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The article examines a hot-rolled steel I-beam subjected to lateral-torsional buckling (LTB) due to bend-
ing moment. The paper describes a non-linear finite element (FE) model and numerical approximation
and simulation methods used for the global sensitivity analysis of the static resistance of a beam under
major axis bending. The presented geometrically and materially non-linear FE model based on solid ele-
ments models in detail the LTB and the effects of initial imperfections on the ultimate limit state of a steel
beam. Simulation runs of random imperfections are generated using the Latin Hypercube Sampling (LHS)
method. Polynomial approximation of the model output helped minimise the number of runs of the non-
linear finite element model. The approximation polynomial then facilitated the evaluation of sensitivity
indices using a high number of simulation runs. The relationships between the slenderness and the first
and second-order sensitivity indices are plotted in graphs. The graphs show the results of global sensitiv-
ity analyses of stochastic effects of initial imperfections and residual stress on the resistance of the inves-
tigated steel beam.

� 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Lateral-torsional buckling (LTB) is a typical failure mode of
unbraced I-beams subjected to bending about the major principal
axis that both twist and deflect laterally. Lateral-torsional buckling
resistance (LTB-R) including the effects of imperfections, residual
stresses and plasticity effects may exhibit broad stochastic scatter-
ing due to the random influence of these effects [1]. Detrimental
imperfections like initial curvature of the axis and residual stress
may dramatically reduce the LTB-R. High sensitivity of LTB-R to
the stochastic variability of initial imperfections increases the
probability of failure of beams. Due to these reasons, it is important
to study the effects of these inevitable initial imperfections and
residual stresses on the LTB-R, which is the goal of the presented
article.

The research of thin-walled beams has evolved from the classic
Vlasov theory [2] to advanced non-linear finite element (FE) mod-
els; see e.g. [3–8]. In literature, the imperfect I-beam subjected to
uniform bending moment is the only case for which the elastic
closed-form analytical solution of lateral-torsional buckling
resistance (LTB-E) exists [9]. The development of numerical
methods, such as FE methods, has lead to the continuous
investigation of the available closed form solutions present in
standard literature [9–13] and codes [14–16]. It has been clearly
shown that such formulae are often conservative and in certain
cases wrong [17].

The efficient use of computational models requires an under-
standing of key relationships between inputs and outputs. Analyt-
ical, especially numerical models of LTB failure modes are
unfortunately often so complex that they prevent the understand-
ing of the response of the model output to changes in model inputs
based on intuition.

The dependence of model output on model inputs can be stud-
ied using stochastic sensitivity analysis (SA). The diversity of prob-
lems that are solved using mathematical modelling has recently
lead to the development of several highly successful methods of
sensitivity analysis [18–21]. Advanced methods of stochastic glo-
bal sensitivity analysis are usually highly numerically demanding,
especially in cases where it is necessary to evaluate the sensitivity
indices using the Monte Carlo numerical simulation method. The
computer time needed for the evaluation of one realization (one
run) of the output random variable increases with increasing com-
plexity of the computational model. Furthermore, the more com-
plex the sensitivity analysis, the more realizations (numerical
simulations) are needed to obtain statistically correct output.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.engstruct.2016.12.032&domain=pdf
http://dx.doi.org/10.1016/j.engstruct.2016.12.032
mailto:kala.z@fce.vutbr.cz
mailto:vales.j@fce.vutbr.cz
http://dx.doi.org/10.1016/j.engstruct.2016.12.032
http://www.sciencedirect.com/science/journal/01410296
http://www.elsevier.com/locate/engstruct


Fig. 1. Simply supported I-beam subjected to uniform bending moment.

Fig. 2. The geometry of beam I200.
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In engineering fields, scientists try to keep up to date with the
current trends of modern research aimed at global sensitivity anal-
ysis (GSA) of model outputs [22]. GSA is necessary in situations
where a priori information on the nature of the model is unavail-
able (model-free setting) or the model is considered to be non-
additive [23]. In contrast, local SA (LSA) puts emphasis on the local
(point) impact of the input factors on the model output [20]. LSA,
which is also known as differential SA, belongs to the class of the
one-factor-at-a-time methods. LSA has apparent advantages [21].
It is very straightforward compared to GSA, thus, making it easy
to apply and interpret. In the case of a linear model, all information
needed for SA is obtained from the first-order derivatives [24]. In
the case of a non-linear but additive model, i.e. no interactions
are present among factors, then derivatives of higher and cross
order suffice to understand the model [24]. LSA cannot be used
to describe higher-order interaction effects among factors. The out-
puts of non-linear and non-monotonous computational models
such as LTB-R should be studied with GSA. One of the most effec-
tive methods of stochastic GSA is Sobol’s sensitivity analysis SSA
[25,26], which is based on the total decomposition of the variance
of the output variable into terms with increasing dimensions.

In this article, SSA is used to map the influence of random input
imperfections on the ultimate (inelastic) lateral-torsional buckling
resistance (ultimate load carrying capacity) denoted as LTB-R. The
term imperfection refers collectively here to both geometrical (ini-
tial axial twist and curvature, tolerance of dimensions of the cross
section) and material (yield strength, residual stress, Young’s mod-
ulus) imperfection [27]. The stochastic LTB-R was evaluated by
Monte Carlo runs using Latin hypercube sampling (LHS) [28,29]
on I-beam samples, which are randomly generated and subse-
quently analysed using the commercially available geometrically
and materially non-linear FE program ANSYS [30].

