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Abstract

Analysing the system behaviour in relation to the input quantities it is often necessary to find
out what quantities have the greatest effect on the studied output. The article shows the essential
methods of applied sensitivity analysis. The objective of the paper is to analyse the influence of initial
imperfections on the resistance of a member under axial compression. The analysis uses the Latin
Hypercube Sampling simulation method (LHS) [Novák D, Teplý B, Shiraishi N. Sensitivity analysis
of structures. In: Proc. of the fifth int. conference on civil and structural engineering computing. 1993.
p. 201–07; Novák D, Lawanwisut W, Bucher C. Simulation of random fields based on orthogonal
transformation of covariance matrix and Latin hypercube sampling. In: Proc. of int. conference on
Monte Carlo simulation. 2000. p. 129–36] together with advanced models based on the nonlinear
beam finite element method. The histograms of initial imperfections obtained by measurement
[Melcher J, Kala Z, Holický M, Fajkus M, Rozlívka L. Design characteristics of structural steels
based on statistical analysis of metallurgical products. Journal of Constructional Steel Research
2004;60:795–808] were considered.
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1. Introduction

Solving the problems of stability, we are usually, besides the final result (stress and
deformation, load-carrying capacity, failure probability, etc.), interested in the fact of how
much the input parameters affect the result, or in other words what is the sensitivity of the
response to the change of the input parameter. The use of the sensitivity analysis enables
usto determine the dominant quantities that must be paid special attention. The sensitivity
analysis can be generally divided into two fields:

The deterministic sensitivity analysis (or also the design sensitivity) is quite a well
known and commonly used means for designing a structure. It is the component part
of a design procedure, which uses a computational model enabling a successive change
of values of one input quantity and uses parametric study to investigate the effect of the
change on the output quantity. Even though these studies are very valuable and provide a
quick overview on the model behaviour, they do not usually enable satisfactory conception
of the whole spectrum of the possible cases that can occur on the real structure. In this
connection we normally use a parametric study (sometimes called “what-if-study”).

The stochastic sensitivity analysis provides more complex (andquantified!) information
on the parameter’s influence. The procedure of determining the sensitivity is to a certain
extent similar to the deterministic sensitivity analysis. We also change the value parameter
and observe how it is reflected in the output quantity. The change of the input quantity
respects also the frequency of the occurrence, i.e. the realizations of the input random
quantities are simulated as if they were received by measuring. The simulation usually
indicates aphase of experimental work using a representation of a computational model.
The objective of the simulation is to analyse the behaviour of the system in dependence on
the input quantities and values of parameters.

In recent years, many various stochastic sensitivity analysis methods have been
developed [12,13] and a number of possibilities for their practical applications has been
presented [5,8]. Together with the development of new reliability analysis concepts (see,
e.g., [6,9,17]), these methods can contribute to qualitative improvement of structure
reliability analysis methods.

2. Basic sensitivity analysis methods

The sensitivity analysis isthe analysis of the input quantity variability influence on
the output quantity variability. In other words, it is the phenomenon of how the random
variability of an input quantity influences (in comparison with the others) the structure
response variability and how it takes part in theresulting failure probability. The sensitivity
analysis answers thus the question of which quantities are dominant, and therefore they
must be paid increased attention at (i) the preparation of input; (ii) the considerations
and decision making concerning the improvement of technology procedures; (iii) the
conception and organization of controlling activities. In cases (ii) and (iii), also economic
criteria are usually included. Further on, it is possible to recognize by means of the
sensitivity analysis which quantities show only little influence, and therefore they can be
considered, as the case may be, only deterministically (as non-random ones) in further
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analyses. It can contribute to simplification and acceleration of calculations and modelling.
Such an approach is applied abroad but only rather marginally [1,15].

The contemporary models have been mostly elaborated, based on FEM (geometrically
and materially nonlinear), and processed by simulation technologies of the Monte Carlo
type. A small number of simulations runs can be used for acceptable accuracy using
some stratified sampling; one often used alternative is the Latin Hypercube Sampling
(LHS) technique. This technique belongs to the category of advanced simulation methods
[10,3]. The distribution-free approach to how to consider also correlated random
variables was suggested by [4,14]. Using a small number of simulations, LHS results in
satisfactory good estimates of basic statistical parameters of response (especially mean and
standard deviation). A superiority of the LHS technique compared to the simple random
sampling Monte Carlo was first shown in [10]. The LHS method can be also used for
sensitivity analysis.

