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[9–12]. However, certain imperfections canonly bemeasured experimen-
tally with limited accuracy and their statistical characteristics are still
under discussion. A typical example is residual stress, which can reduce
LCC and thus increase the probability of structural failure [13,14]. The fun-
damental question is, how does the residual stress influence the random
LCC in comparison to other imperfections? The answer can be obtained
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1. Introduction

The ultimate load-carrying capacity (LCC) of a steel structure is the
theoretical maximum load associatedwith the collapse of the structure.
The high sensitivity of LCC to initial imperfections is inherent in all
slender steel beamsunder compression or bending,which are subjected
to loss of stability [1].

LCC is generally a randomvariable. The reliable design of slender steel
structures requires the use of stochastic computational models as they
take into consideration the random effects of all initial imperfections, in-
cluding residual stresses. The random effects of initial imperfections on
LCC may be studied using Monte Carlo (sampling based) approaches
[2] in combination with the non-linear finite element method (FEM); it
is a common approach in the simulation-based computationalmodelling
of structural response [3,4].

The design LCC is the theoretical load that a steel structure can safely
and reliably transfer while ensuring the probability of failure is small.
The design LCC can be calculated according to the design philosophy
of the relevant Eurocodes [5,6] and the reliability requirements in [7]
as a quantile (percentile) of the LCC. The calculation procedures laid
down in design standards [8] are calibrated so that their design values
approximately correspond to the design quantiles specified in [7].

Data from experimental research concerning numerous material and
geometric imperfections of steel structures are available for use with sto-
fce.vutbr.cz (J. Valeš).
using appropriate methods of sensitivity analysis (SA); see reviews
[15–19]. It is interesting that SA is used relatively less in the technical sci-
ences than in scientific fields such as chemistry, medicine or biology [17].

SA methods are either deterministic or stochastic [20]. Stochastic SA
methods are more relevant when sufficient data are available from ex-
periments and accurate stochastic computational models [9,21]. On
the other hand, deterministic SA methods are more frequently applied
in cases where input data uncertainty is not of a stochastic nature. Ex-
amples include sensitivity formulations for optimal structural design
[22–24] or fuzzy multiple-criteria decision-making techniques and
their applications in economics and engineering [25,26].

Sensitivity analysis methods can generally be classified into local
and globalmethods [15]. Local or one-factor-at-a-timemethods are lim-
ited to examining the effects of variations in input parameters in the vi-
cinity of their nominal values. Global SA methods define the
contribution of individual input parameters, including their sets, and
provide more comprehensive information on the computational
model regarding changes in input parameters throughout their domain
[27]. A wide range of global SA methods exists in all those situations
where it is possible to assign probability distributions to model inputs
[16]. Global SA techniques do not require a priori information on the na-
ture of the model (model-free setting) because the conditions of addi-
tivity or linearity are not required [15]. The disadvantage of global SA
methods is that they usually lead to computationally expensive esti-
mates [28], while local SA methods require fewer simulation runs of
the computational model [29].

If the output of the reliability analysis is a failure probability, SA can
be applied based on the partial derivative of that failure probabilitywith
respect to the parameters of the input probability density functions
(pdf) [30,31]. This type of SA is local, because the emphasis is on the
local (point) effect of input factors on the model output. It usually
requires repeated evaluation of the failure probability for different pdf
parameters. If the limit state function is linear, first-order derivatives
provide all the information needed for SA; see e.g [32]. However, in
the case of non-linear limit state functions, this SA provides an approx-
imate result with unknown precision [31].
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Fig. 1. The geometry of an IPN 200 beam.
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The subject of this article is the statistical and sensitivity analysis of
the ultimate limit state of an imperfect steel I-beam which is subjected
to lateral-torsional buckling. The reliability of the design procedure ac-
cording to [8] is verified via the 0.1 percentile of LCC (LCC0.1), which is
the design quantile defined for the target reliability index βd = 3.8 in
[7]. The LCC is determined using geometric and material non-linear
FEM analysis. Statistical and sensitivity analyses are performed using
polynomial approximation of the LCC.

The statistical analysis takes into account the randomnature of input
imperfections and examines the randomness of LCC, where the key
output is LCC0.1. The goal of the SA is to describe the non-linear and
non-additive relationships between the input factors and LCC0.1. To
that end, global SAbased on two-level factorial design (FD) is employed.
FD is the strategy of creating combinations of input factors for thedesign
and implementation of physical or simulated experiments [33]. The
effects on the model output are examined by altering the input factors.
SA based on FD (SAFD) ranks these effects in order of importance from
the most to the least significant. Mean values and standard deviations,
which are the most commonly used parameters of the pdfs (usually
Gauss) of input random variables of stochastic computational models
(see for instance [34–36]), are selected as the factors of initial imperfec-
tions. The objective of SAFD is to examine the effects of these factors on
LCC0.1.

SAFD is performedwithin a deterministic framework, i.e., probability
distributions are not assigned to the model inputs. SAFD deals with the
“second degree of uncertainty” [37], where uncertainties (inaccuracies)
in the statistic moments of input random imperfections are considered
and the effects of such uncertainties on LCC0.1 are studied. The second
degree of uncertainty is presentwherever a component of the stochastic
model (reliability system) is represented by knowledge-based (subjec-
tive) probability [37,38]. The introduction of two degrees of uncertainty
has its justification. The first degree of uncertainty is dealt with via the
statistical analysis of the LCC and quantified by calculating LCC0.1.
However, the authors sense that the value of LCC0.1 is influenced by
(in addition to the random factors) other factors, the influence of
which should be monitored. The objective of this paper is the analysis
of the second degree of uncertainty of LCC0.1 using global SAFD and an
advanced geometric and material non-linear FE model.

