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a b s t r a c t

The article presents the sensitivity and statistical analyses of the load-carrying capacity of a steel portal
frame. It elaborates a typical stability problem of a system comprising two single-storey columns loaded
in compression. The elements of this system mutually influence each other, and this fact, in conjunction
with the random imperfections, influences the load-carrying capacity variance. This mutual interaction
is analysed using the Sobol’ sensitivity analysis. The Sobol’ sensitivity analysis is applied to identify the
dominant input random imperfections and their higher order interaction effects on the load-carrying
capacity. Majority of imperfections were considered according to the results of experimental research.
Realizations of initial imperfections were simulated applying the Latin Hypercube Sampling method.
The geometrical nonlinear solution providing numerical result per run was employed. The frame was
meshed using beam elements. The columns of the plane frame are considered with two variants of
boundary conditions. The dependence between mean and design load-carrying capacities and column
non-dimensional slenderness is analysed.

© 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Along with the progress of structural design theories and the
technological advancement of steelworks production, more and
more large-scale and high-rise steel bar structures are imple-
mented in modern structures. The issue of stability of these struc-
tures becomes more apparent due to the utilization of more
slender members.

The frame stability requires that all structural members and
connections of the frame have adequate strength to resist the ap-
plied loads where static equilibrium is satisfied on the deformed
geometry of the structure. In order to determine the load-carrying
capacity of an actual structure, it is necessary to take into consider-
ation initial imperfections and to consider the geometrically non-
linear analysis.

In general, all imperfections are of random character. The re-
liability of steel structures depends on the variance of input im-
perfections which influences the evaluation of limit states of
building structures. The attainment of limit states is generally a
random phenomenon, which is examined in the field of relia-
bility using probabilistic theories and mathematical computation
models.

One of the most important characteristics occurring in proba-
bilistic methods of reliability assessment of steel structures is the
variance of the load-carrying capacity which is primarily given by
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the quality of production. Basic indicators of production quality in-
clude the yield strength, tensile strength, ductility and geometrical
characteristics of cross sections; see, e.g., [1,2]. Relatively sufficient
statistical information is provided for the material and geometri-
cal characteristics of mass produced hot-rolled members of steel
structures in comparison to other building branches. Scarcelymea-
surable imperfections of steel plane frames include the inevitable
initial crookedness of bar members (bow imperfections) and out-
of-plumb inclinations of the columns (sway imperfections) in the
same frame [3,4]. Somemeasurements have beenmade in connec-
tion with testing programmes [5], but very little data is available.

The frames depicted in Figs. 1 and 2 represent a typical stability
problem of a structural system consisting of more members. The
frames are typical lean-on systems which are characterized by the
structural members tied or linked together in such a way that
buckling of the columnwould require adjacent members to buckle
with the same lateral displacement. The imperfection interaction
effects can have a significant influence on the overall performance
of the frames. The steel frame depicted in Fig. 1 has rotation and
translation fixed boundary conditions of both column ends. The
steel plane frame in Fig. 2 is similar to that in Fig. 1 with the
exception that there is no rotation restrain at the column ends. The
rotation fixed and rotation free conditions represent the two limits
of real anchorage in practice. Let us denote the frame in Fig. 1 as
Frame 1 and the frame in Fig. 2 as Frame 2.

In the presented paper, the effects of input imperfections on
the load-carrying capacities of Frames 1 and 2 are evaluated
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Fig. 1. Frame 1, rotation and translation fixed boundary conditions.

by means of sensitivity analysis. The lean-on imperfect system
(left column leans on right column) requires the utilization of
sensitivity analysis which enables the evaluation of the influence
of individual imperfections on the load-carrying capacity as well
as of their higher order interaction effects. An outline of sensitivity
analysis methods with examples of their application in a number
of scientific fields is listed, e.g., in [6]. With regard to the random
character of initial imperfections, the influence of imperfections
on the load-carrying capacity of the frame systems will be
studied applying the Sobol’ sensitivity analysis [7–9]. One of the
advantages of Sobol’ sensitivity analysis is that it enables the
identification of interaction effects among input quantities on
the monitored output. The effects of the dominant imperfections,
which have the greatest influence on the load-carrying capacities,
will be described. Design load-carrying capacities evaluated
statistically according to EN1990 [10] and according to the partial
factor method of EUROCODE 3 [11] will be compared later on in
the article. Obtained results will be discussed in connection with
the results of Sobol’ sensitivity analysis.

