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A B S T R A C T

The article deals with the analysis of the probability of failure of a load-bearing steel bridge member under
bending. The focus is on fatigue failure caused by stress cycles from multiple repeated traffic loading on the
bridge. Failure is defined by the occurrence of a fatigue crack of critical size. Crack propagation and the fatigue
limit state are described using linear fracture mechanics. The failure probability is a function of the equivalent
stress range, initial crack length, Paris exponent, number of load cycles (stress changes) increasing over time and
other input random variables. The failure probability is evaluated in time steps and then studied using a new
type of global sensitivity analysis subordinated to contrasts. The results of the sensitivity analysis show that the
first (second) dominant variable is the equivalent stress range (initial crack length) at any given point in time of
the bridge operation. Strong main effect of equivalent stress range is associated with higher values of failure
probability at the end of the lifetime of the bridge. Small values of failure probability are strongly influenced by
interactions among input variables, which cannot be expressed as the sum of main effects of the individual input
variables. The main and higher-order indices of each input variable are supplemented by displaying its total
index. The direct goal of probability and sensitivity analysis is structural reliability. Sensitivity analysis confirms
and deepens the knowledge gained from the time-dependent probability analysis. The numerical example il-
lustrates the rationality of probability-oriented sensitivity indices and the feasibility of their estimation using
Latin Hypercube Sampling (LHS). In addition, structural reliability is studied using Bayesian probability, which
identifies the times for planning bridge inspections.

1. Introduction

Numerous bridges are approaching or have passed their expected
service life. Fatigue is one of the more critical forms of damage that
could potentially occur in steel bridges. Approximately 38% of col-
lapses of steel bridges are due to fatigue [1]. Prediction and accurate
assessment of the state of fatigue damage and the remaining fatigue life
of steel bridges remains a challenging and unresolved task [2]. The
assessment of an existing bridge with consideration to fatigue is typi-
cally performed using the same guidelines as for the design of new
bridges [3]. However, these methods do not typically take into account
large uncertainties on both the resistance side and the action effect side,
which may have a significant effect on the reliability of the bridge.

Recently, a number of different methods for estimating the fatigue
life of steel bridges have been proposed. Maljaars et al. [4] applied
linear elastic fracture mechanics (LEFM) and FE modelling to the ana-
lysis of cracks growing into the deck plate from the root of the weld
between the deck plate and stringer. Marques et al. [5] presented fa-
tigue probabilistic analyses of steel riveted bridges based on LEFM and
FE modelling of critical connections. In this context, sensitivity analysis
(SA) was performed to obtain conclusions on the correlation between

the fatigue life and the number of trains in each loading block [5]. Sun
[6] developed a corrosion fatigue model describing the damage process
due to the combined action of stress and corrosion of high-strength steel
bridge cable wires. Peng [7] revealed the importance of the interaction
between fatigue crack growth and the stress increase created by cor-
rosion due to the reduction in the section thickness.

McAllistera and Ellingwood [8] have shown that stochastic fatigue
analysis can be used to assess the fatigue performance observed in some
miter gates and for the planning of inspections and maintenance. To-
mica et al. [9,10], Krejsa et al. [11,12], Maljaars and Vrouwenvelder
[13] and Leander et al. [3] evaluated the reliability and durability of
steel bridges using LEFM and Bayesian probability, which is used as the
basis for proposing a system of inspections of the construction. It may
be noted that similar approaches are used to plan reliability-based in-
spections of structural details of ships [14]. However, modern relia-
bility analyses must go much further than to estimate the optimal
bridge inspection times based on probability analysis.

The aforementioned probabilistic assessments of reliability are
generally not SA-oriented in order to evaluate how the input random
variables and their interactions influence the output failure probability.
Then, researchers cannot decide how to devote data collection
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resources so as to most effectively reduce uncertainty of model output
[15]. Global sensitivity analysis (GSA), which is capable of identifying
the most critical and essential contributors to output uncertainty and
risk, is one of such techniques in solving this problem [16]. Using the
GSA results researchers can pay increased attention to the more im-
portant input variables to provide increased control of the probability
of failure of the structure and simplify the model by fixing the less
important input variables at their nominal values without significantly
influencing the probability of failure of the structure [17].

In the last several decades, various approaches to compute SA have
been proposed; see state-of-the-art reviews [18–20]. Commonly estab-
lished SA methods can be summarized as non-parametric techniques
[21], screening approaches [22], Sobol variance-based methods
[23,24] and moment-independent methods [25], etc. Amongst these
methods, Sobol’s indices have received considerable attention because
they not only quantify the relative importance of each variable, but also
reflect the structure of the model response function [26]. Borgonovo
[27] showed that variance is not always sufficient to describe un-
certainty and indicated that a sensitivity measure should refer to the
entire output distribution and not just to a particular moment.

The GSA methods mentioned above mainly focus on computational
models with real-valued output and cannot be directly used in prob-
ability analysis of reliability. According to the conventional definition,
the reliability SA investigates the rate of change in the failure prob-
ability due to the probability characteristics of a basic random variable
[28]. One approach to SA is local SA (LSA), which measures sensitivity
as the partial derivative of the failure probability (or reliability index)
with respect to the distribution parameters of the input random variable
[28–33]. The disadvantage of LSA is that it only provides information
on sensitivity at the nominal point, where the derivative (sensitivity
factor) is calculated, but cannot identify the interactions between dif-
ferent variables. GSA overcomes this deficiency because it measures the
influence of input variables over their entire variation domains on
structural failure probability including the quantification of the influ-
ence of interactions between input variables [17,25,34,35]. GSA is not
limited by the form of the limit state function and the probability
density functions (pdfs) of the inputs, but typically requires a large
number of limit state function evaluations for favourable accuracy of
calculation, see for e.g. [36–38]. Therefore, it is necessary to develop
more efficient methods for the estimation of GSA with fewer calls to the
time-consuming limit state function [25,39–41].