The purpose of the current study, which differs from that of the
recent study [39] performed by the authors on a similar topic, is
the statistical and global sensitivity analysis of LCC0.1. The applica-
tion of Sobol's sensitivity analysis with regard to LCC was described
in [39] but is not the subject of the current study. This study and
[39] have some overlap with regard to the non-linear FE model and
its random imperfections, but the performance of different sensitiv-
ity assessments and a new statistical analysis of reliability with con-
sideration given to Eurocode 3 rules are described in this current
article.
Fig. 2. Simply supported I-beam subjected to uniform bending moment.
2. Finite element model

The research is focused on the ultimate limit state of a European
double symmetric hot-rolled beam (IPN 200), see Fig. 1. The I-beam is
subjected to lateral-torsional buckling due to uniform bendingmoment
M, see Fig. 2. The goal of the non-linear finite element analysis is to
quantify the effects of initial imperfections on the LCC of the beam.
The LCC is analysed using the ANSYS software package, which provides
sophisticated solid finite element analyses (FEA) using non-linear
constitutive laws and adopting incremental-iterative techniques [39].
The model has been developed using the 8-node homogeneous
structural solid element SOLID185; it is suitable for studying large
deflections, large strain capabilities, plasticity, hyper-elasticity, stress
stiffening and creep [40]. The finite element model (FEM) based on
SOLID185 elements includes geometric and material non-linearities.
The enhanced strain formulation is considered.
2.1. Mesh, boundary conditions and loads

The model of the IPN 200 cross-section is defined using a closed 2D
polygonal line that encloses a biaxially symmetrical geometric shape
(idealized cross-section) with the dimensions h, b, t1 and t2, see Fig. 1.
The idealized cross-section neglects the fillets at the ends of the flanges
and at the transitions between theweb and theflanges, thus eliminating
possible problems with the discretization of the model using finite
element meshes.

Several finite elementmesh creation variants with different settings
for the number of elements were compared in order to find a compro-
mise between CPU time consumption and the accuracy of results. The
optimum mesh is generated using ten elements for the flange width,
twenty elements for the web height and two elements for the thickness
of the web and flange; see Fig. 3.

Translations ux, uy, uz and rotations φx, φy, φz relate to the global
Cartesian coordinate system, which has its origin at the end of the
beam in the centre of gravity. The x-axis is the longitudinal axis of the
beam prior to the introduction of bow imperfection, while the y and z-
axes lie in the plane of the section. The number of elements in the
direction of the x-axis increases as the beam length increases. The
condition that the ratio of the longest to the shortest side of the element
must be b8 must be fulfilled. Let us note that according to [40], the
aspect ratio for quadrilaterals should not exceed 20 or the analysis
results may be adversely affected.

End-fork boundary conditions were assumed for the model. Such
boundary conditions are created using three kinematic coupling con-
straints [4], see Fig. 4. Two of these are added to the tips of the flanges



Fig. 3. The meshing of an IPN 200 cross-section. Fig. 4. Three kinematic coupling constraints.

Fig. 5. End-fork boundary conditions and equal bending moments.
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and one is applied to the axis of the web. Each coupling constraint
introduces a constant rotation along its lines. Kinematic coupling
constraints are an important part of the model because they prevent
local stress extremes from arising in the end sections, which is a
problem that would otherwise occur due to the loading forces.

The beam model is loaded at both ends by equal pure bending
moments M, see Fig. 2. The bending moments are applied as surface
loads on the surface p [N/m2], whose distribution over the cross-
section is of the same shape as the distribution of the normal stress
from bending, see Fig. 5. The equation from the theory of elasticity
of beams p = Mz/Iy, where Iy is the second moment of area about
the y-axis, is applied.

The boundary conditions of both ends of the beam are introduced
into the centre of gravity and uy = uz = φx = 0 is considered, see
Fig. 5. The geometry, boundary conditions, loading and material
properties of the model are symmetric about the plane at beam
midspan, which is perpendicular to the x-axis. Translation in the di-
rection of the x-axis is fixed at ux =0 in the centre of gravity at beam
midspan.

To ensure that the end-support conditions are modelled accu-
rately, comparison of the elastic critical moment Mcr-Ansys (deter-
mined as an eigenvalue using the FE model) and Mcr (obtained
from the beam theory [41]) is provided. Discrepancies in terms of
the percentages (1-Mcr-Ansys/Mcr)⋅100 evaluated for 4 beams (L/h
N 10) are −6.58% (L = 2.08 m), −4.43% (L = 3.49 m), −1.96% (L
= 6.94 m), 0.46% (L = 32.52 m). The discrepancies in the percent-
ages of slender beams are relatively small and show that the intro-
duced boundary conditions model the fork-end support conditions
at the supports with sufficient precision.

LCC is evaluated using the geometric andmaterial non-linear FEM
based on the incremental iterative strategy of the full Newton-
Raphson method [40]. The external loading bending moment M
increases step-by-step up to the LCC, for which the determinant of
the tangential stiffness matrix of the beam is equal to zero. The LCC
is numerically determined by the value of the external moment in
the last loading step. The steps of the loading moment decrease so
that the LCC value is calculated with an accuracy of 0.2%. The LCC cal-
culated (i) using the increment of the external load is practically the
same as if it were calculated using (ii) the Riks arc-length method
[42] because the stiffness matrix is positive definite during the entire
process. Both methods can be used. It should be noted that the calcu-
lation performed in this article is based on the ultimate limit state,
and no deflection limit was considered. Another method for
obtaining the LCC is by applying deformation load when rotations
about the y-axis are prescribed to the cross-section nodes on both
ends [60]. In this case, a post-peak response can be observed and
the peak load value is the LCC. The study in [60] has proved that
LCCs obtained using both the deformation load and the force load
are equal.
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2.2. Material model

The relationship between the stress and strain is introduced as an
elastic-plastic stress-strain bilinear diagram with an elastic part and
pseudo-strain hardening. The elastic part with Young's modulus E is
followed by a strain-hardening part with strain-hardening modulus
Esh = E/10000, where Esh is the value taken from [43]. The inclusion of
very small Esh values helps overcome the numerical instability of the
non-linear FEM model, which slightly increases when the value of the
strain hardening exponent approaches zero. According to our studies,
the influence of the size of strain-hardening on LCC is very small for
beams under bending with small slenderness values. This is consistent
with modelling the behaviour of compressed columns using shell
elements [4]. It may be noted that a more sophisticated approach can
be used to describe the stress-strain relationship. It involves using a
trilinear diagram consisting of an elastic part and a yield plateau follow-
ed by a strain-hardening part, see e.g [12,13,44].