2. Input random imperfections

Imperfections are practically unavoidable, and they represent
acceptable construction tolerances. The presence of imperfections
in the analysis and design of frame systems with slender members
has always been recognized, however, the manner of considering
their effect on structural behaviour in computational models dif-
fers. Imperfections may generally be considered as deterministic
(non-random) variables [12] or as random variables [4,13]. In this
article, all imperfections will be considered as random variables.

Geometrical imperfections are, as a general rule, not visible to
the naked eye, nor can they be quantified precisely beforehand.
The first type of geometrical imperfection is the inclination of
each column; see Fig. 3. Let us denote the inclination of the left
column as Θ1 and of the right column as Θ2. Permitted inclination
deviations of columns of a single-storey portal frame are listed
in the standard EN1090-2. Let us assume that imperfections Θ1
andΘ2 are statistically independent random quantities withmean
values equal to zero (perfectly vertical columns) and that both
quantities have a Gauss probability density function. Let us further
assume that 95% of realizations of Θ1 and Θ2 remain within the
tolerance limits given by the standard EN1090-2. The classification
Class 1 according to standard EN1090-2 was assumed. Detailed
probabilistic derivation of the standard deviations σe1 , σe2 is
Fig. 2. Frame 2, rotation free and translation fixed boundary conditions.

Fig. 3. Initial sway and bow imperfections.

described in [4]. Practical analysis based on the Monte Carlo
simulationmethodmay be performed in the followingmanner. Let
us introduce quantities Θ1 and Θ2 with σe1 = σe2 = h/790. In the
case that the random realizations ofΘ1 andΘ2 have opposite signs,
we shall multiply the inclination of each column by the coefficient
79/43; see [4].

The initial bow imperfection (initial crookedness) of member
axis was described using a half sine wave; see Fig. 3. Both the
positive and negative realizations of the amplitude should occur
with the same frequency, whichmeans that themean value equals
zero. The standard deviation of the Gauss probability density
function has been selected for the random amplitude such that
95% of the realizations are found within the tolerance limits given
by the standard EN 10034. Let us denote the amplitude of initial
crookedness of left column as δ1 and the amplitude of right column
as δ2.

Fig. 4 illustrates eight combinations of positive and negative
imperfections from Fig. 3. Fig. 4 provides a basic idea of the shape
but not of the magnitude of imperfect geometry. A more accurate
notion would be obtained if imperfections Θ1, Θ2, δ1, δ2 were
considered as random variables; see Fig. 5. Fig. 5 illustrates (in a
larger scale) eight realizations of initial imperfections generated
by the LHS method [14,15]. Random geometrical characteristics
of profiles IPE were deduced according to results of experimental
research [2]. According to standard EUROCODE 3, hot-rolled cross
section is classified as Class 1 cross sectionwhich can form a plastic
hinge with the rotation capacity required for plastic hinges. Effects
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Fig. 4. Eight combinations of plus and minus initial imperfections Θ1, Θ2, δ1 , δ2 .
Fig. 5. Eight LHS random realizations of initial imperfections Θ1, Θ2, δ1 , δ2 .
of local plated imperfections can therefore be neglected for Class 1
cross sections. Let us assume that both columns and the cross beam
are prismatic (the cross section is constant from one end to the
other). Let us note that, as a result of the aforementioned random
geometrical imperfections, the frames from Figs. 1 and 2 have an
asymmetrical geometry.

Material properties in the Czech Republic have been statisti-
cally studied for a long time [1,2]. The yield strength is the most
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Table 1
Input random quantities.

No. Member Symbol Mean value Std. deviation

1.

Left column

h1
a 220.20 mm 0.9731 mm

2. b1a 111.53 mm 1.0855 mm
3. tw1

a 6.22 mm 0.2304 mm
4. tf 1a 9.13 mm 0.4219 mm
5. E1b 210 GPa 10.5 GPa
6. fy1a 297.3 MPa 16.8 MPa
7. δ1

b 0 0.76533 h

8.