A fairly new type of GSA subordinated to contrast functions was
presented in [42]. Fort et al. [42] denote contrast-based GSA as Goal
Oriented Sensitivity Analysis (GOSA), because SA is oriented to para-
meters (goals) of the probability distribution model output, such as the
mean value, quantile or probability. The selection of the contrast
function can be used to determine global sensitivity indices of different
types. It has been shown in [42] that use of the quadratic contrast
function, which measures the average squared deviation from the
mean, leads to the established Sobol sensitivity indices [23,24]. From
the perspective of GOSA, Sobol GSA is oriented to the mean value as the
central parameter. SSA is a subset of GOSA. Similarly, it is possible to
select other classical contrasts associated with quantile [43–45]. GOSA
includes both moment dependent (e.g. Sobol SA) moment independent
(e.g. probability) methods and therefore has a more general classifica-
tion. Numerical tests using the Ishigami function have shown that
GOSA oriented to the median agree with Sobol GSA in the case of non-
influential parameters with very small or zero values of sensitivity in-
dices, otherwise the results are more or less different [44].

The basis of this article is the probability and sensitivity analysis of
the reliability of a load-bearing steel bridge girder. Using Bayesian
probability, the results of the probabilistic analysis are updated with
regard to the results of bridge inspections that investigate the occur-
rence of fatigue cracks. New findings on the fatigue limit state are ob-
tained mainly through the application of Contrast based SA [42], re-
ferred to as PSA in this article. PSA evaluates the influence of five input

random variables (main effects, two-way interactions and all higher-
order interactions) on the failure probability of a steel girder over time.
The article presents a comprehensive concept of time-dependent
probability and global sensitivity analysis of the reliability of steel
girders with cracks.

2. Sensitivity analysis subordinated to contrasts

Reliability of building structures is generally a random variable,
which is a function of random variables.

= =Z g X g X X X( ) ( , , ..., )M1 2 (1)

where Z is a scalar output and Xi are M statistically independent input
variables. These variables generally represent geometric and material
characteristics, load and other effects [46]. Failure occurs if Z < 0. The
contrast function ψ associated with probability of failure Pf= P(Z < 0)
can be written using parameter θ as

= = −<ψ θ E ψ Z θ E θ( ) ( ( , )) (1 )Z 0
2 (2)

The probability estimator θ* is defined by the equation θ*=Argmin
ψ(θ). The first order probability contrast index Ci (main or first order
sensitivity index subordinated to the contrast) can be expressed, on the
basis of [42], as

=
−

C
ψ θ E E ψ Z θ X

ψ θ

min ( ) (min ( ( , )| ))

min ( )i
θ θ

i

θ (3)

where the numerator is the contrast variation due to Xi. Ci is the sen-
sitivity index of the estimator of θ*. The minimum value of contrast ψ(θ)
can be calculated, for e.g., using K runs of the Monte Carlo (MC)
method as

∑≈ −
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θ k
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0
2

(4)

The failure probability θ* can be estimated from MC runs so that θ*
⋅K runs (failures) of Z are smaller than zero and (1− θ*)⋅K runs of Z are
greater than zero.

The second member in the numerator in Eq. (3) can be calculated
using double-nested-loop simulation of the MC method. L random
realizations of Xi, i.e. Xi(1), …, Xi(j),…, Xi(L) are generated in the first
set. Then, K random realizations of vector X∼i are generated for each
realization Xi(j), j=1,…, L (all variables but Xi). For fixed Xi, it can be
written that
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where conditional failure probability ∗θ j( )i is calculated as in Eq. (4),
but the runs of Z are obtained for K random realizations of variables X∼i

and fixed Xi. For L runs of Xi we subsequently obtain

∑=
=
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i
j

L
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1 (6)

The second-order probability contrast index Cij measures the
second-order interaction between Xi and Xj. Cij is defined as

=
−

− −C
ψ θ E E ψ Z θ X X

ψ θ
C C
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θ θ

i j

θ

i j

(7)

The higher-order probability contrast indices can be expressed
analogously. The higher-order terms enable quantification of higher-
order interactions by the analyst. Interactions represent important
features of models and are more difficult to detect than the first order
effects. The sum of all sensitivity indices must be equal to one.
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It can be noted that the use of the contrast function ψ(θ)= E(Z - θ)2
transforms Eqs. (3), (7) and Eq. (8) to the classical Sobol decomposition
[23,24], in which the first order sensitivity index Si is defined as

= − = =S V Z E V Z X
V Z

V E Z X
V Z

corr Z E Z X( ) ( ( | ))
( )

( ( | ))
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( , ( | ))i
i i

i
2

(9)

where corr is Pearson correlation coefficient. Sobol higher-order sen-
sitivity indices are calculated analogously, see e.g. [15]. It can be noted
that other measures of corr, for e.g. Spearman's rank correlation or
Kendall's τ also lead to the decomposition, where the sum of all indices
is one. However, indices based on different correlation measurements
differ slightly.