2.3. Geometric imperfections

Geometric imperfections of the beam axis are taken into account in
the shape of the first eigenmode,which is a common approach for intro-
ducing initial translations and rotations of a section along the length of a
beam [44–48]. The first eigenmode is calculated on a perfectly straight
beam (without imperfections), whose model is described above.
Geometric imperfections based on this first eigenmode comprise lateral
initial translation and initial rotation, both of which have a sinusoidal
shape with the amplitudes av0 and aφ0, respectively.

v0 ¼ av0 sin
πx
L

� �
;φ0 ¼ aφ0

sin
πx
L

� �
ð1Þ

Both amplitudes av0 and aφ0 can be expressed as functions of the
initial bow imperfection e0, which is located at the centre of the top
flange edge at the midspan and is thus the most significant in terms of
the size of the initial translation, see Fig. 6. Taking into account the
analytical solution [41,49] or [50], we can write.

av0 ¼ e0

1þ h
2
π2EIz
McrL

2

; aφ0
¼ av0

π2EIz
McrL

2 ð2Þ

where h is the cross-section height, L is the length of the beam, Iz is the
secondmoment of area of the z-axis, E is Young'smodulus andMcr is the
elastic critical moment when lateral beam buckling occurs, as described
in [49,50].
Fig. 6. Initial axis imperfection patter
2.4. Residual stress

One of the most challenging aspects of attempting the accurate FE
analysis of the real behaviour of steel members is the modelling of
residual stress. The distribution of residual stress in real steel members
can only be obtained from experimental measurements. However, it is
known to be a very difficult, time-consuming and inefficient task with
limited accuracy [14]. The production of hot-rolled steel I-beams
involves the cooling of the material into its final form, during which
residual stresses arise primarily due to uneven cooling. The size and
distribution of residual stress depend on the geometry and type of
cross-section, rolling temperature, cooling conditions, straightening
procedures and other factors. Results obtained from experimental
research have demonstrated that the magnitude of residual stress in
hot-rolled profiles appears to be independent of the material yield
strength for both mild and high-strength steels [4]. The stress distribu-
tion ought to be independent of the yield stress. However, it does not
have an effect on the analysis performed for S235 steel, which is used
for the simulation. An entirely different situation is observed for welded
beams, where residual stress in the vicinity of the welds can be as high
as the yield strength [44,51]. The distribution of residual stress on the
web and flanges of hot-rolled steel beams is well documented and can
be idealized using a parabolic or linear curve [52]. The commonly used
residual stress pattern for hot-rolled I-profiles in FE modelling is linear
stress distribution, which is the basis for European buckling curves
[53,4,54]. Linear distributions of residual stress can be used to deter-
mine accurate results which might be slightly more conservative than
those obtained using a parabolic residual stress distribution [4].

The residual stress of the hot-rolled IPN 200 beam is introduced as
thermal stress initiated by the application of temperature distributions
to the web and flanges; it is the approach applied for rolled I-sections
in similar studies, see e.g. [55,56,57,4]. If the flange has a rectangular
cross-section as considered in, for instance [76,4], then the dependence
between the residual stress and temperature change ΔT is expressed by
Eq. (3)

ΔT ¼ −
σR

E � β ð3Þ

where the temperature change ΔT needed at a given point of the cross-
section depends on the thermal expansion coefficient β=1.2E−5 K−1

and the magnitude of the residual stress σR to be established at that
point [57,4]. The effect of cold-straightening is neglected.

The residual stress is introduced with the use of thermal and
structural analysis. The 3-D thermal solid element SOLID70 is used for
the thermal analysis. SOLID70 only has a single degree of freedom,
temperature, and cannot be used for stress state analysis. The output
of the thermal analysis is a temperature field calculated from the
required target temperatures in selected nodes. The temperature field
n based on the first eigenmode.



Fig. 8. Distribution of residual stress initiated by ΔT.
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shown in Fig. 7 was created by entering target temperatures in selected
nodes on the edges of the flanges, in the centre of the web and in the
centre of the flange. In the next step, the element is changed to
SOLID185. The distribution of residual stress is obtained by introducing
the temperature field to the model with SOLID185 elements during the
structural analysis, see Fig. 8. The equilibrium of forces in the direction
of axis x is ensured automatically as the beamhas a boundary condition,
ux = 0, in the centre of gravity in L/2.

However, since the flanges of the IPN cross-section have a 14% incli-
nation angle towards the web, Eq. (3) has the nature of an approximate
relation, which cannot be used directly. The introduction of self-
equilibrating residual stresses is achieved by the FE analysis of the FE
model described above.

Let us consider afixed t2 value, see Fig. 1. Theprocedure for the intro-
duction of the residual stress can be described as follows: Let us denote
the value of the residual stress at the flange tips at any point at the
midspan of the beam using variable σR. Temperature change ΔT,
which initiates the distribution of residual stress, is introduced in the
computational model in the manner depicted in Fig. 7. For the fixed t2
value (i.e. fixed geometry) the obtained model dependence between
residual stress and ΔT is linear. The required residual stress value is
obtained using new ΔT settings; it is calculated as follows: the former
ΔT value obtained according to Eq. (3) is multiplied by the desired
value σR and divided by the normal stress value σx from the FE model.

Fig. 7 and Fig. 8 show the relationship between the temperature
distributionΔT and residual stress for nominal geometric characteristics
h, b, t1, t2, where nominal flange thickness is t2 = 11.3 mm.