Cross beam

h0
a 270.24 mm 1.194 mm

9. b0a 136.88 mm 1.3322 mm
10. tw0

a 6.96 mm 0.2577 mm
11. tf 0a 10.13 mm 0.4678 mm
12. E0b 210 GPa 10.5 GPa
13. fy0a 297.3 MPa 16.8 MPa

14.

Right column

h2
a 220.20 mm 0.9731 mm

15. b2a 111.53 mm 1.0855 mm
16. tw2

a 6.22 mm 0.2304 mm
17. tf 2a 9.13 mm 0.4219 mm
18. E2b 210 GPa 10.5 GPa
19. fy2a 297.3 MPa 16.8 MPa
20. δ2

b 0 0.76533 h

21. System Θ1
b 0 Chapter 2

22. System Θ2
b 0 Chapter 2

a Histogram.
b Gauss pdf.

important quantity during the dimensioning of structures. The
yield strength variation depends largely on the chemical compo-
sition and rolling conditions. The actual yield strengths are usually
much higher than the characteristic values.

Let us further assume that the material is linearly elastic.
Statistical characteristics of yield strength of steel grade S235
of the IPE profile used in the study presented hereby were
published in [1]. The modulus of elasticity was considered, as
based on data obtained from the technical literature [16], to be a
random quantity. The effect of residual stresses was not taken into
consideration in the numerical study. All the input characteristics,
given synoptically in Table 1, are statistically uncorrelated.

3. Computation model

The frame was modelled using beam elements. Each column
was meshed into ten beam elements, and the cross beam was
meshed using three beam elements. The equilibrium equations
were expressed for the deformed frame geometry. The analy-
sis of the deformed geometry was performed by the geomet-
ric nonlinear solution using elastic structural analysis with linear
stress–strain laws. The geometric nonlinear solution was elabo-
rated and programmed by the author of the present paper [17].
The load-carrying capacity was evaluated using step-by-step Eu-
ler Newton–Raphson iterations. The first criterion, i.e., the strength
condition, for the load-carrying capacity is given by the load dur-
ing which plasticization of the flange is initiated. The second crite-
rion, i.e., stability condition, for the load-carrying capacity is given
by the load corresponding to a decrease of the determinant of the
stiffness matrix to zero which occurs at high yield strength values
of slender columns with small initial imperfections Θ1, Θ2, δ1, δ2.
The ultimate one-parametric loading is obtained as the lowest
value from the strength and stability criteria of the load-carrying
capacity.

Realizations of input variables were computed by applying the
LHS method which was used to simulate experiment repetitions.
The obtained output is the random load-carrying capacity. The
load-carrying capacity was determined with an accuracy of 0.1%
in each simulation run.
4. Sensitivity analysis

The information on problems and applications of the sensitiv-
ity analysis of steel structures is presented, e.g., in [4,13,17–24].
In general, the sensitivity analysis studies relationships between
information flowing in and out of the model [25]. The basic cat-
egorization of sensitivity analysis is: the deterministic sensitivity
analysis and the stochastic sensitivity analysis. Further possible di-
vision includes: the local sensitivity analysis and the global sensi-
tivity analysis [25]. The local sensitivity measures determine the
influence of parameters by varying one parameter at a time and
keeping the other parameters constant [26]. The global sensitivity
analysis, on the other hand, considers a variation of all parame-
ters simultaneously and evaluates their contribution to the uncer-
tainty [26].

The aim of global sensitivity analysis is to apportion the
uncertainty in the output variable to the uncertainty in each input
variable, described typically by probability density functions [25].
Global sensitivity analysis typically takes an uncertainty range in
the input that reflects our imperfect knowledge of thematerial and
geometrical characteristics of steel structures. With regard to the
ultimate limit states of steel structures, the resistance is frequently
considered to be the important output variable.

4.1. The Sobol’ method

The Sobol’ decomposition has been introduced as a method
for global sensitivity analysis [25]. The Sobol’ sensitivity analysis
enables us to analyse the influence of arbitrary subgroups of input
variables on themonitored output. The sensitivity analysis of load-
carrying capacity (random output Y ) to input imperfections (input
random variables Xi in Table 1) was evaluated in the presented
study.

