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a b s t r a c t

The present paper applies Sobol's variance-based global sensitivity analysis (SSA) to quan-

tify the contribution of input imperfections to the load-carrying capacity (LCC) of an IPN 200

steel compressed member. LCC is evaluated using the geometrically and materially non-

linear finite element solution with regard to the effects of initial random imperfections

including residual stresses. Comparison of results of SSA for (i) buckling about the minor

principal axis, (ii) buckling about the major principal axis and (iii) lateral–torsional buckling

due to bending moment is performed on the non-dimensional slenderness interval of 0–2.

SSA for (i) and (ii) is performed for steel grade (a) S235 and (b) S355, SSA for (iii) is performed

only for steel grade S235. SSA found similarities in results (ia) and (ib), (iia) and (iib) and

identified significant differences between results (ia) and (iiia), (iia) and (iiia), where sensi-

tivity to the initial axial curvature is more than two times higher in (ia) than in (iiia). The

relationships between the effects of initial imperfections on LCC and the design criteria of

reliability of Eurocode 3 are discussed.

© 2018 Politechnika Wrocławska. Published by Elsevier Sp. z o.o. All rights reserved.
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1. Introduction

Initial geometric and material imperfections including residu-
al stresses influence the reliability of load bearing steel
members, which are subjected to compression or strong axial
bending and compression associated with other action effects
[1]. In probabilistic modelling, initial imperfections are treated
as random variables, see e.g. [2,3]. The basis of probabilistic
modelling is the stochastic computational model, whose
inputs are random imperfections and output is a random
variable, which is crucial for the assessment of adverse
phenomena [4,5].
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Adverse effects inherent in structural design are usually
associated with the attainment of any of the limit states [6,7]
established in standards [8,9], during which the structure or a
part of the structure no longer satisfies requirements, see e.g.
[10–12]. Probabilistic structural design is a decision problem
[13,14] added to probabilistic structural analysis [15], in which
the probabilities of the limit states primarily serve as
indicators of safety and reliability [16].

In terms of safety and reliability of steel load bearing
structures, the most important variable is the load-carrying
capacity (LCC), which can be studied using statistical analysis,
e.g. [17], probabilistic analysis, e.g. [18] and sensitivity analysis,
e.g. [19–21]. Sensitivity analysis (SA) is a measure of the
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Fig. 1 – (a) Scheme of the compressed member, (b) real cross-
section, (c) idealized cross-section.
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importance of input variables [15] and can help researchers
understand ‘‘how uncertainty in the output of a model
(numerical or otherwise) can be apportioned to different
sources of uncertainty in the model input’’ [22].

The technique of SA is as old as that of differential calculus
[15]. Various SA approaches are currently being applied in
various sub-fields of the civil engineering field [23–25], see also
reviews about SA [26–28]. Extensive development of SA and its
applications occurred after Sobol's publication of the method
based on the decomposition of the output variance [29,30].
Sobol sensitivity analysis (SSA) is referred to as global, because
it can quantify the influence of input variables on the model
output over the entire range of the distribution and provide the
interaction effects between different input variables [31].
Examples of the increasing number of applications of SSA in
engineering can be found in [32–37]. Recently there has been a
development of new methods of SA based on SSA, for example,
the so-called Goal Oriented SA [38] or SA for the measure of the
effects of input variables on the structural failure [39].

The aim ofthepresentpaper is theSSA [29–31] oftheeffects of
random imperfections on the random LCC of a compressed
member with IPN 200 section. LCC is evaluated using the
geometric and material non-linear finite element (FE) analysis.
Experimental research provides important information on the
random variability of initial imperfections of steel members like
the yield strength [40–46], geometric deviations in dimensions of
the cross-section [41,45], residual stress [47,48], member out-of-
straightness [49] and frame out-of-plumb imperfections [50].