Ci, Cij, and higher-order indices identify the significance of each
variable in determining the output contrast of failure probability Pf.
However, in the case of large numbers of input variables it would re-
quire the evaluation of 2M-1 indices, which can be computationally
demanding. Therefore, it may be more suitable to identify the influence
of each variable using the total index CTi.

= −
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C
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θ θ
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The total index CTi measures the contribution to the output contrast
of Xi, including all contrast caused by its interactions, of any order, with
any other input variables. The total index CTi can also be calculated
with knowledge of Ci, Cij, and higher-order indices if all sensitivity in-
dices in Eq. (8) are calculated. For example, for M=3 we can write
CT1= C1+ C12+ C13+ C123.

3. Fatigue crack propagation

3.1. Linear fracture mechanics

Paris-Erdogan law relates the stress intensity factor range to sub-
critical crack growth under a fatigue stress regime [47]. Fatigue crack
growth can be analysed using the basic formula:

=da
dN

D K· (Δ )m
(11)

where a is the crack length, da/dN is the crack length growth per in-
creasing number of load cycles, D and m are Paris constant and ex-
ponent. The stress rate coefficient ΔK is given as [48]

= − =K K K F a σ π aΔ ( ) ·Δ · ·max min (12)

where Δσ is the range of cyclic stress amplitude. F(a) is the cali-
bration function, which represents the course of propagation of the
crack. F(a) for pure bending was derived from experimental and nu-
merical research [49,50,51] of fatigue cracks propagating from the
edge as
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(13)

for relative crack length ∈ 〈 〉a W/ 0.01, 0.5 , whereW is the specimen
width. Eq. (13) is for rectangular cross-sections under pure bending
(member-specific) and may not be usable for other cases. The calibra-
tion curves for additional geometries can be found in handbooks
[52,53]. For examples on the use of Eq. (13) see [54]. By modifying and
integrating Eq. (11), it is possible to express the crack growth from
length a1 to a2 and the corresponding increase in the number of cycles
from N1 to N2:

∫ ∫=da
F a π a

D σ dN
[ ( ) · · ]

· (Δ )
a

a

m N

N m
1

2

1

2

(14)

The left side of Eq. (14) represents the accumulation of damage. A

prerequisite for the stable propagation of the fatigue crack is the ex-
istence of the initiation crack a0 at the point of stress concentration,
which may be located on the edge or on the surface of the girder.
Maximum fatigue damage occurs when the crack propagates from the
initial length a0 to the critical length acr, then brittle fracture occurs.
The accumulation of damage for crack propagation from a0 to acr can be
introduced as the resistance of the structure R(acr).

∫=R a da
F a π a

( )
[ ( ) · · ]cr a

a

m
cr

0 (15)

The value of R(acr) depends mainly on a0 and much less on acr.
Therefore, acr can be introduced with consideration to Eq. (13) as
acr=0.5W, see e.g. [55]. With regard to Eq. (13) and parameter m, the
integration in Eq. (15) must be evaluated numerically. Simpson’s rule
with a smaller step near a0 was used for the integration.

The right side of Eq. (14) represents the cumulative effects of the
load. For bridge structures, it is justified to assume that the number of
cycles at the time of initiation of the fatigue crack a0 (initial cracks from
drilling, cutting, etc.) is zero. Then the cumulated effects of the load can
be expressed as:

∫= =S t D σ dN D N σ( ) · (Δ ) · · (Δ )
N m m

0 (16)

where N is the total number of oscillations (number of load cycles at
time t) of stress range σΔ during crack propagation from a0 to acr. Brittle
fracture is the only failure type considered in this article. The reliability
function can be written on the basis of Eq. (15) and Eq. (16) as:

= −Z R a S t( ) ( )cr (17)

3.2. Failure probability analysis

Eq. (17) is a function of the following random variables: mechanical
properties (D, m), geometry (W), traffic load effects ( σΔ , N) and di-
mensions of the initial (a0) and critical (acr) fatigue crack. Paris constant
D can be expressed as function m from the equation log(D)= d1+ d2⋅m
where d1=−11.141 and d2=−0.507 [56]. The probability analysis
of Eq. (17) gives the failure probability Pf:

= = ⩽ = − ⩽P P F P Z P R a S t( ) ( 0) ( ( ) ( ) 0)f cr (18)

Eq. (18) expresses the probability of phenomenon F, when the crack
has reached length acr. Probability Pf increases with the increasing
number of cycles over time. The probabilistic approach not only makes
it possible to evaluate Pf as a function of random parameters a0, acr, m,

σΔ , N, W, but in addition, the value of Pf can be updated by calculating
the conditional probability using new information from regular in-
spections of bridges in operation.

Typical new information is the detection or nondetection of fatigue
cracks during bridge inspection. Let us assume that propagation of the
fatigue crack from the surface of the steel bridge girder is crucial for the
service life of the bridge. Appropriate precautions should be taken if a
crack of measurable length ad is detected during inspection, for e.g.
limit the crack growth, monitor crack propagation, suspend or restrict
traffic on the bridge. In terms of use of the conditional probability, the
second case (phenomenon I), when a crack is not detected, is inter-
esting. This means that at a given location the crack has either not yet
formed or has not reached a detectable size ad. The probability of
phenomenon I is

= = − ⩾P P I P R a S t( ) ( ( ) ( ) 0)I d (19)

where R(acd) is calculated from Eq. (15) for interval of integration [a0,
ad]. In subsequent years of operation, the probability of failure can be
calculated using the conditional probability PfI.