4.1.1. Sensitivity indices
The Sobol’ first-order sensitivity index may be written in the

form:

Si =
V (E(Y |Xi))

V (Y )
. (1)

Si measures themain (e.g. additive) effect of Xi on themodel output
Y . An important distinction between Sobol’ and classical sensitivity
is that the Sobol’ sensitivity analysis detects interactions of input
variables through the second and higher order terms, whilst
classical sensitivity methods give only derivatives with respect to
single variables. The influences of higher order interactions (e.g.,
the influence of doubles) on the monitored output are significant
in systems comprising more members. Interactions represent
important features of models, and are more difficult to detect
than first-order effects. The Sobol’ second-order sensitivity index
is given as

Sij =
V (E(Y |Xi, Xj))

V (Y )
− Si − Sj. (2)

Sij, for i ≠ j, is called the second-order sensitivity index and
measures the interaction effect between a pair of (Xi, Xj). It
captures that part of the variation in Y due to Xi and Xj that
cannot be explained by the sum of individual effects of Xi and Xj.
V (E(Y |Xi, Xj)) in Eq. (2)measures the joint effect of the pair (Xi, Xj)
on Y . Analogous formulae can be written for higher order Sobol’
sensitivity terms, enabling the analyst to quantify higher order
interactions.

The case with statistically independent input random variables
Xi (input imperfections) was studied. The decomposition of Sobol’
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sensitivity indices can be written as:−
i

Si +
−

i

−
j>i

Sij +
−

i

−
j>i

−
k>j

Sijk + · · · + S123...M = 1. (3)

The sum of all sensitivity indices must be equal to 1. The number
of terms in (3) increases exponentially with the number of input
variables M . The number of terms in (3) is 2M

− 1, i.e., for
M = 22 input variables, we would obtain more than four million
sensitivity indices; this is excessively large for practical usage. The
main limitation in the determination of all members of (3) is the
computational demand.

4.1.2. Total effect indices
The high number of sensitivity indices (3) and the numerical

demand of their evaluation generally do not allow the listing of the
sensitivity indices of all orders but allowonly the sensitivity indices
(1) at most (2) and the so-called total effect of input variables and
their interactions with others on the monitored output [25].

STi =
E(V (Y |X∼i))

V (Y )
= 1 −

V (E(Y |X∼i))

V (Y )
. (4)

The total sensitivity index STi is defined as the sum of all sensitivity
indices involving the load-carrying capacity, in other words, STi
measures the total effect, i.e., the first and higher order effects
(interactions) of input variable Xi. X∼i are all input variables that do
not include the index i. One way to visualize this is by considering
that V (E(Y |X∼i)) is the first-order effect of X∼i, so that V (Y ) minus
V (E(Y |X∼i))must give the contribution of all terms in the variance
decomposition which do include Xi. The difference STi − Si is a
measure of howmuch Xi is involved in interactions with any other
input variables. The sum of all Si is equal to 1 for additive models,
and less than 1 for non-additive models. The difference 1 −

∑
i Si

is an indicator of the presence of interactions in the model.

5. Sensitivity and statistical analysis results

The frame height h was considered as a computational
parameter; see Figs. 1 and 2. In order to enable the mutual
comparison of results of Frames 1 and 2, results will not be
presented in dependence to frame height h but to the non-
dimensional slenderness λ of columns which is evaluated for a
perfect frame according to EUROCODE 3; see also [4]. For example,
for h = 5m,wewould obtain for Frame 1 from Fig. 1 λ = 0.63, and
for Frame2 fromFig. 2λ = 1.26 = 2·0.63. Let us note that the non-
dimensional slenderness λ is a multi-functional variable linearly
dependent on h. By considering the non-dimensional slenderness
of columns, more general results are obtained.