A highly detailed model based on non-linear FE method allows
detailed modelling of the effects of all imperfections on LTB-R. End-
fork boundary conditions and uniform bending moment loading
were considered, see Fig. 1. An elastic solution in the closed form
[9], which was applied for the evaluation of LTB-E (lateral-
torsional buckling resistance including the effects of imperfections,
without residual stress and based on elastic and first yield analysis)
[31,32], also exists for this type of boundary condition and loading.
SSA was evaluated for LTB-R and LTB-E and the obtained results
were compared. Due to the high complexity of the repeated calcu-
lations of LTB-R, SSA of the FE model was not performed, but rather
the SSA of the polynomial approximation of the FE model.

2. FE model

Numerical simulations were performed using the Ansys soft-
ware [30] as a process of running geometrically and materially
non-linear model with regard to imperfections, such as initial geo-
metric imperfections and residual stresses. The FE research was
performed on a model of European hot-rolled steel I200 beam,
which is statically loaded on both ends by bending moment M,
see Fig. 1.

Due to potential problems that could occur whilst generating
the FE mesh, the cross-sectional geometry of I200 was slightly sim-
plified and fillets in the flange-to-web connection and at the ends
of the flanges were neglected. The cross-sectional geometry of I200
is considered as biaxially symmetrical. The I200 cross-section is
thus defined by five dimensions h, b, t1, t2 and a, see Fig. 2. Accord-
ing to [33], the effect of the fillet was found to be negligible in LTB
problems.

Commercially available software ANSYS was used for the FE
analysis. Homogeneous structural solid element SOLID185 was
used for the model. It is an 8-node element having three degrees
of freedom at each node: translations in the nodal x, y, and z direc-
tions. It is suitable for 3D modelling of solid structures. It has plas-
ticity, hyper-elasticity, large deflection and large strain capabilities,
stress stiffening and creep. The enhanced strain formulation, which
prevents shear locking in bending-dominated problems and volu-
metric locking in nearly incompressible cases, was considered.
The element introduces nine internal degrees of freedom to handle
shear locking, and four internal degrees of freedom to handle vol-
umetric locking. All internal degrees of freedom are introduced
automatically at the element level and condensed out during the
solution phase of the analysis [30]. SOLID185 allows for prism,
tetrahedral, and pyramid degenerations when used in irregular
regions. However, this was not the case, and only hexahedron ele-
ments were created [30].

Even though it is customary to model LTB problems using shell
elements instead of solid elements, certain undesirable effects,
such as small material overlap in the flange-to-web connection,
occur in shell models. The beam is thus a little bit more rigid and
has a higher load-carrying capacity [3,34]. Another disadvantage
of shell elements is the problematic modelling of the varying thick-
ness of parts of the cross-section. In this case the flange thickness
t2. These undesirable effects were eliminated using solid elements
SOLID185, however, at the cost of increasing demands on CPU
time.

2.1. Mesh, boundary conditions and loads

Generally, the results obtained from the FE model are more
accurate the finer the FE mesh. This, however, leads to an increase
in the computational time. It is thus necessary to find a balance
between the computational time and the desired accuracy. The
mesh density was tested and the optimal setting of 20 elements
over the entire height of the web, 10 elements over the entire
width of the flanges and two elements over the web and flange
thickness was chosen, see Fig. 3. It was tested that two elements
over the thickness are sufficient and the final value of resistance
is not influenced by the number of elements even in the plastic
behaviour. The x–axis corresponds to the longitudinal axis of the
beam; axes y and z lie in the plane of the cross-section. The origin
of the coordinate system is placed in the centre of gravity of the
cross-section. This also corresponds to the shear centre in a doubly



Fig. 3. The meshing of the cross-section I200.
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symmetric cross-section. Translations ux, uy, uz and rotations ux, uy,
uz are related to the global coordinate system. The number of ele-
ments per length was selected in a manner such that the maximum
ratio of the longest to shortest side of the element (maxrat) was
equal to 8. It may be noted that, according to [30], the aspect ratio
for quadrilaterals should not exceed 20. Otherwise disturbance of
analysis results may occur. This implies that the number of ele-
ments per beam length is not constant and the number of elements
increases with increasing length of the beam. Control calculations
were performed for a finer mesh with 4 elements over the thick-
ness and maxrat = 4. The finer mesh yielded slightly more accurate
results (difference of several tenths of a percent) for beams with
low slenderness. However, the results from the present denser
mesh are due to the small difference acceptable. For slender beams
the results with the finer mesh were practically identical. For
beams with kLT ¼ 2:0 the accuracy of the FE model was also verified
using the analytical solution in the closed form [31,32].