The residual stress introduced in such a manner changes almost
linearly in the direction from the tips of the flange to its centre. It is
20% higher at the flange tips where the flange thickness is lower than
at its centre, see Fig. 8. The zero stress value does not occur at the
quarter of the way across the flange, but slightly closer to the centre. If
we consider a rectangular flange shape, e.g. on an IPE profile, then the
absolute residual stress values at the tips and centre of the flange are
identical. The distribution of residual stress shown in Fig. 8 is one of
themany possible types of self-equilibrating distribution. Other model-
ling approaches (e.g. parabolic distribution) can be discussed.

2.5. Validation of a solid FE model against a shell FE model

The above-described FE model (i) was validated using an FE model
(ii) developed at the Technical University of Denmark [4,58]. Model
(i) uses SOLID185 solid elements in ANSYS software [40], while model
(ii) uses S4 shell elements in Abaqus software [59]. The calculation of
Fig. 7. Application of linear temperature changes ΔT for the initiation of residual stress.
the LCC for model (i) is based on the incremental iterative strategy of
the Newton-Raphson method, and on the Riks arc-length method in
the case of model (ii) [42]. Both FE models use the same material
model, residual stress distribution and initial geometrical imperfections.
Boundary conditions and loading are adapted to the elements used
(solid in (i) and shell in (ii)). The validation of the LCC is performed
with a series of IPE 200 beams. Analyses are performed for three values
ofλLT =0.3, 0.6 and 1.2.With 7 input random imperfections and 10 LHS
runs, the standard deviations of the LCC of (i) are approximately 3–6%
lower than those of (ii). The mean LCC values obtained from model
Fig. 9. A 2k design for k = 1, 2, 3, 4 and 5.



Table 1
Statistical characteristics of input imperfections.

Symbol Characteristic Pdf Mean μ Standard deviation σ

t2 Flange thickness Gauss 11.3 mm 0.518 mm
fy Yield strength Gauss 297.3 MPa 16.8 MPa
E Modulus of elasticity Gauss 210 GPa 10 GPa
e0 Initial imperfection Gauss 0 L/1960
res Residual stress on flange tips Gauss 90 MPa 18 MPa
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(i) are lower than those from (ii) by approximately 2–6%. The difference
of 6% occurs for λLT = 0.3; it may be induced by plastic behaviour in
combination with the material overlap in model (ii). However, the
crucial factor is the correlation between both models, which is almost
1 in each case. A detailed description of the comparative studies and
obtained results is in [58].

In further comparative studies [60,61] the elastic resistanceMR,Ansys

was validated using the analytical elastic solution MR in the closed
form [50]. MR,Ansys is calculated using model (i), where residual stress
is neglected and material and geometric characteristics are considered
using their nominal values. MR,Ansys and MR represent the bending
moments at which the maximum value of the von Mises stress
corresponds to yield strength. It is evident from [60,61] that MR,Ansys

perfectly corresponds to MR for λLT 0 to 2.1.
3. Factorial designs and sensitivity analysis

Design of Experiments (DOE) is an important part of the planning
and proposal of physical experiments [33]. The extension of DOE to
computer experimentsmay be considered the predecessor of sensitivity
analysis [15]. Although there are differences between physical and
simulated experiments, sensitivity analysis (SA) is based on the same
principles. SA evaluates the performance of a designed experiment,
which is usually related to determining the effects of changed controlla-
ble inputs on the corresponding varied output of a process [62]. The
combination of input factors (sample sets) should be chosen in such a
manner so as to obtain the most relevant response function. The
Fig. 10. Table of contrast coefficients cij for 25 design.
sophisticated selection of combinations of input factors aimed at inves-
tigating the relationship between input-output was first proposed in
[63]. A description of the classical design approach is published in, for
example books [64,65]. An overview of other approaches to DOE can
be found in, e.g [66–68].

A DOE technique with great practical significance is Factorial Design
(FD) [15,33]. FD is the strategy of planning an experiment in such a
manner that data are collected with the aim of determining the input
factors and interactions between factors having the greatest influence
on the response of the experiment [67]. FD assigns two levels to all fac-
tors, usually denoted by a high (+1 or simply+) and low (−1 or just−
) level for each factor [64,67]. The FD is performed on all possible factor
level combinations for all factors. The computational cost is n=2k runs,
where k is the number of factors. The combinations of levels simulated
in the design are displayed in a matrix referred to as the design matrix.
The procedure of creating the factorial designmatrix for three factors is
publishedwith supplementary illustrations in, e.g. [33,15]. A designma-
trix for four factors is published in [69–71], for example. An example of a
design matrix for five input factors (A, B, C, D, E) is illustrated in Fig. 9.
The subsets in Fig. 9 show how the number of combinations increases
with an increasing number of factors k = 1, 2, 3, 4 and 5.

The creation of 25 = 32 combinations of all levels can be written in
the programming language Pascal as:

S≔
0
−þ 0

; For i1≔1 to 2 do For i2≔1 to 2 do For i3≔1 to 2 do
For i4≔1 to 2 do For i5≔1 to 2 do writeln S i5½ �; S i4½ �; S i3½ �; S i2½ �; S i1½ �ð Þ;

ð4Þ

Each combination yields an output, yi. The design matrix extended
by outputs yi is used to evaluate the main and interaction effects of
input factors on output Y. The difference between the output values y1
and y2 is solely due to variations at the level of variable A, since the
other variables remain unchanged. Other differences in the output
values relevant to the main effect of variable A exist between y4 and
y3, y6 and y5, y8 and y7, etc. The main effect of variable A is defined as
the average effect of that variable over all conditions of other factors.
For example, the main effect of variable A for three factors can be
written as:

SA ¼ y2−y1ð Þ þ y4−y3ð Þ þ y6−y5ð Þ þ y8−y7ð Þ
4

ð5Þ
Table 2
Artificial random variables for approximation.