A comprehensive review of various sensitivity analysis methods is given in [13,12]. For
our research, the methods which can be applied for the sensitivity analysis evaluation can
be divided as follows:

(1) The method based on the correlation coefficient study.
(2) The method based on the study of variation coefficient ratios.
(3) Special methods for the probability analysis.

The first method can be applied practically for all numerical simulation methods of the
Monte Carlo type. The method described is based on the assumption that there will be
a higher correlation degree with the output in the case of the quantities relatively more
sensitive to the output. The so-called Spearman rank-order correlationri is frequently
applied within the framework of a simulation method [4]. The Spearman rank-order
correlation can be defined as:

ri = 1 −
6

∑

j
(m ji − n j )

2

N(N2 − 1)
, ri ∈ [−1, 1] (1)

whereri is the order representing the value of random variableXi in an ordered sample
among N simulated values applied in thej th simulation (the ordermi equals the
permutation at LHS), andn j is the order of an ordered sample of the resulting variable
for the j th run of the simulation process (m ji − n j is the difference between the ranks
of two samples). If the coefficientri had a value near to 1 or−1, it would suggest a very
strong dependence of the output on the input. Opposite to this, the coefficient with its value
near to zero will signalise a low influence.

The second method is based on the comparison of sensitivity coefficientski , defined on
behalf of variation coefficients by the relation:

ki = 100
v2

yi

v2
y

[%]. (2)

vyi is the variation coefficient of the output quantity, assuming that all the input
quantities except thei th one (i = 1, 2, . . . , M; where M is number of input
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variables)are considered to bedeterministic (during the simulation, they are equal
to the mean value);

vy is the variation coefficient of the output quantity, assuming that all the input
quantities are considered to be random ones.

It is worthy of notice that, when calculating the second power of the variation coefficient
vyi , the input quantities with the exception of thei th one are equal to the mean value. It
can cause numerical problems in the very complicated calculation model where the mean
value of an input quantity represents a limit case of the corresponding physical process.
One of thepossible solutions is the transformation of relation (2) to the following relation:

ki = 100
v2

y − v̂2
yi

v2
y

[%]. (3)

v̂yi is the variation coefficient of an outputquantity when supposing that all the input
quantities with the exception of thei th one are considered to berandom (within
the simulation framework, thei th input quantity is left to equal the mean value);

vy is the variation coefficient of an outputquantity when supposing that all the input
quantities are considered to be random ones.

Relation (3) is only a modification of relation (2) and it should offer the same numerical
values ofcoefficientski in common well defined problems. The mathematic derivation of
relation (2) andits application to a very complicatedcalculation model of steel plane frame
stability problem were presented in [7].

3. Input random quantities

The member under axial compression made of a hot rolled steel profile IPE 180 was
analysed. At the first end of plane member thehorizontal and vertical displacements were
fixed. At the second end of the member thehorizontal (axial) displacement was free and
the perpendicular displacement was fixed. Thenon-dimensional slenderness is taken as the
decisive parameter. Three members with non-dimensional slendernessλ = 0.6; 1.0; 1.4
were considered. The values of non-dimensional slenderness were chosen to correspond
to real slenderness in practice design according to EC3 [18]. Corresponding strut lengths
calculated by [18] are L = 1.2 m, L = 2.0 m andL = 2.8 m, respectively.

The yield strengthfy variability of the steel grade S235 was taken into consideration
by the experimentally determined histogram; see Fig. 4 in [11] and Table 1. The cross-
section height h, the flange thicknesst2, the flange widthb and the web thicknesst1 were
considered as histograms; see [11] andTable 1. A biaxially symmetrical cross-section was
assumed, i.e., for the quantitiesb, t2, thehistograms obtained by geometry measurement
of only one flange were considered.

Buckling in the direction of the axis perpendicular to the web plane was taken into
account. The initial curvature of the member axis was introduced as one half-wave
of the sine function with random amplitudee0. The Gaussian distribution function of
the initiation curvature amplitudee0 was introduced. Its statistical characteristics were
calculated so that the frequency of the occurrence of random realizations within the
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Table 1
The statistical characteristics of input random quantities

No. Quantity Name of random quantity Type of distribution Dimensions Mean
value

Standard
deviation

1 h Cross-section height Histogram mm 180.18 0.797
2 b Flange width Histogram mm 92.092 0.934
3 t1 Web thickness Histogram mm 5.592 0.222
4 t2 Flange thickness Histogram mm 7.904 0.349
5 e0 Amplitude of curvature Gauss m L/1500 L/4800
6 f y Yield strength Histogram MPa 297.3 16.8
7 E Young’s modulus Gauss GPa 210 12.6

interval〈0; L/1000〉was95%. For the Young modulusE , the study was based on the data
given in theliterature [2,16]. The influence of deviations of physical–mechanical material
characteristics (e.g., heterogeneousness), is included in the Youngmodulus variability.

