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a b s t r a c t

The objective of the paper is to analyse the influence of initial imperfections on the behaviour of a steel
member under compression. The influence of the variability of initial imperfections on the variability of
the load-carrying capacity studied has been calculated by sensitivity analysis. The advantages of Sobol’s
sensitivity analysis and the most important properties of Sobol’s sensitivity indices are described. The
Sobol’s first order sensitivity indices are evaluated in dependence on the nondimensional slenderness.
The Sobol’s sensitivity indices are supplemented with a lucid elaboration based on the Monte Carlo
method. Material and geometrical characteristics of a steel member IPE 220 were considered to be
random quantities the histograms of which were obtained from experiments. Imperfections that have
a dominant influence on the load-carrying capacity are identified.

© 2008 Elsevier Ltd. All rights reserved.
1. Introduction

The properties of structures are influenced by a number of
factors which are of random character (material, geometry, effects
of the surrounding environment, load action, etc.). If a structure is
to reliably fulfil its function during its service life, it is necessary
to make provision for this during its design. In the general
classification of initial structural imperfections, three fundamental
categories of imperfection are considered [8]. They include:

1. Geometrical imperfections: initial curvature of member axis,
excentricity of load action, deviation from the theoretical layout
of the cross section (tolerance of dimensions and shape of the
cross section), etc.

2. Material imperfections: dispersion of the mechanical proper-
ties of the material (non-homogeneousness of material char-
acterised by the dispersion of the yield strength, ultimate
strength, Young’s modulus, etc.), initial stress state (residual
stress as a consequence of rolling, welding, straightening and
other technological manufacturing processes).

3. Structural imperfections: imperfections in the realization of
joints, connections, welds, anchorage and other structural
details which are apparent in comparison with the theoretical
assumptions introduced in the solution of idealized system, in
deviations of the effects of the actual structural system.

Most initial imperfections arise due to inaccuracy during man-
ufacturing process. The influence of uncertainties of input im-
perfections on the uncertainty of system response expressed by
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mathematical models is studied using sensitivity and uncertainty
analyses [15]. The general definition of sensitivity analysis is the
study of the uncertainty of model output (numerical or otherwise)
arising from varying sources of model input uncertainties [16]. The
uncertainty analysis is aimed rather at the quantification of the un-
certainty of model output [2,13]. Sensitivity and uncertainty analy-
ses are employed as formal methods for the evaluation of data and
models, because they both enable the evaluation of uncertainty of
output variables and provide information on the importance of in-
put variables and their influence on the monitored output [15,16].

Sensitivity and uncertainty analysis methods are divided into
two types: (i) deterministic, and (ii) stochastic. Analysis (i) is
a relatively known method currently used in structure design.
This analysis accompanies the design procedures for which a
calculation model is applied, e.g. in [10,22]. We usually speak
about a parametric study (sometimes called “what-if-study”).
When designing a structure, a parameter (e.g. cross section, steel
grade, weld parameters) gets changed, and the influence on input
(e.g. load-carrying capacity, deformations) is studied. However,
quantified data on the uncertainty and/or sensitivity are not
obtained. In the case (ii), we can compute the average output,
its standard deviation, the quantiles of its distribution, confidence
bounds, plot the distribution itself and so on [16]. Upon obtaining
results of this uncertainty analysis, we can then perform the
sensitivity analysis to determine which of the input parameters
have a more dominant influence on the uncertainty in the model
output [16]. For discussions on the existing techniques see, for
example, [4,12]. For application of the fuzzy sets theory in models
with prevailing epistemic uncertainty, see [5,11].

This article is aimed at stochastic sensitivity analysis. The
stochastic sensitivity analysis will be carried out with the aim
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of assessing the relative sensitivity of the random variability of
a monitored event to the random variability of individual input
variables. The random variability influence of a certain input
variable (in comparison with other variables) on the random
variability of a monitored output (e.g. load-carrying capacity,
failure probability) will be sought.