= = ∩P P F I P F I
P I

( | ) ( )
( )fI (20)
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PfI represents the probability of failure (the crack reaches acr -
phenomenon F), provided that failure was not observed during prior
inspection (phenomenon I). ∩P F I( ) represents the intersection of
phenomena F and I.

4. Probabilistic calculation

4.1. Input random variables

The initial length a0 of the edge crack is considered using a log-
normal pdf with mean value of 0.2mm and standard deviation of
0.06mm [57,12,54], see Table 1. These values were considered for
basic (standard) structural steel grade S235 and cannot represent gen-
eral cases. In general, the initial crack length is dependent on the
method of its measurement (x-ray, kapilar, etc.) and material type. Log-
normal pdf of a0 is a suitable type of probability distribution, which was
also confirmed by the inverse analysis of the fatigue resistance [58]. It
can be noted that the standard deviation is up to ten times lower in
comparison with the initial crack of an as-welded detail [3,4].

In practice, bridges are exposed to a complex, random sequence of
loads, large and small. In order to assess the safe remaining life of such
structures the complex loads can be reduced to simple equivalent cyclic
load, which results in the same fatigue damage as the original loading
spectrum. The equivalent stress range Δσ is the range of cyclic stress
amplitude (form the equivalent cyclic load), which replaces the actual
histogram of stress range (from the actual load) [59].

The uncertainty of σΔ is associated with the uncertainty of the
spectrum of the stress range, which contributes to the overall fatigue
damage [59]. The mean value and standard deviation of σΔ can be
computed using the actual histogram of stress range from long-term
monitoring program. The stress range histogram data are obtained by
rain-flow counting method from the monitoring data [60]. All small
cycles that do not contribute to the overall fatigue damage are ne-
glected. The histogram of stress range is truncated by the predefined
cut-off stress range and then approximated by appropriate pdfs (Log-
normal, Weibull, Gamma etc.) [59]. The mean value and standard de-
viation of σΔ are associated with uncertainties in the assumed pdf and
cut-off of stress range.

Gauss pdf and statistical characteristics of Δσ are introduced acc. to
[11,12]. The statistical model of Δσ in Table 1 assumes that the axle
weights in each time interval occur with the same frequency, but there
is uncertainty in their magnitudes. Gauss pdf of the other input random
variables listed in Table 1 are considered acc. to: m [54,55,58], W
[46,54,58] and ad [11,12].

The number of load cycles (stress changes) [11,12,54] per year is
transformed for the time step of a hundredth of a year. With the ex-
ception of Ny and a0, the Gauss pdfs in Table 1 are truncated in the
interval [μ− 6⋅σ, μ+6⋅σ] so that negative values of the random rea-
lizations of MC are not obtained. Log-normal pdf of a0 is truncated in
the interval [0, 6]. It can be noted that the probability of the occurrence
of MC samples of untruncated variables in Table 1 outside the trunca-
tion intervals is practically negligible.

4.2. Monte Carlo simulations

The calculation of Pf in Eq. (18) is performed using the MC method
with the time step of one hundredth of a year. The estimate of Pf is
calculated using n simulation runs in time t. The same set of (pseudo-)
random numbers is used in each time step (for each estimate of Pf),
thereby ensuring that sampling and numerical errors do not swamp the
result being sought [30,61]. The number of load cycles Nt (stress
changes) in time t is calculated as the sum Ny.

∑=
=

N Nt
y

t

y
1 (21)

where Ny is the number of loading cycles (stress changes) per one
hundredth of a year and t=1, 2…12,000 is the number of hundredths
of years of operation of the bridge. After all values of Nt are calculated
the sequence of random realizations of Nt is adjusted to be non-de-
creasing. The algorithm can be clearly written in the programming
language Pascal as: for t:=1 to 11,999 do if Nt+1 < Nt then Nt+1 :=Nt.
For the time step of a hundredth of a year, Nt+1 < Nt occurs in ap-
proximately 16% of the samples. It can be noted that the frequency of
observations Nt+1 < Nt decreases very rapidly for the time step greater
than one tenth of the year. Conversely, a time step, which is smaller
than a hundredth of a year, does not significantly increase the accuracy
numerically.

Once the target failure probability →P Pf ft is reached at time t1, an
inspection is performed and n1 observations ⩽R a S t( ) ( )d , where the
crack is detected, are eliminated from the random sample. The calcu-
lation of the conditional probability PfI Eq. (20) of Path 1 is performed
using the remaining n-n1 MC runs for which no crack was detected
during the first inspection. Once →P PI ft at time t2 a second inspection
is performed and additional n2 observations ⩽R a S t( ) ( )d are eliminated
from the random sample. The calculation of PfI of Path 2 is performed
using the remaining n-n1-n2 MC simulation runs for which no crack was
detected during the previous two inspections. The procedure is repeated
for the calculation of the other branches PfI. The accuracy of the
probabilistic calculation of the other branches PfI gradually decreases
with increasing number of inspections because the probability is cal-
culated from an even smaller number of simulation runs. For this
reason, the calculation of Pf (Path 0) must be started with a sufficiently
large number of MC simulation runs.

An illustrative example of the calculation of PfI using the MC
method is shown in Fig. 1. For n=10 we can write

= = ∩ =P P F I P F I P I( | ) ( )/ ( ) 2/7fI .

Table 1
Input random variables.