Symbol Characteristic Pdf Minimum Maximum

X1 Flange thickness Rectangular 8.83 mm 13.77 mm
X2 Yield strength Rectangular 217.43 MPa 377.17 MPa
X3 Modulus of elasticity Rectangular 162.46 GPa 257.54 GPa
X4 Initial imperfection Rectangular 0 4.76 L/1960
X5 Residual stress on flange tips Rectangular 0 MPa 180 MPa



Fig. 13. Statistical analysis of LCC - residual stress.
Fig. 11. Statistical analysis of LCC for λLT ¼ 1:0 (L = 2.96 m).
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where SA is the first order sensitivity index (main effect) of factor A on
output Y [15]. The sensitivity index SA for five factors can be written as:

SA ¼ 1
16

X16
i¼1

y2i−y2i−1ð Þ ð6Þ

The first order sensitivity index of factor B on output Y can bewritten
analogously.

SB ¼ 1
8

X8
i¼1

y4i−1−y4i−3ð Þ y4i−y4i−2ð Þ ð7Þ

The first order sensitivity indices of the other factors are calculated in
a similar manner. Factorial design enables the measurement of interac-
tions between each different group of factors. The interaction effects are
calculated by extending the design matrix with a column containing
contrast coefficients. The signs of the interactions are obtained by
multiplying the signs of the respective variables; this is illustrated in
Fig. 10 for 5 factors. Generally, the number of all sensitivity indices is
2k-1.

For five input factors 25–1 = 31, sensitivity indices exist, of which 5

describe themain effects, 5
2

� �
¼ 10two-factor interactions, 5

3

� �
¼ 10

three-factor interactions, 5
4

� �
¼ 5 four-factor interactions, and one

five-factor interaction. Using the table in Fig. 10, we can express the
j-th sensitivity index as:

Sj ¼ 2
n

Xn
i¼1

cijyi
� � ð8Þ
Fig. 12. Statistical analysis of LCC for pdfs from Table 1.
where cij is the sign on the i-th row and j-th column and yi is the output
on the i-th row of the table in Fig. 10. For example, the interaction effect
of factors A and B is calculated as

S6 ¼ SAB ¼ 2
32

y1−y2−y3 þ y4 þ y5−y6−y7 þ…þ y32ð Þ ð9Þ

Sensitivity indices (Eq. (8)) may either be positive or negative.
However, it is themutual comparison of the absolute values of sensitivity
indices that is significant for the interpretation of structural mechanics
results.

SA based on FD (SAFD) has, in comparison with other methods, its
advantages and disadvantages. SAFD can be used to examine the effects
of deterministic (non-random) input factors of a stochastic computa-
tional model on changes in the statistical (moment or quantile) charac-
teristics of output random variables [72]. One disadvantage is that a
change in each input factor is expressed using only two values. This
may be an advantage in cases where the uncertainties of input and
output factors are expressed using fuzzy numbers and processed using
the general extension principle based on α-cuts [73].

4. Input random imperfections

Stochastic models dealing with lateral-torsional buckling must in-
clude the effects of inputmaterial, geometric imperfections and residual
stress. Random variability should be taken into account for those imper-
fections whose variability significantly influences the variability of the
LCC. Stochastically significant imperfections include the initial curvature
of the beam axis, flange thickness, yield strength, modulus of elasticity
and residual stress. The significant effects of the first four imperfections
Fig. 14. Statistical analysis of LCC - bow imperfection.



Fig. 15. Spearman rank-order correlation coefficients for imperfections vs LCC.
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were confirmed by the SA of the elastic LCC [50]. It has also been
observed that the random variabilities of the thickness of the web, the
cross-section height, the thickness of the flange and Poisson's ratio do
not significantly influence the elastic LCC and thus can be considered
deterministic variables [50]. Residual stress in hot-rolled beams is
another inevitable imperfection. It must be considered a random
variable and its effect on LCC must be studied with regard to plasticity
and instability effects [14].

The amplitude of the initial curvature of beam axis e0 is
considered using a Gauss pdf. The mean value was considered to be
zero, i.e., a perfectly straight beam (with simply supported ends) is
introduced as the best representation of the mean value of all
possible observations of the initial axial curvature. The magnitude
of the beam bow imperfection can be taken as L/1000, [74,44,60].
The standard deviation L/1960 is derived on the assumption that 95
observations (realizations) of amplitude e0 lie within the tolerance
limits ±L/1000, see e.g. [50,75].

The flange thickness t2 is modelled using a Gauss pdf with a mean
value of 11.3 mm (nominal value) and a standard deviation of
0.518 mm [11]. Yield strength fy is modelled using a Gauss pdf with a
mean value of 297.3 MPa and a standard deviation of 16.8 MPa [9].
The statistical characteristics of the yield strength were evaluated
from 562 tensile tests of samples obtained from a third of the flanges
of profiles ranging from IPE 160 to IPE 220 [9]. Themodulus of elasticity
is modelled by a Gauss pdf with a mean value equal to the nominal
value of 210 GPa and a standard deviation of 10 GPa [76].

An extensive literature survey [13] focused on probabilistic ap-
proaches to the modelling of the residual stress of hot-rolled steel I-
sections shows the high random variability of experimentally observed
magnitudes of residual stress. The residual stress res on the flange tips
(see Fig. 8) can be modelled using a Gauss pdf with a mean value of
90 MPa and standard deviation of 18 MPa (coefficient of variation 0.2)
[13].

All five input random variables are listed in Table 1. The variables in
Table 1 are considered statistically independent. Other material and
geometric characteristics are considered deterministic in the computa-
tional model. These include the nominal height (h=200mm), nominal
width (b = 90 mm) and nominal web thickness (t1 = 7.5 mm) of a
Table 3
25 design performed for standard deviations.

Symbol Characteristic Standard

t2 Flange thickness cL⋅0.518 m
fy Yield strength cL⋅16.8 M
E Modulus of elasticity cL⋅10 GPa
e0 Initial imperfection cL⋅L/1960
res Residual stress cL⋅18 MPa
European profile (IPN 200). Shear modulus is considered using the
relation G = E/(2(1 + ν)), where ν is Poisson's ratio (ν = 0.3) [8].

5. Polynomial approximation of the load-carrying capacity

In order to reduce the computational cost of the structural reliability
analysis, the non-linear response of the FE model is approximated by a
polynomial (10), whose function values are easy to calculate. The
terms of the polynomial are selected so as to approximate all non-
linear and interaction effects of the five input variables on the output
of the non-linear FE model.