End-fork boundary conditions were considered for the model.
These conditions make it possible to compare the elastic FE solu-
tion with the analytic solution [31,32] and verify the correctness
of the model. Support conditions were created on both ends of
the beam using three kinematic coupling constraints: two for the
edges of the flanges and one for the axis of the web, see Fig. 4. Rota-
tions uz and uy for the selected nodes of the web and flange respec-
tively remain constant during loading, so that they are constrained
to remain in a straight line. These boundary conditions were taken
from the model presented in [3,34] and their implementation is
crucial for the modelling of beams using solid or shell elements.
Using these kinematic coupling constraints it is possible to over-
come the occurrence of local extremes of stress at the end sections
Fig. 4. Three kinematic coupling constraints.
during loading and certain convergence problems of the calcula-
tion. Alternatively, instead of using these constraints, it is possible
in the end sections to model zones with gradually increasing val-
ues of kinematic hardening of the material diagram of steel
towards the edges [35]. However, this approach is not as effective.

A symmetric model was considered. Longitudinal translation of
a point in the centre of gravity was constrained to ux = 0 midspan
of the beam. Boundary conditions of both ends of the beam are
introduced into the centre of gravity and given as uy = uz = ux = 0,
see Fig. 5.

The beam is loaded on both ends by equal bending moments M.
Moments are applied as surface loads in the form of pressure p [N/
m2], which is defined by a gradient. The magnitude of the gradient
is determined by the slope value (load per unit length) given as the
ratio of the momentM to the moment of inertia Iy, and the distance
from the z-axis, which represents the slope direction. The pressure
acting on the element is given by the relationship p =M�z/Iy. The
pressure distribution is schematically shown in Fig. 5.

LTB-R was evaluated using the geometrically and materially
non-linear FE method. The bending moment loading M was
increased in steps until the value of MLTB-R, where MLTB-R is the
maximum bending moment loading corresponding to the ultimate
limit state. MLTB-R is theoretically determined as the maximum
moment M for which the determinant of the tangential stiffness
matrix is equal to zero. Numerically, MLTB-R is determined as the
moment in the last loading step for which the determinant of the
stiffness matrix is very close to zero whilst the calculation is still
converging. The steps of the loading moment MLTB-R are decreased
so that the output value MLTB-R is calculated with an accuracy of
0.3%).
2.2. Material model

The material stress–strain curves of structural steels are inves-
tigated and discussed in [34]. Steel of grade S235 was selected for
the numerical study performed in this article. The hardening slope
of E/10000 was applied. The application of this hardening slope is
based on a combination of numerical experience and recommen-
dations of standards [36]. Annex C of [36] recommends the appli-
cation of one of these four material behaviour models for plated FE
analysis: (i) elastic–plastic without strain hardening, (ii) elastic–
plastic with a nominal plateau slope of 1 MPa (or similarly small
value), (iii) elastic–plastic with a strain hardening slope of E/100,
(iv) true stress–strain curve modified from test results. The numer-
ical instability of the FE computational model increases with
Fig. 5. The end-fork boundary conditions and equal bending moments.



Fig. 6. Elastic-plastic stress-strain diagram of steel grade S235.
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decreasing hardening slope, for e.g., the use of (i) lead to higher
numerical instability than 1 MPa according to (ii). Furthermore, it
was necessary to secure the numerical stability for each random
realization (LHS simulation) of the input initial imperfections,
which the application of (ii) did not fully ensure. The value of hard-
ening slope, which is slightly greater than (ii) and provides suffi-
cient numerical stability in each LHS simulation, was therefore
numerically sought. The hardening slope of E/10,000 was used to
overcome numerical instability, see Fig. 6. For short beams the
numerically obtained values of MLTB-R based on E/10,000 are virtu-
ally identical with the control results that were calculated using
the plateau slope of 1 MPa (ii). It can be noted that the stress-
strain relationship can be introduced in other ways, see e.g.
[37,3,38,34].

2.3. Geometric imperfections

Consideration of geometrical out-of-straightness imperfection
in the analysis of structural behaviour is very important. The out-
of-straightness imperfection was obtained by scaling the first
eigenvalue LTB mode shape of a perfectly straight uniformly bend-
ing beam. The ‘‘scale factor” of e0 was used to set the top flange
maximum lateral imperfection at mid-span. The buckling mode
was solved analytically as a pure elastic LTB problem; see e.g.
[9,31,32]. The analytical solution very accurately matches the
buckling mode obtained from the FE model. The advantage of the
analytical solution is that the geometry in each LHS simulation
can be quickly created automatically using the analytical formulas
(1) and (2). Using the first eigenmode is very common in the inves-
tigation of the LTB phenomenon; see e.g. [4,39,6,40,41]. Both
out-of-plane displacement v0 and torsional imperfection u0 were
Fig. 7. Initial axis imperfection pattern based on th
included. These initial imperfections are affine to the deformed
shape and can be described using the following sine functions:

v0 ¼ av0 sin
px
L

� �
; u0 ¼ au0

sin
px
L

� �
ð1Þ

where v0 is the curvature of the beam axis in the xy-plane and u0 is
the rotation of the cross-sections along the beam length, see Fig. 7.

The following relationships are valid for amplitudes av0 and au0
in a beam curved according to the first eigenmode

av0 ¼ e0j j
1þ h

2
p2EIz
McrL2

; au0
¼ av0

p2EIz
McrL

2 ð2Þ

where e0 is the amplitude at midspan relating to the centre of the
top edge of the flange, h is the cross-section height, Iz is the second
moment of area to the z-axis, L is the length of the beam, E is
Young’s modulus of elasticity and Mcr is the elastic critical moment
at lateral beam buckling, see e.g. [9,31,32].