5.1. Sensitivity analysis results

The conditional expectation E(Y |Xi)was evaluated by averaging
500 simulation runs of (Y |Xi) within the same slice Xi; the
conditional variance V (E(Y |Xi)) was calculated for 500 simulation
runs, as well. The unconditional variance V (Y ) was calculated for
100000 simulation runs. The second-order sensitivity indices Sij
and total effects STi were calculated analogously. The LHS method
significantly increases the rate of convergence estimates of Sobol’
sensitivity indices; see, e.g., [25]. Due to the fact that the frame,
load action and boundary conditions are symmetrical, the values
of sensitivity indices of both left and right columns are identical,
i.e., they are depicted by a single curve only.

5.1.1. Frames 1 and 2
Results of the sensitivity analyses of Frames 1 and2 are depicted

in Figs. 7 and 8. All sensitivity indices (1) and (2) were calculated,
however, for greater clarity’s sake, very small values of sensitivity
indices are not depicted.
Fig. 6. Sobol’ sensitivity indices of Frame 1 for λ = 1.02.

Fig. 7. Sobol’ sensitivity indices of Frame 1 vs. non-dimensional slenderness.

Fig. 8. Sobol’ sensitivity indices of Frame 2 vs. non-dimensional slenderness.

It generally holds that the yield strength influence on the load-
carrying capacity decreases with increasing λ; see Figs. 7 and 8.
For λ = 0, the first-order sensitivity indices S6 (fy1) and S19 (fy2)
are dominant, and the second-order effect S6,19 between fy1 and fy2
has the maximum effect on the sum of all second-order sensitivity
indices. On the contrary, for high slenderness, the load-carrying
capacity approaches the buckling load, and therefore it is more
sensitive to changes of Young’s modulus values S5 (E1) and S18 (E2)
and also to changes of flange thickness values S4 (tf 1) and S17 (tf 2).
The graphs of sensitivity indices S4 (tf 1) and S17 (tf 2) are the same
for both frames, the graphs of S5 and S18 are also approximately the
same. We can further conclude that for λ = 0 and λ = ∞, results
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Fig. 9. Main and total indices of Frame 2 for λ = 0.93.

of the sensitivity analyses of both frames are the same. On the
other hand, large differences of sensitivity indices were obtained
for λ ≈ 1.0 for imperfections Θ1, Θ2, δ1, δ2.

5.1.2. Frame 1
Maximum values of the first-order sensitivity indices S21 =

S22 = 0.163 of imperfections Θ1 and Θ2 were calculated for λ =

1.02; see Fig. 6. Maximum values of the second-order sensitivity
index S21,22 = 0.33 describing interactions between Θ1 and Θ2

were calculated for λ = 0.96. The second-order sensitivity index
S21,22 is twice greater than the first-order sensitivity indices
S21,22 ≈ 2 · S21 = 2 · S22; see Fig. 7.

Sensitivity indices S7, S20 and S7,20 of imperfections δ1 and δ2,
in comparison to other imperfections, depicted in Fig. 7, are very
small. The maximum values of sensitivity indices S7, S20 and S7,20
were obtained for λ = 0.75.

5.1.3. Frame 2
In comparison with results depicted in Fig. 7, the value of

second-order sensitivity index S21,22 in Fig. 8 is significantly lower.
It is apparent from Fig. 8 that interaction effects between Θ1 and
Θ2 are approximately 50% higher than the main effect of Θ1 and
Θ2; see Fig. 8. In contrast to Frame 1, in Frame 2, interactions
related to variables δ1, δ2 are relatively significant. The minimum
value of indicator 1 −

∑
i Si = 0.46 was calculated for λ = 0.93;

this indicates significant higher order interactions.
The analysis of the total effect of input imperfections according

to formula (4) for λ = 0.93 is depicted in Fig. 9. It is apparent
that the higher order interactions of imperfections Θ1, Θ2 are
most significant. Variables δ1, δ2 are worth noting. Their main
effect is practically zero, nevertheless they interact with the other
variables, similarly as variables h1, h2, b1, b2; see Fig. 9.

5.2. Statistical analysis results

Capability for stochastic uncertainty analysis is one of the
major features of global sensitivity analysis methods. The aim of
stochastic uncertainty analysis is to determine the random load-
carrying capacity with regard to the variability of all input random
imperfections.

