the comparison of the results from the reliability analysis
with the calculated resistances from Method 1 and 2 in the Eurocode.
Using the simulation data pool of resistance the mean value μR and the
standard deviation σR of the 30 results in each data set is used to find
the 0.1% resistance quantile. The 0.1% resistance quantile is thus given
a) b

Fig. 16.Weak axis flexural buckling cur
dependent on the proportional load case and the LTB slenderness values
by:

R0:1% α;λLTð Þ ¼ μR−αRβdσR ¼ μR−0:8 � 3:8σR ð30Þ

The definition of the quantile is illustrated in Fig. 4 and the 0.1%
quantile of the 30 input sets for λLT = 0.5 is illustrated in Fig. 15.

7. Results, comparison and discussion

In this section the results from all theGMNIA simulations in the form
of the 0.1% quantile resistance found through the reliability analysis will
be compared to the corresponding analytically calculated resistance
using the beam-column interaction formulae in the Eurocode with the
interaction factors described by the twomethodsMethod 1 andMethod
2. In this regard and in the discussion the Eurocode resistance formulae
are compared as being conservative or not or being on the safe or unsafe
side in comparison to the 0.1% quantile results. This is done since the
quantile results are based on the probabilistic approach of the code.

In the following the results related to pure flexural buckling and to
pure lateral torsional buckling are shown and compared. The depen-
dency of the simulation resistances on the imperfection is illustrated
using trend lines and the correlation coefficient of each trend line.
Then the interactional buckling results are illustrated and compared
for combined bending and axial compression for all the values of the lat-
eral torsional slenderness using both Method 1 and Method 2. Finally
the 0.1% resistance results are used to find the kyy and kzy interaction fac-
tors (by replacing theMy,0.1%/My, R values of the interaction curves) and
compare to those of both Method 1 andMethod 2 for a relevant span of
λLT slenderness values.

7.1. Flexural buckling and lateral torsional buckling

Due to the format of the beam-column interaction formulae the ac-
curacy of the beam-column interaction capacities are heavily influenced
by howwell the pure instability cases of LTB and FB are estimated by the
Eurocode. The FB curves are generally known to accurately describe the
stability load of a column susceptible to flexural buckling, however the
curves describing “rolled and equivalent welded” sections susceptible
to lateral torsional buckling does not show the same level of accuracy,
see [17,29]. In the case of pure axial compression this makes the analyt-
ical formulae a goodbasis for comparisonwith the results acquired from
the GMNIA analyses, and this comparison could in some sense be used
as a validation tool for the FE model. For pure bending the results are
)

ve compared to the 0.1% quantile.



a) b)

Fig. 17. Lateral torsional buckling curve compared to the 0.1% quantile.
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of interest due to its effect on the beam-column interaction formulae in
eqs. 1 and 2.

From the left hand plot in Fig. 16 it can be seen that buckling curve b
for flexural buckling is a decent fit to the resulting 0.1% quantile, but the
lower and higher relative slenderness values, namely λz b 0.5 and λz N 1,
the buckling curve is on the conservative side with a decent margin of
up to about 13% for large relative slenderness ratios. Up to λz = 0.5
the effects of strain hardening will increase its ultimate capacity,
explaining the difference in this range. In the range of 0.5 to 1.0 the
curve does seem to have a better fit to the 0.1% quantile of the test re-
sults, but here some values are slightly non-conservative which can
also be seen in the right hand part of Fig. 16. In this λ-range the effect
Fig. 18. Trend lines with given correlation coefficients for the axial compression and pure bend
lower than or larger than zero.
of residual stress is significant and the idealized linear stress distribution
might influence the results. Also as the member starts behaving more
elastic, the geometrical imperfection will start influencing results in
this range. For the hot rolled design case the curvature of the LTB buck-
ling curve shown in Fig. 17 seem to correlatewellwith the shape itself of
the 0.1% quantile, although the Eurocode curve is at a higher value. This
means that the LTB curves seem to be non-conservative throughout al-
most the whole range of slenderness values tested, with a peak in rela-
tive difference of ∼9% around λz=1.0 as seen in Fig. 17 in the right hand
plot.