It may be noted that the procedure for the polynomial approx-
imation described in Chapter 5 requires 400 random realizations of
the geometry of the imperfect beam I200 for each length L. The
random characteristics of geometry are flange thickness t2 and ran-
dom amplitudes av0 and au0 (1), the other geometric characteristics
are deterministic. av0 and au0 in (2) are randomly dependent on e0,
E, Mcr, Iz. Mcr is randomly dependent on t2, E and Iz is randomly
dependent on t2 [32]. Thus, the geometry of the I-beam is ran-
domly dependent on three input random variables e0, t2 and E.

2.4. Residual stress

Residual stress can play a significant role in evaluating the
structural behaviour and is strongly dependent on the manufactur-
ing process. Parabolic or linear distribution of residual stress on the
web and flanges may be applied to I-sections [42]. The commonly
used residual stress pattern for hot-rolled I-profiles in FE modelling
is the linear stress distribution [43], see Fig. 8.

The magnitude and distribution of residual stress in hot-rolled
shapes depend on the type of cross-section, rolling temperature,
cooling conditions, straightening procedures, and the material
properties of the steel [13]. An overview of approaches for the
modelling of residual stress can be found, for e.g. in [3,34,44].
Results of numerical studies found in [33,45] tend to relate the val-
ues of the residual stress to the material yield strength of steel
grade S235. For the ratio h/b > 1.2, which corresponds to I profiles,
the mean value of the residual stress may be considered as 30% of
e first mode of the elastic eigenvalue analysis.



Fig. 8. Application of linear temperature changes DT for the initiation of residual
stress.
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the yield strength fy, for ratio h/b < 1.2 (HE profiles) 50% of the yield
strength is considered (for steel S235) [4,34]. Study [46] lists the
values of residual stress at the flange edges of profiles IPE as
0.3 � 235 MPa independent of the yield strength for steel S235,
S355 and S460. Measurements of the residual stress in flanges of
similar shapes, made from different steel grades, show that the dis-
tribution and size of the residual stress are very similar [13].
Results of experimental research have shown that the size of resid-
ual stress in hot-rolled profiles seems to be independent of the
material yield strength for both mild and high-strength steel [34].

Residual stress of the hot-rolled I200 beam was introduced in
the form of self equilibrating stress distribution through initial
thermal load step. Change in temperature DT at a point of the sec-
tion is given by the formula

DT ¼ � rR

E � at
ð3Þ

where rR is the residual stress in a given point and at is the thermal
expansion coefficient, considered as at = 1.2E�5 [K�1]. Due to the
overall configuration of the model the application of linear temper-
ature change DT yields the desired stress rR only approximately.
The precise (required) value rR is obtained by a new setting of
DT, which is calculated by comparing the value attained (taken
from the FE model) and the desired value of the residual stress
when the dependency between rR and DT is linear. Boundary con-
ditions of both ends of the column with the described kinematic
constraints are implemented after the introduction of the residual
stress. The distribution of longitudinal stress rx initiated by change
in temperature DT is shown in Fig. 9. rR (blue)1 is attained at the
flange ends and in the centre of the web, whilst approximately
0.8�rR (red) is obtained in the flange-to-web connection, see Fig. 9.
Lower stress 0.8�rR is due to the greater thickness of the flange in
the flange-to-web connection, see Fig. 2. This difference does not
occur in the case of beam models with rectangular flange shape
(e.g. beams IPE, HEA, HEB), i.e. the absolute stress values from linear
temperature change ±DT are the same at the end and the middle of
the flange.
3. Sobol sensitivity analysis

Sobol’s method has the capability to perform SA for non-linear,
non-additive and non-monotonic models. Let Y = f(X1, X2, . . ., XN) be
1 For interpretation of color in Fig. 9, the reader is referred to the web version of
this article.
a deterministic model, where Y is a scalar output and Xi are N sta-
tistically independent input variables. The variance of Y can be
decomposed into the form:

V Yð Þ ¼
X
i

V i þ
X
i

X
j>i

V ij þ
X
i

X
j>i

X
k>j

V ijk þ . . .þ V123...N ð4Þ

where Vi = V(E(Y|Xi)) is the first order (main) partial variance and
Vij = V(E(Y|Xi,Xj)) - Vi - Vj is the second order partial variance etc.
Vi can be explained as the average reduction of model output vari-
ance resulting from fixing Xi, this means that Vi measures the indi-
vidual contribution of Xi to the total variance V(Y). The second order
partial variance Vij measures the second order interaction contribu-
tion between Xi and Xj to V(Y)). The higher order partial variances
for quantifying higher order interaction contributions can be
expressed analogously. By normalising the partial variances Vi, Vij,
Vijk etc., according to the total variance V(Y) we obtain Sobol sensi-
tivity indices (5) of the first, second, third and higher orders.