LCC ≈ Y ¼
X2
a¼0

X2
b¼0

X2
c¼0

X2
d¼0

X2
e¼0

cα � Xa
1 � Xb

2 � Xc
3 � Xd

4 � Xe
5 ð10Þ

The polynomial terms comprise productsmade up of n-combinations
(n = 0,1,…,5) taken from a set of ten elements containing variables X1,
X2, X3, X4, X5 and their squares, such that the exponent of each variable
is less than or equal to two.

Polynomial (10) presents an acceptable compromise between
computational cost and accuracy. Experiments using higher-order poly-
nomials did not lead to improved accuracy; on the contrary, they led to
severe oscillations and required too many support points. It may be
noted that similar numerical experiences are described in the article
[77] in connection with Response surface methods.

Polynomial (10) has 35= 243 termswith 243 constants cα, where α
=81a+27b+9c+3d+ e. Constants cα are calculated using the least
square method with 400 support points, which are generated using the
Latin Hypercube Sampling method (LHS) [78,79]. The first 300 support
points are generated for random variables X1, X2,…, X5 in Table. 2. The
other 100 support points are generated for random variables t2, fy, E,
e0, res in Table. 1 with settings for the absolute value for each random
realization e0. The combination 300 + 100 is a compromise ensuring
that a sufficient number of the 300 support points (Table 2) are found
in a sufficiently wide input space (a sufficiently wide domain for ap-
proximation) and another 100 support points (Table 1) increase the
density of the input space with the highest frequency of “real” observa-
tions of initial imperfections. As a result, the inputs of polynomial (10)
can contain up to 500 thousand LHS simulations of the random initial
imperfections shown in Table 1. This is a statistically sufficient number
of runs for our study, which would have been impossible to perform
by direct calculation of the above-mentioned non-linear FE model in
real time. The process of generating support points using the 300
+ 100 method was chosen empirically according to [80].

6. Statistical analysis of the load-carrying capacity

The objective of the statistical analysis is to determine the mean
value, standard deviation and design quantiles of the load-carrying
capacity. The statistical analysis is performed for two million runs of
the LHS method using the inputs listed in Table 1. The set containing
two million runs is compiled by combining four sets, each containing
500 thousand runs. Random realizations e0 are considered using their
absolute values. This process ensures that all simulated runs are found
within the domain of polynomial (10).
deviation Low-level (−) Standard deviation High-level (+)

m cH ⋅0.518 mm
Pa cH ⋅16.8 MPa

cH ⋅10 GPa
cH ⋅L/1960
cH ⋅18 MPa



Fig. 16. SAFD for factors in Table 3, cL = 0.01, cH = 1 and λLT=0.
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The statistical analysis procedure canbedescribed as follows: Thenon-
dimensional slenderness of the beam λLT is selected (e.g. λLT = 1.0) and
the corresponding beam length L is calculated (e.g. L = 2.96 m), which
is also the parameter of the standard deviations in Table 1 and Table 2.
The analytical equation is listed in [8]. The curve approximating the ana-

lytical relation for λLTb1:7 is L ≈ 2.15λLT -0.75λ
2
LT +1.95λ

3
LT-0.39λ

4
LT . The

approximation polynomial (10) is created following the procedure de-
scribed in the previous chapter. Statistical analysis based on polynomial
(10) is performed for the random variables listed in Table 1. An example
of the evaluation of the statistical analysis is shown in Fig. 11. The design
value of 35.2 kN is evaluated in accordancewith [7] for reliability indexβd

= 3.8 as the 0.1 percentile [11,81]. The 0.1 percentile is evaluated non-
parametrically so that two thousand simulation runs lie below the
value 35.2 kN, see Fig. 11.

Statistical analysis is performed for additional λLT values. In order to
obtain a continuous distribution of the statistical characteristics of the
LCC, a step of 0.01 is used for λLT . The results of the statistical analysis
after polynomial fitting are depicted in red in Fig. 12. The full lines rep-
resent the design values, which are of key importance for reliable design
and the assessment of bearing structures. The general case equations
are considered the assessment equations of EC3 [8]. The experimentally
obtained LCC of the beam should be higher than the design value with a
probability of 99.9%. However, this is satisfied only approximately. EC3
[8] does not guarantee sufficient reliability in the design of slender
beams, see Fig. 12. The 0.1 percentile values are smaller than the design
values evaluated according to EC3 [8] for λLT N 1.1. For high slenderness
values, the design value according to EC3 is dangerously close to the
mean value, and the mean value dangerously approaches the elastic
critical momentMcr calculated for a beamwith nominal characteristics.
From a technical perspective, the difference between EC3 and the 0.1
percentile is relatively small for real beams with λLT b 2. The curve of
the 0.1 percentile is a smooth curve without a plateau, which differenti-
ates it from the buckling curves in EC3 [8].

Fig. 13 supplements Fig. 12 with the statistical analysis of the LCC of
a beam whose residual stress is fixed on the values (i) zero and (ii)
160 MPa. The comparison between (i) and (ii) is noticeably manifested
in the intervalλLT ∈ (0.3, 1.5), see Fig. 13. Itmay be noted that the values
of 0 MPa and 160 MPa were chosen for the purpose of illustrative
comparison; however, the most extreme of the recorded experimental
residual stress values may be even greater. The most extreme values
at the flange tips have even been recorded as being tensile [82].

Another study, shown in Fig. 14, supplements the results in Fig. 12
with a statistical analysis of the LCC of beams whose standard deviation
of bow imperfectionσe0 is considered to be one-tenth of the value listed
in Table 1. The influence of the one-tenth standard deviation of the bow
imperfection is observed in the interval λLT ∈ (0.2, 1.7), see Fig. 14.

The results in Fig. 13 and Fig. 14 show that the influence of residual
stress and bow imperfection on the LCC (mean value and 0.1percentile)
is similar but not identical.