The design equation used to calibrate the Eurocode lateral torsional
buckling curves does not consider rotational geometrical imperfections
ing resistance dependency on the normalized imperfection factor e split into eccentricities



a)

b)

Fig. 19. 0.1% quantile simulation results and Eurocode results using Method 1 and 2 in the lower slenderness range.
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ϕ, see [2,30]. Fig. 18 illustrates the correlation between ultimate capac-
ity and the imperfection scale factor e, given by a correlation coefficient
R (−1 ≤ R ≤ 1). A similar study was carried out in [31], where statistical
dependence between the amplitude of the axis initial curvature and
lateral-torsional buckling resistance was studied. These figures show
that the pure bending case is highly dependent on the geometrical im-
perfection throughout the tested slenderness range, while the axial
force case is only highly dependent in the intermediate range. The
high correlation between ultimate capacity and geometrical imperfec-
tions in the pure bending case, suggest that a part of the error in the



a)

b)

Fig. 20. 0.1% quantile simulation results and Eurocode results using Method 1 and 2 in the higher slenderness range.
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Eurocode design curves is due to the fact that rotational imperfectionsϕ
are neglected. It should be noted here that the small amount of input
sets, i.e. 30 is not sufficient to make solid conclusions based on correla-
tion, but it gives a pointer to the most influential parameter.

The cut-off value at 0.4 can be seen to be on the unsafe side com-
pared to the 0.1% quantile, which goes above 1.0 at a lateral torsional
slenderness value in the area of 0.3. This suggest that the choice of
using 0.4 as a cut-off value to comply with older codes [2], is non-
conservative. The ECCS Technical Committee 8 [32] came to the oppo-
site conclusion using a reliability analysis. All in all the pure flexural
buckling curve b of the Eurocode does seem to give a decent fit well
on the safe side, while the pure lateral torsional buckling curve for
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the hot rolled section does not. These results are similar to previous
works of Taras and Greiner, [17], and working group documents
from ECCS, [29]. The results also coincides with those found in the
preliminary testing of the finite element model using nominal input
parameters, see [9].

7.2. Interactional buckling for compression and bending

In this section the beam-column interaction eqs. (1) and (2)with in-
teraction factors from Method 1 and Method 2, are compared to the
0.1% quantile of the GMNIA simulation. In the following the results are
grouped according to their slenderness value. First the low slenderness
range of λLT = 0.2 to 0.9 and the higher range of λLT = 1.0 to 2.1. This
provides a decent illustration of how the accuracy of the methods de-
velops through the whole range of slenderness values investigated.

For the low slenderness range Fig. 19 shows the 0.1% quantile re-
sults. For the lateral torsional slenderness of 0.2 the beam-column is
very stocky and it can be discussed whether or not the member can
be considered to be a beam-column for this case. To properly compre-
hend the development of the capacity as the slenderness increases it
is described in detail in the following. It can be seen in this plot for λLT
= 0.2 − 0.5 that the 0.1% quantile interaction curve has a rather para-
bolic shape when the member is loaded heavily in bending and the ca-
pacity ends up being larger than unity for pure bending. This parabolic
shape can be explained by the relationship between the plasticmoment
capacity as a function of axial compression for double symmetric
Fig. 21. The development of the strong axis interaction factor kyy, ca
profiles as given in [33] as

My

My;R
¼ 1−

N
NR

� �2 A2

4twWy;pl
ð31Þ

As the slenderness values are low, the stress should have a plastic
distribution. Here the squared expression concerning the axial force in
(31) will give a shape similar to that observable in Fig. 19 for λLT =
0.2 − 0.5, and the linear additive form of the Eurocode formulae is not
suited to properly describe the behaviour here as it does not contain a
quadratic term. As the slenderness is increased to 0.4 the capacity
curve has become quite linear and it can be observed that the fit with
both Eurocode methods is quite good, although the overestimation of
the lateral torsional buckling capacity can be seen. Ultimately it can be
said that in the range of lower slenderness values, both Method 1 and
Method 2 have a decent fit to the 0.1% quantile. Method 1 is slightly
less conservative for the load cases with medium to high amounts of
axial force, as it was able to follow the curvature of the 0.1% quantile
to a larger extent than Method 2.