Si ¼ Vi

V Yð Þ ; Sij ¼
Vij

V Yð Þ ; Sijk ¼
Vijk

V Yð Þ ; etc: ð5Þ

The total number of Sobol indices is 2n � 1. The sum of all Sobol
indices must be equal to one.
X
i

Si þ
X
i

X
j>i

Sij þ
X
i

X
j>i

X
k>j

Sijk þ . . .þ S1;2;3...N ¼ 1 ð6Þ

A more detailed description of Sobol’s decomposition is in
[25,26,22]. Examples of the application of SSA aimed at the stabil-
ity and limit states of steel I-beams can be found in [32,47,48].
Although SSA is computationally demanding, it permits the explo-
ration of all regions of the input space, accounting for interactions
and non-linear responses.
4. Input random imperfections

The results of GSA [32] showed that LTB-E of an imperfect IPE-
beam is most sensitive to the variability of four basic characteris-
tics, namely yield strength (beams with low slenderness), Young’s
modulus (beams with high slenderness), flange thickness and the
initial out-of-straightness of the beam axis. However, this conclu-
sion was made on the basis of the analytical solution of LTB-E, in
which the effects of residual stress were not modelled. Residual
stress could be another significant imperfection if we were to study
LTB-R.

The statistics of residual stress can be obtained from [49–51].
Three probability distribution models of residual stress evaluated
from 103 measurements obtained from an extensive literature sur-
vey were defined in article [50]. Taking into account [50], we intro-
duced two variants of the random variability of the residual stress.
Residual stress at the flange edge is considered as input random
variable rs. Gauss probability density function (pdf) with mean
value lrs2 = 90 MPa and coefficient of variation 0.2 (standard devi-
ation rrs2 = 18 MPa) was considered in the variant rs2. The residual
stress is in the range of 10.5 MPa to 169.5 MPa if the LHS method is
used to generate one hundred thousand numerical simulations. A
four-parameter Hermite pdf [52] with lrs1 = 90 MPa, coefficient
of variation 0.3 (rrs1 = 27 MPa), skewness 0 and kurtosis 2.26
was considered in the variant rs1. A residual stress range of 19.5–
160.4 MPa was obtained from one hundred thousand numerical
simulations generated using the LHS method, i.e. the observation
interval is smaller than the Gauss pdf despite the larger standard
deviation. Table 1 lists the comparison of statistical characteristics
of variants rs1 and rs2 evaluated for 100 thousand LHS simulations.
The comparison of both pdf types is presented in Fig. 10.

The statistical characteristics of yield strength of steel grade
S235 were considered according to [53], where the results of



Fig. 10. The residual stress - Gauss and Hermite pdfs.

Fig. 9. Distribution of residual stress initiated by DT.

Table 1
Descriptive statistics of residual stress.

Variant names rs1 rs2

Valid observations 100,000 100,000
Minimum 19.546 10.483
Maximum 160.45 169.52
Range 140.91 159.03
Median 90.000 90.000
Arithmetic mean 90.000 90.000
Geometric mean 85.452 88.094
Stand. deviation 27.259 18.000
Coef. of variation 0.3029 0.2000
Stand. skewness �0.53E�08 �0.12E�12
Stand. kurtosis 2.2565 2.9995

Fig. 11. The pdfs of initial imperfection e0.
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tensile tests of samples obtained from a third of flanges of profiles
IPE 160 to IPE 220 were published. Note that the statistical evalu-
ation of other independent experimental researches of the yield
strength and other material characteristics of structural steel were
published in [38,54]. The statistical characteristics of Young’s mod-
ulus E were considered according to [55]. The statistical character-
istics of flange thickness were considered according to [56].

The amplitude of initial imperfection e0 (2) was considered as a
Gauss pdf with mean value of zero le0 = 0 (perfectly straight
beam), which was taken from the JCSS Probabilistic Model Code
[57,58]. Model Code [57] assumes that the pdf of e0 is symmetrical
around zero and that small eccentricities are more likely than large
ones, although the large ones are more dangerous. The standard
deviation of e0 (re0) was derived from the assumption that 95
observations (random realizations) of this imperfection are found
in the tolerance limits [32]. The out-of-straightness tolerance can
be considered in accordance with long-term experience as 0.1% L
[59,4,39]. This is consistent with codes of practice regulating the
acceptability of production tolerances of steel structures. However,
the straightness must comply with the requirements given in the
European standard EN 10034:1993, which divides straightness tol-
erance q on length L into three groups according to height h [mm]
for steel I and H sections: 80 < h < 180, q = 0.30% L; 180 < h < 360,
q = 0.15% L; h > 360, q = 0.1% L. The tolerance of hot-rolled section
I200 is q = 0.15%. Therefore two variants 0.1% L and 0.15% L of tol-
erance were considered. In summary, re0 was considered in two
variants as re01 = L/1960 (0.1% L) [32,60] and re02 = 1.5L/1960
(0.15% L) [31], see Fig. 11. It may be noted that the Gauss pdf is
not the only possible choice for e0. For example [61] introduces a
log-normal pdf for e0 with le0 = L/3000, re0 = L/2551 or
le0 = L/2000, re0 = L/3785. The use of the Hermite pdf [52] with a
shape similar to rs1 in Fig. 10, or a variant of the Hermite pdf with
very small kurtosis that results in a ‘‘double-humped” and sym-
metrical around zero pdf may be discussed.