No Symbol Characteristic Density Mean μ Standard
deviation σ

1 σΔ Equivalent stress range Gauss 30MPa 3MPa
2 a0 Initial edge crack length log-normal 0.2 mm 0.06mm
3 m Paris exponent Gauss 3 0.03
4 Ny Number of load cycles per

one hundredth of a year
Gauss 1E4 1E4

5 W Specimen width Gauss 400mm 20mm
6 ad Smallest detectable crack

length
Gauss 10mm 0.6 mm

Fig. 1. Example of the calculation of PfI based on 10 specific simulations.
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4.3. Failure probability analysis

For service life of 50 years, standard ISO 13822 [62] proposes target
reliability indices of βt = 3.1 and βt=2.3 for non-inspectable and in-
spectable details, respectively. The first inspection should be scheduled
before the end of the planned service life of the bridge. Therefore, the
target reliability index value is chosen to be lower than 2.3 as βt=2,
which corresponded to the target failure probability Pft=0.02277.

Path 0: The failure probability Pf Eq. (18) is analysed in dependence
on the time of bridge operation, which is shown for clarity with the unit
of one year, see Fig. 2. The MC method is used to generate n=3.4
million random sampling of 12,005 input random variables in Table 1.
The estimate of Pf is calculated with a time step of a hundredth of a year
using Eq. (21). For example, for t=2, input random variables Δσ, a0, m,
N1, N2, W are used to estimate Pf. Pf (Path 0) is plotted on a logarithmic
scale as a polygon (line segments from point to point) calculated from
12,000 points of Pf and plotted for Pf > 1E−6, see Fig. 2. Polygon Path
0 shown in Fig. 2 appears to be a smooth curve. This is due to the high
number of MC runs and calculation method of Pf, in which the same set
of (pseudo-) random numbers is used for Δσ, a0, m, Ny, W in each time
step, and where the growth of Pf is due to the increasing value of Nt acc.
to Eq. (21). The same applies for the other paths. Identical paths as in
Fig. 2 can be obtained using a different set of (pseudo-) random num-
bers, very small numerical differences are negligible from a technical
point of view.

Path 1: n1 observation a > ad is excluded from n runs at time t1, in
which Pf≈ Pft. The conditional probability PfI Eq. (20) plotted as Path 1
is calculated using n-n1=3,198,201 runs of MC, see Fig. 2. The process
of excluding n1 random realizations of input variables σΔ , a0, m is
shown in Figs. 3–5 in red, unexcluded n-n1 observations are blue.
Particularly in the case of random variables σΔ and a0 it is observed

that predominantly higher values of random realizations of σΔ and a0
are excluded. On the contrary, the spectrum of excluded and un-
excluded observations of parameter m (see Fig. 5) and other variables
W, Nt is approximately the same.

The process of excluding further observations n2, n3, n4, n5 (on level
Pft at time t2, t3, t4, t5) is similar. It can be noted that the initial n=3.4
million runs of the MC method are reduced to 1,347,326 after five in-
spections, see Path 5 on Fig. 2. This means that the detected crack is not
found during the first five inspections with approximately 40% prob-
ability 1.347/3.4≈ 0.4. Path 5 is calculated with 1,347,326 values of
random realizations of σΔ , a0, m, Nt, W, which during previous in-
spections fulfilled the condition a < ad.

Input random variables in Table 1 are considered as statistically
independent. However, this does not apply to the gradual exclusion of
n1, n2, n3, n4, n5 from n observations. The gradual exclusion introduces
correlation between some input variables, see Table 2. In Table 2, the
notation corr( σΔ , a0) defines Pearson correlation between Δσ and a0,
corr( σΔ , m) is Pearson correlation between Δσ and m, corr(a0, m) is
Pearson correlation between a0 and m. Corr( σΔ , a0) results from the
reduction of samples in time t1, see Fig. 6. Correlations between the
other variables are less significant. Correlation between samples has an
underlying effect on the plots of PfI. Correlation with Δσ has the primary
effect of extending the inspection intervals.

Fig. 2. Failure probability Pf vs. time.

Fig. 3. Separation of random samples Δσ in time t1.

Fig. 4. Separation of random samples a0 in time t1.

Fig. 5. Separation of random samples m in time t1.
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4.4. Failure probability results

Inspections and maintenances can be planned at times t1, t2, t3, etc.
when Path 0, 1, 2, etc. intersect level Pft, see Fig. 2. Inspection intervals
are an important output of the probabilistic analysis, see Fig. 2. The first
three inspection intervals are approximately constant, the other two are
slightly longer: (t2-t1)≈ (t3-t2)≈ (t4-t3) < (t5-t4) < (t6-t5), see Fig. 2.

It can be noted that the theoretical introduction of σΔ as a de-
terministic (non-random) value leads to perfect periodic and also later
inspection intervals, see Fig. 7. However, due to loading uncertainties, a
probabilistic approach considering uncertainty of equivalent stress
range σΔ is used.

In the statistical model in Table 1, any change in the mean value or
standard deviation of σΔ has a significant influence on Pf and changes
all paths shown in Fig. 2. For example, increasing the mean value of σΔ
from 30MPa to 31MPa with the same variation coefficient of 0.1 leads
to inspections in 46.9, 56.8, 66.6, 76.8, 87.7, 99.5 years, which is an
approximately 90 percent reduction in inspection times compared to
Fig. 2. Inspection in 9.2, 11.2, 13.2, 15.2, 17.3 etc. years (approxi-
mately every two years) would theoretically be obtained by using the

mean value of σΔ of 53MPa with variation coefficient 0.1. The in-
troduction of a higher variation coefficient of σΔ leads to earlier and
prolonged (non-periodic) inspection intervals [54].