The sensitivity analysis, thus, also answers the question as to
which variables are dominant and should be considered carefully
during: (i) the preparation of input variables; (ii) determination
and decision making on the improvement of technological
processes; (iii) conception and organization of control activities [4].

Ilya M. Sobol’ [19–21], a Russian mathematician, elaborated
one of the most coherent sensitivity analyses. In the paper
presented, the Sobol’s sensitivity analysis will be applied for study
of the influence of input random quantities on the load-carrying
capacity of a steel grade S235 member. The sensitivity analysis
will be carried out using statistical material and geometrical
characteristics obtained by physical experiment research [9,17].

2. Variance–based sensitivity indices

Let us consider a computational model with input variables
(X1, X2, . . . , XM) of non-zero variance (or uncertainty), and let us
monitor the influence of these variables on the output variable Y
utilizing the response function f :

Y (X) = f (X1, X2, . . . , Xi, . . . , XM) . (1)

We study the case with statistically fully uncorrelated input
random variables. Let us consider the response function f (1), the
integral of which can be performed on its function set ΩM:

ΩM
= (X|0 ≤ xi ≤ 1; i = 1; . . . ,M) . (2)

Sobol’s concept is based on the hierarchical decomposition of the
response function (1) into a form with increasing dimension:

f = f0 +
∑
i

fi +
∑
i

∑
j>i

fij + · · · + f12...M (3)

where each member is a function of input variables of given
indices: fi = fi (Xi), fij = fij

(
Xi, Xj

)
, etc. Each member of the

decomposition of function f should also have an integral on its
functional subset. The decomposition (3) is not a series expansion,
because it has 2M (finite number) of members: f0 is a constant,
number of members fi is M, number of fij members is

(
M
2

)
etc. Each

input variable has a density function pi (Xi) ≥ 0 defined on interval
〈0; 1〉, pi (Xi) = 0 outside this interval. As a result of the Fubini
theorem on the double integral, it holds that if each member of the
decomposition apart from constant has a zero mean value:

E (f (xi)) =
∫ 1

0
pi (xi) · f (xi) dxi = 0 (4)

then all members of decomposition are orthogonal in pairs:

E
(
f (xi) · f

(
xj
))
=

∫ 1

0

∫ 1

0
pi (xi) · pj

(
xj
)
· f (xi) · f

(
xj
)

dxidxj = 0,

i 6= j (5)

Members of the decomposition (3) can thus be rewritten utilizing
the conditional realization of the response function:

f0 = E (Y) (6a)
fi = E (Y|Xi)− E (Y) (6b)

fij = E
(
Y|XiXj

)
− fi − fj − E (Y) . (6c)

The condition that the density pi (Xi) is zero outside interval 〈0; 1〉
is not limiting, because transformation of each input variable
into another suitable distribution type (Gaussian, lognormal,
histogram, etc.) can be performed utilizing the response function
(1). For this purpose, it is practical to consider the density function
pi (Xi) within the interval 〈0; 1〉 in the simplest possible form with
Rectangular distribution.

How can the decomposition of the response function (3)
be utilized for sensitivity analysis? Sensitivity analysis can
be carried out by substituting deterministic values into (3)
and subsequently by comparing individual members of the
decomposition f0, fi, fij, . . . , f12...M with the value of output f . Let
us recall that decomposition (3) is not worked out based on the
analysis of the response function (1), but by the analysis of change
of output Y arising from quantified changes of input variables given
by functions pi (Xi). Change of function pi (Xi) during decomposition
leads to change of member f0 and of all members with index i,
i.e. fi, fij etc. In practice, this means that the decomposition of the
response function (1) into (3) can also be carried out with an
unknown algorithm, for which only input and output are known
(black box), whereas the sensitivity analysis can be carried out by
quantifying the influence of change in input variables to change of
output variables.