According to the rules in the Eurocodes, the design of structures
and structural members has to be verified for different limit
states [27]. According to EN1990, we can assume statistical
independence between load (action) and load-carrying capacity
(resistance). Statistical independence of both variables makes
possible the separation of their analyses, and enables individual
study of them. Pertinent to the ultimate limit state, the design
load-carrying capacity (design resistance) can be verified bymeans
of statistical analysis according to standard EN 1990 for target
reliability index βd = 3.8. The design load-carrying capacity for
βd = 3.8 is, in practice, obtained as 0.1 percentile [1,2,5]. Various
Fig. 10. Runs of LHS of Frame 1 for λ = 1.0.

Fig. 11. Mean and design values of Frame 1.

distribution functions for deriving the design values are expressed
in Table C3 in EN 1990. For the statistical analysis, we can reliably
use only those distribution functions which are not rejected by
distribution tests (e.g., Chi-square test).

Amore general approachwhich does not require the evaluation
of distribution tests is described in [2,5]. This approach enables the
evaluation of the 0.1 percentile directly from the basic probability
definition. The numerical studies were evaluated applying the LHS
method. Frame 1 with λ = 1.0 was selected for the illustration
of the evaluation of the 0.1 percentile. 100 000 runs of the
random load-carrying capacity are depicted in Fig. 10. 100 random
realizations of the load-carrying capacity have values lower than
542.3 kN; see Fig. 10. In practice, the value 542.3 kN is obtained as
the 100th lowest value in the organized ascending file.

In practice, structures are commonly designed according to EU-
ROCODE 3 using the buckling resistance based on buckling length.
Design values evaluated according to EN1990 (0.1 percentile) and
EUROCODE 3 (buckling resistance) are compared; see Figs. 11 and
12. The step for parameter λ was chosen as 0.1. 100 000 runs of
LHS were used in each step. It is apparent that the design load-
carrying capacity evaluated according to EUROCODE 3 and EN1990
closely corresponds with the greatest difference of 7% obtained for
λ ≈ 0.8; see Fig. 12. This differencemay be, to a certain extent, due
to the effect of the residual stress which was neglected in the sta-
tistical and sensitivity analyses. Residual stress has the dominant
influence on load-carrying capacity of the strut when λ ≈ 0.7 [28].

The mean value decreases with increasing λ, the decreasing
trend is observed also for the 0.1 percentile; see Figs. 11 and
12. The difference between the mean and 0.1 percentile values is
influenced, to a certain degree, by the plot of standard deviation
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Fig. 12. Mean and design values of Frame 2.

Fig. 13. Comparison of standard deviations of load-carrying capacity.

of the load-carrying capacity. The plots of standard deviations of
both frames depicted in Fig. 13 are approximately the same. The
maximum standard deviation of 63 kN occurs for λ ≈ 0.87.

6. Conclusion

The sensitivity analyses of Frames 1 and 2 provide sensitivity
information concerning the load-carrying capacity as influencedby
initial imperfections. The paperwas aimed at the comparison of the
influence of individual initial imperfections on the load-carrying
capacity of Frames 1 and 2.

Results of the sensitivity analyses of the load-carrying capac-
ities of both frames show that the influence of initial bow im-
perfections δ1, δ2, compared to the influence of the initial sway
imperfections Θ1, Θ2, is very small; see Figs. 7 and 8. This conclu-
sion is valid for both themain effects aswell as the second-order in-
teraction effects. As the non-dimensional slenderness approaches
one, the second-order interaction effects between Θ1 and Θ2 be-
come significant and the main effect is of secondary importance.
Imperfections Θ1, Θ2 may generate, as a result of their mutual
interactions, extreme values of the load-carrying capacity. This
is important for the analysis of reliability and economy of struc-
tural design. Variability of imperfections Θ1, Θ2 significantly con-
tributes to the output variability, and thus, additional researchmay
be recommended in order to strengthen their knowledge base.
However, under heavy service conditions, this is difficult or prac-
tically impossible.