The probabilistic analysis results shown in Fig. 2 may also be dis-
cussed in connection with the intensity of degradation processes that
may contribute to the growth of fatigue cracks, see e.g. [7,63]. Dete-
rioration of the resistance to fatigue crack propagation in dependence
on the intensity of the degradation processes may increase the prob-
ability of failure, especially at the end phase of the service life of the
bridge. On the other hand, degradation processes can be partially
eliminated by regular maintenance, for e.g. at times of bridge inspec-
tion.

5. Sensitivity analysis results

5.1. Estimation of sensitivity indices

PSA is evaluated for unconditional probability of failure Pf, see Path
0 (black line) in Fig. 2. The influence of five random variables σΔ , a0, m,
N, W on Pf is analysed. PSA evaluated the contribution of each input to
the uncertainty of Pf. In order to calculate PSA, the equation with the
sum Eq. (21) is substituted with one random variable N with mean
value μN= Y⋅1E6 and standard deviation σN= Y ⋅1E5 [54], where Y is
the number of years of operation of the bridge. Gauss pdf of N is
truncated to the interval [μN− 6⋅σN, μN+6⋅σN].

Sensitivity indices Eq. (8) are estimated using relatively high
number of runs of the Latin Hypercube Sampling method [64,65]. It can
be noted that in simulations with double-nested-loop the LHS method
does not lose its advantages over the MC method even in applications
with very high numbers of simulation runs. For example, for
Y=35 years, each sensitivity index in Eq. (8) is estimated using
K=87E6, L=2E4 of LHS runs. For Y=35 years, a very high number
of simulation runs K=87E6 is needed to evaluate small probabilities of
failure in the nested-loop of PSA, see for e.g. Eq. (5). In times
Y > 35 years, a smaller number of LHS runs is applied acc. to the
equation K=5E4/Pf, but K⩾6E6, where Pf is the full line in Fig. 2. The
outer loop uses L=2E4 for each Y, see for e.g. Eq. (6).

PSA is evaluated using a time step of 5 years. All 25−1=31 sen-
sitivity indices in Eq. (8) are estimated at each time step. Each sensi-
tivity index is calculated at each time step as the arithmetic mean of its
16 estimates (computed on 16 CPU cores), where each estimate uses a
different set of (pseudo-) random numbers. By doing so, the sum of all
indices in decomposition Eq. (8) is equal to one with an accuracy
greater than 1E−4.

All 31 sensitivity indices for three selected times Y=35, 60,
120 years are shown in Figs. 8–10. PSA performs the task of ordering by
importance the strength and relevance of the inputs in determining the
uncertainty of the Pf. The numerical results indicate that σΔ is the most
dominant variable in all cases.

Fig. 10 (Fig. 9) shows that σΔ has a very strong 54% (36%) main
effect on Pf. In LHS simulations, fixing small (large) values of σΔ sig-
nificantly decreases (increases) Pf. Decreasing the value of σΔ sig-
nificantly reduces Pf and increases the reliability and residual life of
aging bridges. Practically, this can be achieved by prohibiting the
passage of very heavy vehicles, which can extend the lifespan of the
bridge at the end of the lifetime, when repairs of fatigue failure cannot
provide sufficient reliability or are uneconomical.

Fig. 10 (Fig. 9) shows moderate interaction effects of 11% (20%) of
the pair σΔ , a0 on Pf. In LHS simulations, interactions occur when the
perturbation of two or more inputs simultaneously causes changes in
the Pf greater than that of varying each of the inputs alone. Fatigue
failures are caused mainly by random realizations of pairs with higher
value of σΔ and higher value of a0. The reliability of the bridge can be
effectively increased by reducing the magnitude of σΔ and repairing
bridges with developed cracks a > ad , which are identified during
regular inspections, see e.g. Fig. 6. For middle-aged bridges, it is not

Table 2
Pearson correlation between input variables.

Path Runs corr( σΔ , a0) corr( σΔ , m) corr(a0, m)

0 n=3,400,000 ≈0 ≈0 ≈0
1 n-n1=3,198,201 −0.106 −0.053 −0.032
2 n-n1-n2=2,846,505 −0.199 −0.097 −0.053
3 n-n1-n2-n3=2,375,852 −0.284 −0.134 −0.067
4 n-n1-n2-n3-n4=1,847,160 −0.360 −0.170 −0.072
5 n-n1-n2-n3-n4-n5=1,347,326 −0.426 −0.197 −0.074

Fig. 6. Separation of random samples a0 vs. Δσ in time t1.

Fig. 7. Failure probability Pf vs. time, Δσ is deterministic.
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effective to prohibit the passage of heavy vehicles in order to extend the
bridge lifetime if the bridges can be inspected and repaired.

Fig. 8 shows that the main effect of σΔ is 9% and that strong in-
teraction effects with σΔ are present. The second-order interaction ef-
fect of σΔ , a0 is 27%, second-order interaction effect of σΔ , m is 10%,
third-order interaction effect of σΔ , a0, m is 40%, fourth-order inter-
action effect of σΔ , a0, m, N is 9%. The main effect of a0 is minimal,
however, interactions of a0 with σΔ and other variables are relatively
significant. Overall, interactions reach 89%. In 35 years of bridge op-
eration, traffic-related fatigue failure are not very probable
(Pf≈ 6E−4) and occur particularly as a result of unfavourable com-
binations of σΔ , a0 or σΔ , a0, m.