The change of output variable Y is characterised by standard
deviation σYor variance V (Y) = σ2

Y . Since (4) and (5) are valid,
all members of decomposition (3) are statistically independent
random variables and we can write that the variance is equal to
the sum of variances of the individual members of decomposition:

V (Y) =
∑
i

V (fi (Xi))+
∑
i

∑
j>i

V
(
fij
(
Xi, Xj

))
+ · · ·

+ V (f12...M (X1, X2, . . . , XM)) (7)

where V (fi (Xi)) = V (E (Y|Xi)) etc. If we express the ratio of
individual members of the decomposition (7) to the total variance,
Sobol’s first order sensitivity indices may be written in the form:

Si =
V (E (Y|Xi))

V (Y)
. (8a)

For users, the significance of Si is as follows: If the variability
Xi is successfully eliminated, the output quantity variance will
decrease by Si ·100% minimum. In [21], Sobol proposed an alternate
definition Si = corr (Y, E (Y|Xi)) based on the evaluation of the
correlation between output random variable Y and the conditional
random arithmetical mean E (Y|Xi). Analogously as (8a), we can
write the second order sensitivity indices:

Sij =
V
(
E
(
Y|Xi, Xj

))
V (Y)

− Si − Sj. (8b)

Other Sobol’s sensitivity indices enabling the quantification of
higher order interactions can be expressed similarly. With regard
to (3), the decomposition of Sobol’s sensitivity indices can be
written in the form:∑

i

Si +
∑
i

∑
j>i

Sij +
∑
i

∑
j>i

∑
k>j

Sijk + · · · + S123...M = 1. (9)

3. Sensitivity analysis of load-carrying capacity

Let us now apply the Sobol’s decomposition to the analysis of
the load-carrying capacity of a steel strut of profile IPE220, see
Fig. 1.

Let initial deflection of the column be assumed to be half sine
wave with the amplitude e0, as shown in Fig. 1.

y0 = e0 sin
(
π · x

L

)
. (10)

The resulting shape of the strut under load action F (see Fig. 1) is
given by the differential equation

d2y

dx2 +
F (y+ y0)

E · Iz
= 0 (11)
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R = −

√
A2 · Q2 + 2 · A · Fcr ·W ·z

(
|e0| · Fcr − fy ·Wz

)
+ F2

cr ·W
2
z − A · Q − Fcr ·Wz

2 ·Wz

Box I.
Fig. 1. Buckling of the member with IPE cross-section.

where Iz is the second moment of area to axis Z (axis perpendicular
to flange around which the section bends during buckling). After
substituting for y0 from (10), and considering the boundary
conditions (x = 0; y+ y0 = 0 and x = L; y+ y0 = 0), the solution is
obtained:

y =
e0

F
Fcr
− 1
· sin

(
π · x

L

)
(12)

where Fcr is Euler’s critical load. The column deflection at mid-
length x = L/2 [23] is:

e = e0 +
e0

F
Fcr
− 1
=

e0

1− F
Fcr

. (13)

The maximum stress σmax due to the combination of the axial
uniform stress and the bending stress is:

σmax =
R

A
+

R · |e|

Wz
= fy. (14)

Load-carrying capacity R is maximum load action F of elastic
member (σmax is equal to yield strength fy). R can be evaluated from
(14) with used (13):

σmax =
R

A
+

R · |e0|

(1− R/Fcr) ·Wz
= fy ⇒ R (15)

where A is the sectional area, Wz is the sectional module to axis
Z. The model uncertainty factor as proposed in [27] has been
neglected. By the solution (15), we can obtain the load-carrying
capacity R in the form as given in Box I:

Q = |e0| · Fcr + fy ·Wz (16a)

A = 2 · t2 · b+ (h− 2t2) · t1 (16b)

Fcr = π
2EIz/

(
L2
)

(16c)

Iz =
(

2 · t2 · b3
+ (h− 2t2) · t3

1

)
/12 (16d)

Wz = Iz/ (b/2) . (16e)

E is the Young’s modulus, L is the strut length, h is the sectional
height, b is the sectional width, t1 is the web thickness and t2 is the
flange thickness. Input random variables are listed in Table 1. The
input variables are fully uncorrelated.