All input random geometric and material imperfections are
listed in Table 2. Variables in Table 2 were considered as statisti-
cally independent. All other input geometric and material charac-
teristics were considered using the nominal and characteristic
(non-random) values of European standard I200 profile produced
from steel of grade S235 [14], see Table 3.
5. Polynomial approximation of LTB-R

Sobol’s method is much more computationally demanding in
comparison to other global sensitivity analysis methods [21]. This
is due to the fact that the series development of Eq. (6) has as many
as 2n � 1 terms. One possibility to evaluate all 25 � 1 = 31 Sobol
indices is by approximating LTB-R using random realizations of
the FE model output MLTB-R. LTB-R is not calculated directly as
MLTB-R, but is represented by a polynomial (7) that has a quicker



Table 3
Nominal geometric and material characteristics of I200.

Symbol Characteristic Value

h Sectional height 200 mm
b Sectional width 90 mm
t1 Web thickness 7.5 mm
a Inclination angle 14%
m Poisson’s ration 0.3
G Shear modulus E/(2(1 + 0.3))
L Beam length � 1:86k + 0.41k2 + 0.71k3
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response and which approximates all non-linear and interaction
effects of non-linear FE model.

MLTB-R � Y ¼
X2
a¼0

X2

b¼0

X2
c¼0

X2

d¼0

X2
e¼0

ca � Xa
1 � Xb

2 � Xc
3 � Xd

4 � Xe
5 ð7Þ

The terms of the polynomial consist of the products comprising
of n-combinations (for n = 0, 1, . . ., 5) from a set of ten elements
consisting of variables X1, X2, X3, X4, X5 and their squares, such that
the exponent of each variable is at most two.

Approximation methods along with SA are not new and have
been described, for e.g. with regards to the substitution of the limit
state function using the Response Surface technique, which pre-
sents an acceptable compromise in terms of accuracy and compu-
tational effort, for the approximation of the limit state surface [62].
Polynomials suitable for the approximation of the limit state sur-
face may contain non-linear terms, but usually do not retain the
interaction effects of all higher orders. GSA and SSA generally
require polynomials with more terms than approximations of the
response surface type.

Polynomial (7) contains 5 input variables and has 35 = 243
terms with constants ca, where a = 0, 1,. . ., 242. Polynomials with
36 = 729 terms for 6 input variables or polynomials with
37 = 2187 terms for 7 input variables, etc., can be expressed simi-
larly. Approximation of the model output using polynomial (7) is
advantageous for the evaluation of large numbers of Monte Carlo
(LHS) runs, especially for computational models with a small num-
ber of input random variables that require large computing effort
for the evaluation of a simulation (one run).

Constants ca were calculated using the least squares method.
The LHS method was used to realize 400 simulations of random
variables X1, X2, . . ., X5, listed in Table. 4, for which 400 runs of
MLTB-R were then simulated. The variances of random variables
listed in Table 4 are higher than the variances of random variables
listed in Table 2, which allows approximation (7) based on Table 4
to use high numbers of LHS simulation of the random variables
from Table 2. The domain of the approximation is defined by the
minimum and maximum values of Rectangular pdfs in Table 4,
which were obtained as the minimum and maximum values from
500 thousand simulations of random imperfections from Table 2.
This means that polynomial (7) can be evaluated for up to 500
thousand LHS simulations of initial imperfections from Table 2.
LT LT LT

Table 4
Artificial random variables for approximation.

Symbol Characteristic Density Minimum Maximum

X1 Flange thickness Rectangular 8.83 mm 13.77 mm
X2 Yield strength Rectangular 217.43 MPa 377.17 MPa
X3 Modulus of elasticity Rectangular 162.46 GPa 257.54 GPa
X4 Initial imperfection Rectangular �4.76 L/1960 4.76 L/1960
X5 Residual stress Rectangular 4 MPa 176 MPa
6. Sensitivity analysis of LTB-R

The goal of SSA is to study the effects of the variabilities of ini-
tial imperfections from Table 2 on LTB-R. Vi was evaluated using
ten thousand realizations of E(Y|Xi). One realization of E(Y|Xi) was
performed by applying the approximation (7) and ten thousand
LHS runs. The total variance V(Y) was evaluated using (7) and
500 thousand LHS runs. All Sobol higher-order indices were evalu-
ated in a similar manner. Overall, all thirty-one Sobol indices were
evaluated.The SSA procedure can be described as follows: the
Table 2
Input random imperfections.