Inspections focused on fatigue failure caused by traffic can be
planned after the target failure probability Pft=0.02277 is reached, see
Fig. 2. It can be noted that the presented case study analyses the oc-
currence of fatigue failure only from traffic load and does not consider
other negative influences that may hasten the need for inspections.

Trends of crucial indices over time are shown in Fig. 11. The total

indices CTi Eq. (10) are calculated with knowledge of all 31 indices in
Eq. (8), see Fig. 12. The difference CTi-Ci is a measure of how much Xi is
involved in interactions with any other variable, see Fig. 13.

5.2. PSA – observations

PSA of Pf showed that σΔ is an important variable throughout the
whole 120 years of operation of the bridge, see Figs. 11–13. The main
effect Eq. (3) of σΔ clearly increases over time (see Fig. 11), however
conclusions must be made with consideration to all interaction effects.

Fig. 8. First and higher-order sensitivity indices, Y=35 years.

Fig. 9. First and higher-order sensitivity indices, Y=60 years.

Fig. 10. First and higher-order sensitivity indices, Y=120 years.

Fig. 11. First and higher-order sensitivity indices.

Fig. 12. Total effects on failure probability Pf.
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While the total effect of σΔ is approximately constant over time, the
total effects of variables a0 and m decrease, see Fig. 12. Thus, relative to
the other variables, the total effect of σΔ increases. Strong interactions
are associated with small values of Pf, see Fig. 13 and Fig. 8. The in-
teraction effects of each variable first decrease, but are approximately
stable towards the end of the 120-year period, see Fig. 13. Interaction
effects of σΔ and a0 are very similar (see Fig. 13), but the main effects
differ (see Fig. 11).

At the end of the monitored 120-year period the sensitivity of Pf to
the input variables is almost stable, both in terms of the main and the
interaction effects, see Figs. 11–13. It is interesting that σΔ has estab-
lished itself as a more significant variable than a0, although its variation
coefficient is a third compared to a0.

The PSA results are roughly on par with the findings of [66], where
it was observed that increase in the mean stress range contributes sig-
nificantly towards the decrease in the welded detail's reliability. How-
ever, the stochastic model used in [66] refers to a typical welded bridge
detail and is more or less different from the model of the basic material
used in this article, which mainly applies to the statistical model a0 or
the geometry function Eq. (13).

Input variables W and N were identified as completely non-influ-
ential and can be fixed anywhere in its distribution (in LHS samples)
without affecting the Pf. For example, introducing random variable N or
W with standard deviation of zero does not influence the results in
Fig. 2. Conversely, if standard deviation equal to zero is introduced for

σΔ , the impact on Pf and inspection times is dramatic, see Fig. 7.
Paris exponent m has a medium effect on Pf. Fixing m causes a

medium change in Pf. For example, m=3 will delay inspection times
by approximately two years (in comparison with Fig. 2).

In this article, PSA was only performed for the zero branch, where
the input random variables are mutually uncorrelated. PSA of the other
branches were not performed. Therefore, the impact of input random
variables on the conditional probability PfI remains a question. In order
to solve this task, it is necessary to develop PSA that can also take into
account correlated input random variables.

PSA for Y < 35 years was not performed due to the extreme de-
mands on CPU time. Reliable estimates of sensitivity indices using
nested-loops require a high number of MC runs. The smaller the ana-
lysed Pf, the higher the number of MC runs needed, see for e.g. Eq. (4)
and number of runs K. New computational approaches need to be de-
veloped for PSA of extremely small Pf. An approach is to substitute Pf
with the reliability index β, which can be studied using quantile-or-
iented sensitivity analysis (QSA), where global sensitivity indices are
subordinated to contrast function ψ associated with quantile [45].

Interaction effects identified by PSA and shown in Fig. 13 are re-
latively very high in comparison with the classic Sobol GSA, see e.g.
[67,68]. Conversely, the interaction effects calculated using PSA are
comparable to the interaction effects calculated using QSA [45].

6. Discussion of the results

Analysis of the probability of failure of the bridge girder (Path 0 to
Path 5) identified the inspection intervals in 52.1, 62.9, 73.7, 84.6,
96.6, 109.4 years, see Fig. 2. The first inspection time t1=52.1 > 50
theoretically exceeds 50 years of operation of the bridge, where
50 years is the medium design time for consequence Class CC2 [69]. In
the case study presented here, the first inspection can be safely planned
in 50 years of bridge operation and subsequent inspections with a fre-
quency of 10 years. If a crack is detected during inspection, it is ne-
cessary to repair the bridge.

It can be noted that routine inspections of real bridges are usually
planned more frequently than once every 10 years. For example, every
bridge in the US is subjected to a routine inspection every two years
[70]. Bridges may be exposed to greater traffic loads in combination
with other negative or extraordinary influences. Cracks may develop in
difficult-to-detect locations and human error in their detection cannot
be ruled out.