It must be emphasized that the scope of the presented research is lim-
ited to beams with an IPN 200 cross-section and cannot be generalized,
e.g. to beams with an IPE 200 cross-section.
Fig. 17. SAFD for factors in Table 3, cL = 0.01, cH = 1 and λLT=1.
7. Sensitivity analysis results

7.1. Sensitivity analysis results based on Spearman's rank-order correlation

SA based on Spearman's rank-order correlation demonstrates the
effect of changes in the probability distributions of initial imperfections
listed in Table 1 on the probability distribution of the LCC. Spearman's
rank-order correlation is the non-parametric version of the Pearson
product-moment correlation. Spearman's rank-order correlation
coefficient determines the strength and direction of the monotonic
(linear or non-linear) relationship between two variables. Fig. 15
shows curves derived using Spearman's rank-order correlation
coefficient. Five-hundred thousand LHS runs are used. In order to fulfil
the assumption of a monotonic relationship the simulation runs e0 are
considered in absolute values. Imperfections fy, t2 and E influence the
LCC positively, imperfection e0 and res negatively. The influence of e0
compared to the influence of res is approximately double and is
observed in the double interval λLT , see Fig. 15. The correlation that is
absolutely the strongest is related to imperfections fy, t2.

The curves derived using Spearman's rank-order correlation
coefficient provide a basic understanding of the sensitivity of the LCC
to initial imperfections, but cannot evaluate higher interaction effects
between the initial imperfections and the LCC [15]. Furthermore, the
evaluation of the correlation does not allow the evaluation of the effects
of changes in the statistical characteristics of input imperfections on the
0.1 percentile, which is an important design characteristic.
7.2. Sensitivity analysis results based on factorial design

Why apply SAFD – sensitivity analysis based on factorial design?
Most sensitivity analysis methods study the influence of the random
variability of input variables (for which it is assumed that their variabil-
ity is known) on the random variability of the output variable [15].
However, the design of reliable steel structures is based on design
values, which are quantiles. In order to understand how reliably the
value of a given quantile is calculated, it is necessary to identify the
sources of uncertainty of the input factors and analyse their effects on
the design quantile. Major sources of uncertainty could include the
standard deviations, mean values and types of pdf of imperfections,
which cannot be precisely studied experimentally. A typical example
is residual stress, whose statistical characteristics (particularly the
standard deviation) and pdf type are still under discussion [13,39].
The question is how to analyse the effect of changes in the standard



Fig. 20. SAFD for factors in Table 3, cL = 0.49, cH = 0.51.

Fig. 18. SAFD for factors in Table 3, cL = 0, cH = 1.
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deviation of an input imperfection (relative to the standard deviations
of other imperfections) on the magnitude of LCC0.1. Such a change can
be seen as being purely two-level; it does not burden the study with
additional parameters. The results are obtained using SAFD, which
evaluates the effects on LCC0.1 of changes in the statistical characteristics
of input imperfections.

Five factors are chosen to build the full FD. The factors are the stan-
dard deviations of initial imperfections, see Table 3. SAFD examines
how the introduction of initial imperfections using deterministic
(non-random) values influences the size of the 0.1 percentile. Low-
levels (−) are considered to be values very close to zero (cL = 0.01)
and high-levels (+) are values from Table 1 (cH = 1). The value cL =
0 is not considered; this is to prevent analysis taking place on the edge
points of the domain of polynomial (10). The pdf types andmean values
are the same as in Table 1. The evaluation of LCC0.1 is performed 32
times for all 25 combinations, see Fig. 10. It is performed using
polynomial (10) and 2 million LHS runs for each combination. The
outputs of SAFD are the absolute values of sensitivity indices (Eq. (8)),
whose sum is normalized to the value of 1. Using the contrast
coefficients in Fig. 10, Eq. (8) is used in the form below (Eq. (11)).

Sj ¼ 1
16

X32
i¼1

cijyi
� ������

����� ð11Þ

Fig. 16 shows the results of SAFD for cL=0.01, cH=1 andλLT =0. It
can be noted that the results shown in Fig. 16 are the same as for cL=0.
LCC0.1 is most influenced by the absence of the random variability of
yield strength fy, which is the imperfection with the most important
main effects. The secondmost significantmain effect is the flange thick-
ness t2. The interaction effect of imperfections t2, fy is also significant.

Fig. 17 shows the results of SAFD for cL =0.01, cH = 1 and λLT = 1
(L = 2.96 m). The main effect of imperfections t2 and e0 has the
highest value. The sum of all interaction effects, which is shown in
grey in Fig. 17, is relatively significant. The continuous results of
Fig. 19. SAFD for factors in Table 3, cL = 0.3, cH = 0.7.
SAFD for cL = 0.01, cH = 1 obtained using the step-by-step method
are shown in Fig. 18. Sensitivity indices with very small values are
not shown for the sake of clarity.

In further studies, SAFD is evaluated for other settings of cL, cH. Fig. 19
shows the results of SAFD for cL=0.3, cH=0.7. Fig. 20 shows the results
of SAFD for cL = 0.49, cH = 0.51. The curves of the sensitivity indices in
Figs. 18, 19, 20 are approximately similar in shape, but different in size.
It is apparent that the values of the sensitivity indices of the first order
(main effects) increase and the interaction effects between input factors
decrease with decreasing interval size (cL, cH). The effect on the LCC0.1
value of changes in the standard deviation of the residual stress is not
as significant as changes in the standard deviation of the flange
thickness or bow imperfection.