In the lower slenderness range from 0.4 to 0.7 Fig. 19 the interac-
tion curves of the Eurocode are closest to the 0.1% quantile especially
for λLT = 0.6. An interesting trend that can be observed is that the
curvature characterized by the plastic stress diminishes as the mem-
ber length increases, and the stress distribution in the flanges will to
a lesser degree show plastic behaviour. Furthermore the quantile
curve is starting to take on a more parabolic shape in the load cases
lculated from the 0.1% quantile and the two Eurocode methods.



Fig. 22. The development of the weak axis interaction factor kzy, calculated from the 0.1% quantile and the two Eurocode methods.
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where axial compression is dominating, while the curve takes on a
more linear shape for the load cases which are dominated by bending
moment as the slenderness increases. This is due to the fact that the
member is starting to become so slender that the flexural
buckling plays a more predominant role on the load carrying capacity,
as the entire cross section is experiencing compression stress and the
beam-column buckles about the weak axis before the bending mo-
ment starts to become a limiting factor. When comparing to the
Eurocode formulae it becomes apparent that the Eurocode
approximation of the capacity curve is not capable of fully emulating
the properties of the 0.1% quantile as the slenderness increases. The
Eurocode is increasingly on the “unsafe” side of the quantile curve
when the member is loaded mainly in bending, this non-
conservative trend seems to be larger in Method 2 which for the slen-
derness of 0.8 can be seen to be unsafe for half of the load cases.
On the other hand it can be observed that both methods fail to follow
the parabolic shape of the quantile plot and thus the load
carrying capacity for the load cases with axial compression dominat-
ing is underestimated, a trend that seems to be increasing as the slen-
derness is increased.

Fig. 20 shows the results for thehigher range of lateral torsional slen-
derness, i.e. λLT=1.0 to λLT=2.1. For this range the inaccuracies of the
design carrying capacity at the pure load cases are starting to make the
apparent fit worse, nevertheless some noticeable trends can still be
seen. It can be seen that in this slenderness range the characteristics of
the quantile curve that were discussed in the previous paragraph is fur-
ther developed, namely a linear shape in the moment dominated load
cases and a parabolic shape in the compression dominated load cases.
Meaning a small change in bending moment will hardly influence the
axial capacity at high levels, but a reduction in axial force will increase
the moment capacity significantly. It can also be observed that the
Eurocode formulae are pretty close to each other for both methods.
Method 1 fluctuates a bit since both of the Eurocode formulae are active
in this method, and the transition point between Eqs. 1 and 2 can be
seen to shift closer to the pure moment load case. This transition point
is recognizable by the outwards pointing ‘hump’ in the curve close to
the middle. The fact that this shift between the two design formulae
moves towardsmore bendingmoment heavy load cases, reflects the re-
sults from the simulations where it can be seen that the weak axis flex-
ural buckling is increasingly becoming the governing factor for the
bearing capacity. This does however hold little significance since Eq.
(1) calculated using Method 1 still fails to approximate the parabolic
shape of the quantile plot in this slenderness range and thus the differ-
ence from Method 2 is minimal. Although the overestimation of the
pure LT buckling capacity is relatively stable on about 8.5 % − 9% as
seen in Fig. 17, it can be seen that the intersection point between the
Eurocode formulae and the quantile of the results from the reliability
analysis, i.e. the transition point where the Eurocode goes from being
non conservative to conservative is moving closer to the case of pure
bending as the slenderness increases. For the highest shown
slenderness's the members become very long and as a consequence
the weak axis flexural buckling becomes more important in the buck-
ling behaviour, as seen by the even more prominent parabolic shape
of the quantile curve.
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7.3. Beam-column interaction factors kyy and kzy

Looking at the weak axis and strong axis interaction factors kyy and
kzy the results can be interpreted further. In order to compare the results
from the reliability analysis, these results need to be in the same format
as the interaction factors themselves. By rewriting the expressions from
the Eurocode regarding beam-column interaction, expressions for the
interaction factors kyy and kzy can be written as:

kyy ¼ 1−
N0:1%

χyNR

 !
χLTNR

My;0:1%
ð32Þ

kzy ¼ 1−
N0:1%

χzNR

� �
χLTNR

My;0:1%
ð33Þ

where N0.1% and My,0.1% are the adjoint maximal axial force and bend-
ing moment obtained for the given proportional load ratio. It should
be noted that the accuracy of these formulas is affected by the accu-
racy of the lateral torsional and flexural buckling reduction factors
χLT and χ.