Higher order interaction effects were obtained for Frame 2 for
λ = 0.93. Mainly imperfections Θ1, Θ2 are involved in interac-
tions with other variables; see Fig. 9. The total effect index STi is
a summarized sensitivity measure which includes the interaction
effects of any order. Imperfections that interact with other imper-
fections with main effect close to zero are worth noticing. Change
in such imperfection does not cause any significant change of the
load-carrying capacity, if not accompanied by additional changes
of one or more significantly interacting imperfections. For exam-
ple, the main effects of imperfections δ1, δ2 of Frame 2 are practi-
cally equal to zero but the total effect indices ST7 and ST20 are the
second most significant ones; see Fig. 9.

Let us note that the total effect index is derived from a
notion of Sobol’ which involved the problem of ‘‘freezing’’ the
unimportant factors to their midpoint [8]. Sensitivity indices S7 =

S20 ≈ 0 represent a necessary but insufficient condition for fixing
imperfections δ1, δ2 of Frame 2. Results depicted in Fig. 9 show
that all column imperfections have total effect indices greater than
zero, and thus, they cannot be fixed at any value within its range
of uncertainty without greater or lesser effect on the value of the
variance of the load-carrying capacity.

For λ = 0, the first-order sensitivity indices of yield strength
S6 = S19 = 0.32 are cardinal; see Figs. 7 and 8. The interaction
effect of the secondorder S6,19 = 0.08 also exists between the yield
strengths of the left and the right columns. The sensitivity indices
of flange thickness S4 = S17 = 0.06 are the third most important
ones among all. Results of the sensitivity and statistical analyses
for λ = 0 are the same for both frames and are practically valid for
columns under tension.

Young’s modulus S5 = S18 = 0.31 and flange thickness S4 =

S17 = 0.15 are the dominant variables for λ → ∞. Higher order
interactions are relatively small. For high slenderness, the load-
carrying capacity in limit approaches the Euler’s critical force
(buckling load), and is thus sensitive to variables preventing
buckling. From the point of view of production technology of hot-
rolled steel members, we can strive for decrease in the variability
of flange thickness, however, the variability of Young’s modulus
cannot be significantly influenced in practice.

Results of sensitivity analysis of both frames differ, for λ ≈ 1.0,
most significantly; see Figs. 7 and 8. Sensitivity indices pertinent to
flange thickness S4, S17 are small for all analysed slenderness. This
may even be the second most significant for high slenderness.

Let us compare the hereby presented results with the results of
sensitivity analyses of the strut published in [13]. In the case of the
strut, the load-carrying capacity is not significantly influenced by
the higher order interactions between initial imperfections.

The evident discrepancies between the mean and design load-
carrying capacities are depicted in Figs. 11 and 12. Discrepancies
between the design load-carrying capacities evaluated according
to EUROCODE 3 and EN1990 (0.1 percentile) are relatively small.
The 0.1 percentile yields greater values within the interval λ ∈

(0.5, 1.0); this may be due to the fact that residual stresses were
neglected. The 0.1 percentile plots of Frames 1 and 2 differ slightly,
however, we cannot conclude that discrepancies for other frame
types may not be greater. The increase in the values obtained
from the 0.1 percentile can be achieved by decreasing the standard
deviation of input imperfections. The influences of individual
variables (and their interactions) were quantified applying the
tools of sensitivity analysis.

The sensitivity analysiswas used to determinewhere additional
information on imperfections (obtained perhaps from measure-
ment) would be most beneficial in terms of uncertainty reduction
in probabilisticmodel results of the frames. By decreasing the stan-
dard deviation of the dominant input imperfections, we can sig-
nificantly increase the reliability of newly designed structures. In
practice, sensitivity analysis provides a basis utilizable in produc-
tion and in the operating of control activities which can thereby
be concentrated on the most important input variables with the
greatest effect on the load-carrying capacity.

The Sobol’ sensitivity is generally suitable for the analysis ofma-
jority of stability problems of steel structures with imperfections.
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Sampling based methods may be applied for the analysis of the ef-
fect of local plated and global bar geometrical imperfections on
the ultimate limit state of thin-walled structures [29]. Some re-
searchers [30] introduced multiple local modes into the numeri-
cal model to consider possible additional interactions among the
global mode and multiple local modes [31]. The Sobol’ sensitivity
analysis can quantify the interaction effect amongst imperfections
formally identical to the buckling modes which cause instability.
The solution should be based on measurements of real imperfec-
tions; see, e.g., [32].
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