Fully uncorrelated input variables represent one of precondi-
tions for the application of Sobol’s sensitivity analysis. However,
initial imperfections may generally be considered as random fields,
e.g. in [5,14]. How can we proceed when it is necessary to use the
correlated input factors? The useful strategy to circumvent the use
of correlated samples in sensitivity analysis can be illustrated by an
example in [16]. Instead of entering X1 and X2 as correlated factors
Table 1
Input random quantities

Symbol Density Mean value Standard deviation

1. h Histogram 220.22 mm 0.9746 mm
2. b Histogram 111.48 mm 1.0930 mm
3. t1 Histogram 6.2245 mm 0.2467 mm
4. t2 Histogram 9.1356 mm 0.4214 mm
5. fy Histogram 297.3 MPa 16.8 MPa
6. E Gauss 210 GPa 12.6 GPa
7. e0 Gauss 0 0.76533 L

Fig. 2. Sobol’s indices Si versus λ.

one can enter X1 and X3, where X3 represents a factor describing
noise, and model X2 is a function of X1 and X3. It is necessary to
note that dependence and correlation are not synonymous. A cor-
relation implies dependence, while the opposite is not true. Depen-
dencies described via correlations are useful for practical numeri-
cal computations [16].

Statistical characteristics h, b, t1, t2, fy were considered as his-
tograms according to results of physical experimental research [9].
Statistical characteristics of Young’s modulus E were considered
according to [1,18]. The standard deviation of the Gaussian distri-
bution of density function of the amplitude of initial curvature e0
has been considered based on the assumption that 95% of the re-
alizations of this random variable are found within the tolerance
limit ±0.15% L of standard [26], where the strut length L is a com-
putational parameter.

The dependence of Sobol’s sensitivity indices Si of the first
order on dimensionless slenderness λ = L/ (iz · 93.9) [25] is
depicted in Fig. 2, where iz = 24.8 mm is the nominal value of
the radius of gyration of profile IPE220. The sensitivity indices Si
were evaluated from the basic definition (8a) utilizing the Monte
Carlo method. The conditional random arithmetical mean E (Y|Xi)
was evaluated for N = 100 000 simulation runs; the variance
V (E (Y|Xi)) was calculated forN = 100 000 simulation runs, as well,
i.e. the numerically demanding difficulty of the calculation is N2.
In practice, the procedure is such that indices Si were evaluated for
strut length L, which was parametrically increased from zero with
the step ∆L = 0.094 m.

All variables in Table 1 apart from the amplitude of initial
curvature e0 with standard deviation σe0, which was determined
according to the tolerance standards [26], were determined
experimentally. The dependence of Sobol’s sensitivity indices Si
of the first order on the standard deviation σe0 of amplitude
e0 of strut length L = 2.35 m is depicted in Fig. 3. The grey
background emphasises the interval (±0.1% L;±0.2% L), where we
can expect the standard deviation that would be obtained, with
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Fig. 3. Sobol’s indices Si versus σe0 .

Fig. 4. Sobol’s first order sensitivity indices for λ = 1.0.

the highest probability, from measurements on real struts. The
inequality 0.98 <

∑
i Si < 1 indicates the presence of weak higher

interactions for all analysed slenderness.
Sensitivity indices Si for slenderness λ = 1.0 are depicted in

Fig. 4. The sum of all coefficients Si is 100% ·
∑

i Si ≈ 98.2%, i.e. 1.8%
accounts for higher order interactions Sij, Sijk etc.

4. Conclusion

It is evident from results depicted in Fig. 2 that for struts of
slenderness λ ≤ 0.47, the dominant variable is the yield strength
fy. If the strut slenderness is equal to zero, it presents the case
of simple compression where the load-carrying capacity R = fy ·
A is dependent only on the values of the yield strength and of
those of sectional area. For λ = 0, the sensitivity coefficient of
yield strength is Sf y = 0.75, and since the interactions of higher
orders are very small the sensitivity index of sectional area may be
considered approximately equal to SA ≈ 1 − 0.75 = 0.25, where
the flange thickness St2 = 0.185 and the web thickness St1 = 0.055
are of dominant influence, see Fig. 2.