Fig. 21 illustrates the development of the kyy factor from Method 1,
Method 2, and recalculated from the 0.1% quantile, as the amount of
axial force is increased in the load cases. Regarding Method 1, it can be
seen that it does an overall good job of approximating the development
of the strong axis influence on the My capacity, as the axial load in-
creases for the range of tested slenderness values. Only having non-
conservative results for the pure bending case, and for large axial forces.
For pure bending this is caused by the inaccurate LTB curves, while the
non-conservative values at high axial forces are irrelevant as the weak
axis factor kzy is utilized in the interaction formulae at these load combi-
nations. Method 2 on the other hand does a poor job of approximating
the development of the curve as the slenderness of the member is in-
creased, predicting far less influence on My capacity from the strong
axis. For the tested cross section profile Method 2 will only utilize the
strong axis design eq. (1) at a few load cases at lower slenderness
values. This means that the inaccurate development of kyy is effectively
irrelevant for λ N 0.3.

For the weak axis interaction factor kzy in Fig. 22 it can be seen that
for lower slenderness values the kzy values of Method 1 have an oppo-
site slope compared to kzy,0.1% as the axial force is increased in the inter-
mediate slenderness range. When the λLT is further increased a ‘dip’ in
the curve appears caused by a lower bound of the plasticity interaction
factor Czy, a factor included in Method 1 to decrease the benefit from
plastic interaction as flexural buckling becomes more critical at higher
axial forces, see [34]. For the tested IPE 160 profile it can be seen that
this ‘dip’ is somewhat delayed compared to the slope of the 0.1%
quantile. A change in the cut off level of the plasticity interaction factor
could possibly improve the fit of kzy for Method 1 compared to the 0.1%
quantile curve, and additionally lead to less conservative results for
higher slenderness values using the interaction eqs. (1) and (2).Method
2 with its linear approach leads to an overestimation of the influence of
weak axis forces on My in most load cases. Here the weak axis interac-
tion formula (2) is governing formost of the load cases used in this sim-
ulation, as no intermediate restraints against weak axis buckling is
present.

8. Conclusion

The accuracy of the buckling interaction formulae according to the
safety requirements and the probabilistic assumptions of Eurocode itself
have been investigated.With the assumptions of this paper the probabi-
listic investigations performed show that the Eurocode prescribes an
unsafe design when a beam-column member is loaded predominately
in bending for members with a lateral torsional slenderness, λLT, larger
than 0.4. On the other hand it also shows that the design according to
the Eurocode seems to become quite conservative for members loaded
predominately in compression for beam-columns having a lateral tor-
sional slenderness, λLT, larger than 0.8.

In the case of pure axial force the Eurocode weak axis flexural buck-
ling reduction factor χz provided conservative results compared to the
0.1% quantile of the results from the reliability analysis for nearly all
slenderness values tested. Slightly non-conservative values were pres-
ent in the range 0.5 ≤ λz ≤ 1.0. This might be caused by both geometrical
imperfections and residual stress being influential in this range, as seen
from correlation between the input data and resulting capacity, whilst
the beneficial effect from the strain hardening shown at lower slender-
ness values are decreased.

For pure bending the Eurocode design valueswere non-conservative
throughout the range of slenderness values, where the 0.1% quantile
only started approaching the design curve for LT buckling for very
high slenderness values (λLT N 2.0). Due to the limited amount of
datasets included, it was hard to determine a sole cause of the poor fit.
But geometrical imperfections did seem to have a large influence for
all slenderness values, suggesting that omitting the initial rotation ϕ in
the calibration of the lateral torsional buckling curves might contribute
towards the poor fit.

Concerning the beam-column interaction, it could be seen that fac-
tors from both Method 1 andMethod 2 did a decent job of approximat-
ing the results for lower slenderness values. For higher slenderness
values however, the fit of the curves deteriorated and it became appar-
ent that the Eurocode formulae did not properly emulate the complex
behaviour of the very slender beam-column. The strong axis interaction
factor kyy does a good job of approximating the recalculated kyy,0.1%
values. Only showing signs of being non-conservative or overly conser-
vative where the inaccurate χ factors from the Eurocode had a large ef-
fect, i.e. close to the pure load cases. Theweak axis interaction factor kzy
did not perfectly follow the recalculated kzy,0.1% as the axial force was
increased.
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