Symbol Characteristic Density

t2 Flange thickness Gauss
fy Yield strength Gauss
E Modulus of elasticity Gauss
e0 Initial imperfection Gauss

Gauss
rs Residual stress Hermite

Gauss
non-dimensional slenderness of the beam kLT is selected (e.g.
kLT= 0.9) and the corresponding beam length is calculated L (e.g.
L = 2.5 m). The relationship between L and kLT is listed in [14].
Lengths L are calculated according to the nominal parameters of
an idealised cross-section, see Fig. 2. For I200 and kLT � 1:7
it approximately holds that L � 1.86kLT + 0.41k2LT + 0.71k3LT , see
Table 3. The analytical formula is given in [63]. The length L is an
input parameter of the formulae of standard deviations in Tables
2 and 4. Realization of random variables in Tables 2 and 4 are sim-
ulated using the LHS method. Due to the beam symmetry, LTB-R is
the same for plus or minus realization e0, therefore realizations e0
are considered using their absolute values in (2). The approxima-
tion polynomial (7) is compiled using Table 4. SSA of LTB-R is per-
formed using (7) and Table 2.The variant of input imperfections
with the probabilistic models corresponding closest to reality is
t2, fy, E, e01, rs1, see Table 2. 31 Sobol indices are plotted in pie
charts in Figs. 12–14, which clearly illustrate the changing effects
of initial imperfections on LTB-R for three values of kLT . The higher
the value of Sobol’s index, the higher the influence of the variability
of initial imperfections on LTB-R. In order to obtain continuous
curves of Sobol indices the step of 0.01 was considered for kLT . First
order sensitivity indices Si are plotted in Fig. 15 and the crucial sec-
ond order sensitivity indices Sij are supplemented in Fig. 16. Simi-
larly, Si and Sij for the other variants of initial imperfections from
Table 2 are plotted; see Figs. 17–22. Sensitivity indices of the third
and higher orders are relatively small. Thus, they are not plotted. It
may be noted that the results in Figs. 17–22 do not depict the
effects of variables h, b, t1 because their random variabilities were
neglected. This is in accordance with [32,35,64], where the small
effect of the variability of variables h, b, t1 on LTB-E and LTB-R
was proven.
Mean l Standard deviation Variant

11.3 mm 0.518 mm t2
297.3 MPa 16.8 MPa fy
210 GPa 10 GPa E
0 L/1960 e01
0 1.5L/1960 e02
90 MPa 27 MPa rs1
90 MPa 18 MPa rs2



Fig. 12. SSA of LTB-R for variant t2, fy, E, e01, rs1 and kLT ¼ 0:6.

Fig. 13. SSA of LTB-R for variant t2, fy, E, e01, rs1 and kLT ¼ 0:8.

Fig. 14. SSA of LTB-R for variant t2, fy, E, e01, rs1 and kLT ¼ 1:0.

Fig. 15. First order indices Si for variant t2, fy, E, e01, rs1.

Fig. 16. Crucial second order indices Sij for variant t2, fy, E, e01, rs1.

Fig. 17. First order indices Si for variant t2, fy, E, e02, rs1.
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The thick green curves are the SSA outputs of LTB-E. LTB-E is
denoted in [32] as MR (elastic load-carrying capacity) and is
derived in the closed form. Let us note that the correctness of the
analysis of MR was verified using the geometrically non-linear FE
model [63]. The analytical elastic solution MR does not take into
account the effect of residual stress. The input variables are other-
wise the same for SSA, see Table 2.

Regarding the residual stress, the introduction of a high stan-
dard deviation rrs1 = 27 MPa did not lead (as expected) to a high
value of sensitivity index Srs1, see Figs. 15 and 17. Sensitivity of
LTB-R to rs1 is relatively small. It is essential to properly under-
stand this observation. SSA evaluates the effect of an imperfection
while all other imperfections are varying as well. Whatever the
strength interaction in the model, Srs1 indicates by how much
one could, on an average, reduce the variance of LTB-R if rs1 is
fixed.Let us perform a comparison with deterministic study [65]
investigating the effect of the inclusion or exclusion of the nominal
value of residual stress on LTB-R of beam I200 with nominal
imperfections. The residual stress reduced LTB-R by 6% for
kLT ¼ 1:2, the effect was smaller for other values of slenderness.



Fig. 21. First order indices Si for variant t2, fy, E, e02, rs2.

Fig. 19. First order indices Si for variant t2, fy, E, e01, rs2.

Fig. 18. Crucial second order indices Sij for variant t2, fy, E, e02, rs1.

Fig. 20. Crucial second order indices Si for variant t2, fy, E, e01, rs2.

Fig. 22. Crucial second order indices Si for variant t2, fy, E, e02, rs2.
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This study belongs to the LSA category, because the value of the
residual stress changes while all other imperfections are fixed.
The effect of residual stress can generally be different if the other
imperfections are set to different values. Using a two-valued
change of another imperfection (e.g. e0 as 0 and L/1000) can have
a far greater effect on LTB-R than a two-valued change in residual
stress. Changing the values of only some imperfections while keep-
ing other imperfections fixed (no-change) can lead to the misinter-
pretation of their joint influence. Selection of the base case is very
important in LSA. The SSA presented above provides much more
information because it quantifies the overall contribution of each
random input imperfection to the uncertainty of LTB-R.
7. Observations

The paper describes the detailed non-linear FE model and
advanced numerical methods that were used for the in-depth
sensitivity analysis of LTB-R. Table 2 lists the input random
initial imperfections of the beam I200, for which SSA was
performed. The results of SSA are useful for the comparison of
the relative importance of the five initial imperfections, which
are the model inputs of the LTB-R analysis. Unless stated
otherwise, the conclusions of the SSA of LTB-R pertain to all
solution variants; see Figs. 15–22.