4. Sensitivity analysis of the load-carrying capacity

The geometrical nonlinear solution elaborated and programmed by the author of the
present paper was applied in the sensitivity analysis, see, e.g., [6]. The load-carrying
capacity was solved by the nonlinear Euler incremental method and combined with the
Newton–Raphson method.

The first criterion (i) for the load-carrying capacity is a loading at which plastification of
the flange is initiated. The second criterion (ii) for the load-carrying capacity is represented
by a loading corresponding to a decrease of the tangential toughness determinant to
zero. The ultimate one-parametric loading is defined as the lowest value of load-carrying
capacities (i) and (ii). The strut geometry was modelled, in a very minute manner, by means
of a mesh of beam elements with initial curvature in form of a parabola of the third degree.
The LHS simulation method was applied for 1000 simulation runs. The LHS simulation
method and sensitivity analysis methods (1) and (2) were programmed by the author of the
present paper too. In each run of the simulation method, the load-carrying capacity was
determined, accurate to 0.1%. Altogether1000 runs of calculations have been performed
resulting in a spectrum of ultimate random load-carrying capacity presented inFig. 1. In
this way, it was found out which initial imperfections had the greatest influence on the
load-carrying capacity.

5. Conclusion

It is evident fromFigs. 2to 4 that the sensitivity coefficients vary in dependence on the
member slenderness.

It is presented inFig. 4 that the load-carrying capacity variability of a member with
non-dimensional slenderness [18] λ = 1.4 is highly sensitive to the variability of flange
thicknesst2 and further, to the variability of flange widthb and of Young’s modulusE
above all. The positive value of the correlation coefficient means that with increasing
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Fig. 1. Values of random load-carrying capacity of strut with lengthL = 2.0 m (λ = 1.0).

Fig. 2. Results of sensitivity analysis of strutL = 1.2 m,λ = 0.6.

Fig. 3. Results of sensitivity analysis of strutL = 2.0 m,λ = 1.0.

value of the given quantity, also the load-carrying capacity increases. The correlation
coefficient value of Young’s modulusE is comparable with the correlation coefficient of
initial curvaturee0; the value is,however, negative. The load-carrying capacity is sensitive
to the Young modulus variabilityfy only very little.

It is obvious from Fig. 2 that, for the member with non-dimensional slenderness
λ = 0.6 theyield strength considerably influences the increase in load-carrying capacity.
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Fig. 4. Results of sensitivity analysis of strutL = 2.8 m,λ = 1.4.

The sensitivity coefficientski according to (2) refer to the dominant influence of yield
strength on load-carrying capacity, as well. As both applied methods (1) and (2) are based
on different assumptions the comparison of results is difficult. However, each method has
the informative value of theother type. The flange thicknesst2 and also the initial curvature
e0 are further significant quantities. The variability influence of Young’s modulusE on
load-carrying capacity is practically negligible.

For the member with non-dimensional slendernessλ = 1.0 it can be seen fromFig. 3
that the influence of yield strength, flange thickness, and also of the other quantities is
evidently overlapped by the variability influence of initial curvaturee0. However, it is to
be noticed thatthe differentiation of load-carrying capacity of compression members is
derived from the effects of residual stresses above all which were neglected in the present
study. The buckling curvesa, b, c, d of [18] are the most differing and at the same time,
they decrease most rapidly for the approximate value ofλ ≈ 1.0.

The input random imperfections can be divided approximately into two basic groups—
those the statistical characteristics of whichcan be favourably influenced by manufacturing
(yield strength, geometrical characteristics), and those not satisfactorily sensitive to
manufacturing technology changes (e.g., Young’s modulusE variability). The first group
of quantities can be subdivided into two subgroups: (i)quantities for which both mean
value and standard deviation can be changed by improvement in quality of manufacturing
– such a quantity is, e.g., yield strength; (ii) quantities the mean value of which cannot
be changed more substantially as the mean value should equal the nominal value, e.g.,
geometrical characteristics of cross-section dimensions.

According toFigs. 2to 4 the flange thicknesst2 is the important quantity having always
a relatively great influence on load-carrying capacity. Lowering the variability of this
quantity can be reached by the manufacturing technology change. The variability decrease
of yield strength fy can be recommended for members with lower non-dimensional
slenderness above all.
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