This article deals with fatigue failures due only to traffic loads. The
results of the probability and sensitivity analysis show the rationality of
the presented reliability analysis, which can also be applied in other
case studies. The lifetime of the bridge can practically be divided into
three periods. In the first period, Pf < Pft and inspections are not ne-
cessary. In the second period, Pf > Pft and inspections and possible
repairs are desired. In the third period at the end of the lifetime of the
bridge, repairs can become uneconomical in ensuring sufficient relia-
bility and the reduction of traffic load by prohibiting the passage of
very heavy vehicles or closing the bridge can be discussed.

PSA identifies σΔ as the dominant variable, see Fig. 12. σΔ has a
dominant influence on Pf and consequently on all calculated inspection
times. The inspection times in Fig. 2 would shift to the left (right) if we
increased (decreased) the mean value of σΔ while the variation coef-
ficient of σΔ is fixed. The inspection times in Fig. 2 would shift to the
left (right) if we increased (decreased) the standard deviation of σΔ
while the mean value of σΔ is fixed. Larger standard deviation of σΔ
which leads to a higher probability of failure and consequently the need
for earlier regular inspections. Conversely, zero standard deviation of

σΔ delays the first inspection by almost 18 years, see Fig. 7.
Therefore, the statistical characteristics of σΔ and its pdf must be

identified with maximum accuracy. The precise identification of the
random variables requires prognosis of traffic load. This makes random
variable σΔ different from the second dominant variable a0, whose
random variability can be determined relatively accurately by experi-
mental measurement. In general, it is advisable to identify the random
variability of both σΔ and a0 as precisely as possible.

The key identifier of the influence of input variables on Pf are the
total indices CTi, see Fig. 12. All decomposition indices Eq. (8) are
calculated in this article with the aim of manifesting the possibilities
presented by PSA. However, the calculation of all 2M-1 sensitivity in-
dices in Eq. (8) becomes very cumbersome or almost impossible for a
higher number of input variables in Eq. (1). The PSA can escape the
dimensionality curse by computing “only” M total indices Eq. (10) and
M first order indices Eq. (3). The sum of all CTi is typically greater than
1. It is equal to 1 if interactions effects are absent.

Only Path 0 was studied using PSA. The other paths were studied
using the screening method. Screening of random samples σΔ , a0 and m
shows the most important changes that occur during the exclusion of
MC samples during inspection (on the target probability level Pft) and
identifies their impact on the calculation of the conditional prob-
abilities. The negative correlation between σΔ and a0 resulting from the
exclusion of MC samples with relatively higher random realizations of

σΔ and a0 has the primary effect on the extension of inspection inter-
vals. The introduction of σΔ as non-random variables (constants) leads
to perfectly regular (constant) inspection intervals (see Fig. 7), other-
wise, each subsequent interval is slightly longer (see Fig. 2).

Fig. 13. Interactions effects on failure probability Pf.
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7. Conclusions

The article provides a coherent methodology of probabilistic and
sensitivity analysis that can be used for decision-making on inspections,
maintenance, repairs and load-bearing capacity of the bridge at dif-
ferent periods of its lifetime. Probabilistic and sensitivity analyses were
used to examine the reliability and lifetime of a steel bridge girder
subjected to fatigue failure. The presented reliability analysis takes into
account fatigue failure caused by multiple repeated traffic load and
disregards other negative influences.

The Bayesian interpretation of probability and linear elastic fracture
mechanics were implemented in order to estimate the failure prob-
ability and propose optimal inspection times aimed at detecting fatigue
damage of the bridge. Inspections are planned at the time of reaching
the target failure probability of 0.02277. The case study identified in-
spections as periodic with a frequency of every ten years, the first in-
spection being carried out at fifty years of bridge operation. It was
shown that inspections should be planned much earlier and should be
more frequent if there is an increase in the mean value and/or standard
deviation of the equivalent stress range σΔ caused by the passage of
heavy vehicles.

A new in-depth perspective on the influence of input random vari-
ables on the failure probability Pf over time has been provided by the
application of a new type of global sensitivity analysis oriented directly
at Pf, which is referred to as PSA in this article. The results obtained by
PSA identify the influence of input variables on Pf changing sig-
nificantly from 35 to 120 years of the bridge lifetime. PSA identified the
equivalent stress range σΔ as the dominant variable throughout the
considered period. The probabilistic analysis confirmed that a small
change in the mean value or standard deviation of σΔ leads to large
changes in Pf and hence to major changes in the planned inspection
times. The second dominant variable is the initial edge crack length a0.
Both σΔ , a0 are involved in strong interaction effects (mutually and also
with the other variables) in particular on small probability of failure at
the beginning of the monitored period of bridge operation (35 years). At
the end of the monitored period (120 years), the dominance of σΔ
grows and the interaction effects of σΔ with other variables decrease.

The strong influence of σΔ on Pf implies that the residual lifetime of
the bridge can be effectively extended by limiting very heavy vehicles,
especially at the end of the bridge’s lifetime. On the contrary, the
sensitivity of Pf to the random variability of the specimen width W and
number of load cycles N per year is very low. W and N can be fixed at
any value within the range of their uncertainties without significantly
influencing the Pf.

In general, the probability of failure is the basic indicator of struc-
tural reliability. The presented methodology can also be applied to
other case studies, for example, with extension to weld joints, corro-
sion, or the analysis of structural reliability at the time of design. PSA is
proving to be a useful tool in determining the influence of the un-
certainty of input variables on the probability of failure. The results of
PSA can change the order of importance of input variables of stochastic
models aimed at probabilistic analysis. This makes PSA a very powerful
tool, which deserves further development in the future. New im-
plementation of PSA should be sought in the theory of structural re-
liability.
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