Initial strut axial curvature (represented by the amplitude e0)
is the dominant variable for slenderness λ = 〈0.47; 1.67〉. The
maximum sensitivity index max Se0 = 0.82 arises for λ =
0.88. Young’s modulus E is the dominant variable for slenderness
λ > 1.67. Another important variable among the geometric
characteristics is the flange thickness t2. The load-carrying capacity
is equal to the Euler critical force in the limit case λ = ∞ (or e0 =

0), i.e. it is dependent only on variables E, t2, b, which represent the
input variables for the evaluation of stiffness preventing buckling
EIz. Values of sensitivity indices of variables E, t2, b increase most
rapidly for λ ≈ 1.0, whereas the sensitivity index of the amplitude
e0 decreases most rapidly. The sensitivity index of yield strength
decreases practically to zero for λ ≈ 1.2. For λ ≈ 1.3, the
sensitivity index of e0 is equal to 0.5, and thus the sum of sensitivity
indices of variables E, t2, b is approximately equal to 0.5. In the case
of higher slenderness, variables E, t2, b have a dominant influence
on the load-carrying capacity.

It is important to note that the influence of residual stresses
was neglected during evaluation. From the differentiation of curves
of normative buckling resistance a, b, c, d of standard EC3 [25],
the curves differ most for λ = 0.83, if the influence of residual
stresses is taken into consideration. A more elaborate description
of the influence of this structural imperfection would require
utilization of thin-walled finite elements to model the strut,
and the evaluation of the load-carrying capacity applying the
geometric non-linear solution; however, it is practically impossible
in connection with the numerically demanding evaluation of
Sobol’s sensitivity indices.

This problem can be solved by applying numerical methods
such as the “response surface” where the approximating function
should be sufficiently detailed and number of approximation
points sufficiently high to enable the description of higher
order interactions. The influence of residual stresses can be
taken into account in (15) by increasing the absolute value
of geometric imperfection of amplitude e0. This assumption,
however, may not be sufficiently apposite for an elaborate
sensitivity analysis utilizing Sobol’s sensitivity analysis as pointed
out by the sensitivity analysis of the load-carrying capacity
worked out according to (9), where the Spearman correlation
coefficients of residual stress and of amplitude e0 corresponded
only approximately.

Input random imperfections may be divided into two basic
groups [4]. The first group includes those variables the statistical
characteristics of which can be positively influenced in production
(yield strength, geometric characteristics, residual stress) and
those that are not sufficiently sensitive to changes in production
technology (e.g. variability of Young’s modulus E). The first group
of variables may be further divided into two subgroups: (i)
variables for which mean value and standard deviation can be
changed by improvement of production quality [4]. Examples
include Young’s modulus; (ii) variables, the mean value of which
cannot be significantly changed, because it should approximately
correspond to the nominal value (geometric characteristics of
profile dimensions).

Significant variables in this regard include yield strength,
initial axial strut curvature and flange thickness t2. Decrease in
the variability of these variables can be achieved by change in
production technology. Decrease of the variability of yield strength
fy is recommended especially for struts with lower dimensionless
slenderness.

The sensitivity analysis enables us to identify significant
processes and phenomena which influence the reliability of load-
carrying structures during service life, and therefore it can be
applied to the development of knowledge of real behaviour and
limit states [3,24]. At present, the Sobol’s sensitivity analysis is
one of the most carefully formulated and most coherent concepts
which can be applied to the analysis of the majority of stability
problems [6,7,14]. It is necessary to try and develop experimental
methods aimed at the objectivization of knowledge of the real
structure behaviour, and at the verification of theoretical models
in relation to definitions of limit states.
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