In another study, factors are introduced using themean values of the
initial imperfections, see Table 4. Low-levels (−) are the mean values
from Table 1 and high-levels (+) are the mean values from Table 1
plus c-times the standard deviation of the corresponding imperfection,
see Table 4. Fig. 21 shows the results of SAFD for c = 0.1. Fig. 22
shows the results of SAFD for c = 0.01. The results show the dominant
presence of sensitivity indices of the first order; interaction effects are
minimal. The results in Fig. 21 and Fig. 22 are practically identical.
8. Conclusion

The results of statistical and sensitivity analyses of the LCC of a beam
with an IPN 200 cross-section based on a detailed geometric and
material non-linear FE model and using SOLID185 finite elements are
presented in the article. Using SOLID185 finite elements makes it possi-
ble to model the changing flange thickness of the IPN cross-section and
to eliminate certain undesirable effects of shellmodels, such as the small
material overlap in the transition between the web and flanges [4]. The
problem of material overlap is, however, eliminated at the price of
greater (more than three times higher) model processing time. The
model's output LCC is approximated using a polynomial in order to
permit the use of a high number of LHS runs. The polynomial approxi-
mates the input space using five crucial input random imperfections
in a manner that retains all non-linear and interaction effects of the
non-linear computational model.
Table 4
25 design performed for mean values.

Symbol Characteristic Mean value Low-level
(−)

Mean value High-level
(+)

t2 Flange thickness 11.3 mm c⋅11.3 mm
fy Yield strength 297.3 MPa 297.3 MPa + c⋅16.8 MPa
E Modulus of elasticity 210 GPa 210GPa + c⋅10 GPa
e0 Initial imperfection 0 c⋅L/1960
res Residual stress 90 MPa 90 MPa + c ⋅18 MPa



Fig. 21. SAFD for factors in Table 4, c = 0.1.
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The design LCC of EUROCODE 3 is verified via statistical analysis of
the LCC, including the calculation of LCC0.1, which is the 0.1 percentile
of the LCC [7]. The results of the statistical analysis show that
EUROCODE 3 [8] provides reliable design for λLT ≤1.1, where LCC0.1 is
up to 3% higher than the design LCC according to [8]. On the other
hand, the design LCC according to [8] is up to 12% higher (less safe)
than the 0.1 percentile for slender beams with 1.1bλLT ≤3.5. These re-
sults confirm the conclusions of the probabilistic reliability analysis
[75], according to which the design of very slender beams subjected to
bending and solved with consideration given to buckling has a failure
probability higher than the optimal target value of 7.2E-5 (βd=3.8) [7].

LCC0.1 is influenced by the residual stress in the interval λLT ∈ (0.3,
1.5), see Fig. 13. This result is obtained by fixing the residual stress on
the values zero and 160 MPa and simultaneously keeping the random
variability of the other imperfections. A similar (but not identical) effect
occurs due to the decrease in the standard deviation of the bow
imperfection, see Fig. 14.

Let us compare the results in Fig. 14 with the results of a similar
study in [50], which is based on the closed-form analytical elastic
solution. The sensitivity of the 0.1 percentile to the bow imperfection
is higher in the closed-form analytical elastic solution [50] than in the
geometrical and material non-linear FE model presented here. In the
study [50] in Fig. 12, setting e0 = 0 is the limit case, which leads to an
LCC value that is equal to (i), the critical elastic moment for slender
beams, or (ii), the attainment of yield strength by the extreme fibres
Fig. 22. SAFD for factors
of the cross-section in the case of short beams. The non-linear FE
model based on SOLID185 elements used in this paper does not yield
such a rapid increase in the LCC for e0 → 0, and the curves of LCC0.1 vs
λLT in Fig. 12 to Fig. 14 retain their shape even for small e0 values. As a
result, the FE model differs from the elastic analytical solution [50],
particularly with regard to (i) and (ii).

The main results related to LCC0.1 are obtained by SAFD sensitivity
analysis, which describes the influence of inaccuracies in the statistical
moments of input variables (the second degree of uncertainty). The
statistical moments are (i) standard deviations and (ii) mean values of
initial imperfections. Statistical moments (i) and (ii) should be known
as accurately as possible. However, the statisticalmoments of, e.g. resid-
ual stress or initial bow imperfection can only be obtained experimen-
tally with limited accuracy [14]. Therefore, the question of how
inaccuracies in (i) and (ii) influence LCC0.1 is under investigation.

The main output of SAFD is sensitivity indices, which are plotted in
relation to λLT; see Fig. 18 to Fig. 22. SAFD has shown that the inaccura-
cies in the residual stress in (i) and (ii) influence the LCC0.1 value in a
manner which is relatively very small in comparison to the influence
of the inaccuracies caused by the other imperfections in (i) and (ii).
The relatively low sensitivity of LCC0.1 to the mean value or standard
deviation of the residual stress reduces the uncertainty encountered
while introducing the first two statistical moments of the residual stress
into the stochastic computational model. The optimistic conclusion of
SAFD is also corroborated by the Spearman's rank-order correlations
in Fig. 15 and by the Sobol's sensitivity analysis of LCC in [39]. On the
other hand, statistical moments (i) and (ii) of the bow imperfection
should be paid increased attention, particularly if λLT ≈ 1.0 (see
Fig. 18 to Fig. 20).

The presented SAFD approach provides an alternative to conventional
methods of global sensitivity analysis by evaluating the effects of non-
random factors of stochastic models on output statistical moments,
quantiles or failure probability. SAFD provides information on the calcu-
lation conditions for design characteristics which guarantee the safety
and reliability of structural design. SAFD can be applied to stochastic
models with many input random characteristics and non-random fac-
tors which cannot be reliably identified using conventional means and
remain an ongoing subject of discussion. This is a common case in nu-
merous research projects in which a stochastic computational model
is continuously supplemented by additional random and non-random
variables.
in Table 4, c = 0.01.
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The numerical results presented in this article concern only hot-
rolled steel beams (IPN 200) under bending. The obtained results and
the conclusions formulated based upon them thus cannot be related
to other types of hot-rolled or cold-formed members with other types
of loading. Future research could focus on the expansion of the studies
detailed above to investigate other types of cross-section shape used
with hot-rolled imperfect members (I-section, U-section, T-section,
etc.) or cold-formed imperfect members loaded not only by bending
but also by pressure, or a combination of both. Simultaneously, informa-
tion needs to be accumulated regarding probabilistic models of initial
imperfections, which contribute the most to the lowering of the second
degree of uncertainty of stochastic models and their outputs.
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