– The influence of the residual stress rs1 on LTB-R is relatively
small despite the fact that random variable rs1 was introduced
with large variance. The same conclusion is true for random
variable rs2, which has lower (but also quite large) variance.
The curves of sensitivity indices Srs1 and Srs2 reach their maxi-
mum for approximately kLT ¼ 0:9.

– Sensitivity index of yield strength Sfy has a plateau near kLT ¼ 0
and then decreases with increasing kLT . For approximately
kLT >1.7 Sfy = 0. This means that the variance of the yield
strength can be fixed at any value of the domain without any
effect on the variance of LTB-R.

– The influence of imperfection e0 on LTB-R is the second domi-
nant for kLT � 1.1, especially for the variant e02, which has 50%
higher standard deviation than variant e01. The curves of sensi-
tivity indices Se01 and Se02 attain their maximum approximately
for kLT = 1.1. Sensitivity indices Se01 and Se02 are clearly higher
than indices Srs1 and Srs2.
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– Sensitivity index St2 of the flange thickness t2 increases with
increasing kLT . t2 is the absolutely dominant imperfection for
kLT > 0:75. This means that reducing the variance of t2 has a rel-
atively significant effect on the reduction of the variance of LTB-
R. Reducing the variance of t2 can be achieved by improving the
production processes in metallurgical production.

– Sensitivity index of Young’s modulus SE increases with increas-
ing kLT . In contrast to t2, the variance of E cannot be significantly
influenced through technological processes in metallurgical
production.

Second order sensitivity indices Sij measure the second order inter-
action contribution between Xi and Xj to the variance of LTB-R. The
values of Sij shown in Figs. 16, 18, 20 and 22 are small, but provide
interesting information on the non-linear response of an imperfect
beam in limit state. Sensitivity to the yield strength fy and the
involvement of fy in interactions determine, among other things,
the sensitivity to plastic yielding. Plastic yielding does not occur
when Sfy and fifteen additional higher-order indices involved in
interactions with fy are equal to zero. This is approximately fulfilled
for kLT > 2:0, otherwise at least one of the indices Sfy, St2,fy, Sfy,e0,
Sfy,rs always has a non-zero value.The relatively small values of
all 26 higher-order sensitivity indices show that the non-linear
model can be considered as approximately additive. This is favour-
able information for the selection of the approximation strategies
that use second-order polynomials neglecting interaction effects.
This conclusion applies to an individual beam; beams integrated
into structural systems may be influenced by interactions with sur-
rounding structures [66]. The thick green curves (Figs. 19 and 21)
show the results of SSA of LTB-E, which were calculated using
the elastic analytic solution in the closed form [31,32]. The thick
green curves are very different in comparison with the black curves
(SSA of LTB-R). The analytic elastic solution greatly exaggerates the
importance of initial imperfections e0 and on the contrary under-
values the importance of t2 for the intermediate slenderness. This
difference can be explained by the varied involvement of the
flanges in the LTB-E and LTB-R solution. The thick green and black
curves correspond for kLT ¼ 0 and kLT= 2.0. The thick green curves
of Se01 and Se02 are maximum for kLT= 0.93 coinciding well with
the maximum of Srs1 and Srs2, which occurs in kLT ¼ 0:9. The thick
green curves of Se01 and Se02 are also very similar in shape to the
black curves of Srs1 and Srs2. This is consistent with the frequently
applied assumption that LTB-R taking into account the effect of
residual stress can be approximately calculated as LTB-E of a beam
with increased amplitude of initial imperfection e0, sometimes
referred to as the equivalent geometric imperfection.

8. Conclusion

GSA is an important part of the analysis of the reliability of steel
structures and their limit states. SSA answers the question of
which imperfections are dominant and should thus be paid
increased attention during the preparation of the input values of
stochastic models. Despite ongoing experimental research proba-
bilistic models of initial curvature of the beam axis and residual
stress are still under discussion. These imperfections influence
the LTB-R, especially for I-beams with intermediate slenderness,
which are commonly found in steel structures.

SSA showed that the random variability of residual stress rs has
a smaller influence on LTB-R than the flange thickness t2, axis cur-
vature e0 and yield strength fy. Thus the statistical characteristics of
residual stress need not be detected with such accuracy as t2, e0
and fy. This conclusion is optimistic, because as we know, experi-
mental research of residual stress is very difficult, time-
consuming and an inefficient task with limited accuracy [44].
SSA showed that the random variability of e0 has in some cases
the second dominant effect on LTB-R. Thus the statistical charac-
teristics and pdf type of e0 must be determined with great accu-
racy, otherwise the results of probabilistic reliability analyses
may be burdened with high error.The elastic solution LTB-E
[31,32] overstates the influence of e0, understates the importance
of t2 and does not take into account the effect of residual stress.
For certain kLT the sensitivity of LTB-E to e0 is more than twice
higher than the sensitivity of LTB-R to e0. Comparison of results
of sensitivity analyses LTB-R and LTB-E can be useful for the prob-
abilistic verification of stability design criteria of steel structures.

The results of SSA of LTB-R were obtained using the polynomial
approximation of a FE model, which is a highly effective approach
especially for numerically demanding models with a small number
of input random variables. This approach made it possible to han-
dle detailed numerical observation of the effects of imperfections
on LTB-R, which could not otherwise be achieved.
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