In stochastic models, the random realizations of input
initial imperfections are simulated using the Monte Carlo
method or some form of stratified sampling like Latin
Hypercube Sampling (LHS) [51,52]. The realizations of output
LCC are then obtained as runs of the non-linear FE model, see
e.g. [53,54]. The disadvantage of non-linear FE models is the
high computational burden of each run. Therefore, SSA is
evaluated in the present article using an approach that
approximates the dependence between initial imperfections
and LCC using a polynomial metamodel, which is often
referred to as a polynomial surrogate model or emulator or
approximation model, see e.g. [55–57]. The developed surro-
gate model replaces the computational expensive full model
based on FEM. This approach makes it possible to use a high
number of samples of the LHS method and repeat SSA using
the step-by-step method for a range of slenderness (lengths) of
compressed member IPN 200.

The present study and [54] partially overlap with regard to
the non-linear FE model and its random imperfections,
however, new results of SSA of LCC of an imperfect
compressed member made form steel grades S235 and S355
are presented in the present article. The obtained results are
compared with [54]. In order to compare the results of both
stability problems, the same IPN 200 section is considered.

It should be noted that the IPN-section is not a representa-
tive rolled section for columns, which are more often made
from hot-rolled H-sections instead of I-sections. However, the
results of SSA pertaining to flexural buckling (FB) can partially
be generalized to other narrow flange section members
subjected to compression. This is discussed in the conclusion
of the present article. In contrast, SSA showed that com-
pressed members (columns) fail due to different combinations
of imperfections than beams in bending. I members subjected
to combined compression and bending are not studied in the
present paper.

2. Finite element model

The computational model is a column pinned at both ends,
which is loaded centrically at one end, see Fig. 1a. The column
consists of a double symmetrical rolled European steel cross-
section IPN 200. The geometry of the member was slightly
simplified and idealized by removing the fillets on the inner
sides of the flanges and at the flange-to-web connections in
order to maintain regularity of the mesh. Their influence is
negligible acc. to [58]. The original and idealized cross-sections
are shown in Fig. 1b and c.

The computational model was created using the software
Ansys APDL [59]. The SOLID185 element was used for the
model. It is a 8-node homogeneous structural solid element
that is suitable for 3D modelling of solid structures. It has large
deflection and large strain capabilities, plasticity, hyperelas-
ticity, stress stiffening and creep. The enhanced strain
formulation was considered. This formulation prevents shear



a r c h i v e s o f c i v i l a n d m e c h a n i c a l e n g i n e e r i n g 1 8 ( 2 0 1 8 ) 1 2 0 7 – 1 2 1 8 1209
locking in bending-dominated problems and volumetric
locking in nearly incompressible cases. The element intro-
duces nine internal degrees of freedom to handle shear
locking, and four internal degrees of freedom to handle
volumetric locking. All internal degrees of freedom are
introduced automatically at the element level and condensed
out during the solution phase of the analysis [59].

2.1. Initial imperfections

Initial geometrical imperfection of the column is considered in
the shape of a half-sine wave function in the direction
perpendicular to the cross-section axis around which bending
due to buckling occurs:

y ¼ e0sin
px
L

� �
; (1)

where L is the column length and e0 is the amplitude of initial
axial curvature (bow imperfection), which is related to the
center of gravity of the cross-section in the middle of the span.
This imperfection corresponds to the first eigenmode of beam
FB, which is consistent with [60], see also [61].

Initial geometric imperfections are usually introduced as
scaled eigenmodes obtained a priori from an elastic buckling
analysis, see e.g. [5]. In the present article, the model is created
on the basis of Eq. (1), which facilitates modelling using the
finite element method. In the case of FB about axis z (FBz), the
introduction of bow imperfection can be described as follows:
It is possible to derive the coordinates of any point of the beam
based on the distance of the center of gravity of the cross-
section in the direction of the x-axis from the origin of the
coordinate system x1, cross-sectional dimensions and the
amplitude of initial curvature e0, see Fig. 2. The coordinates can
then be written in the form of (2):
Fig. 2 – Local coordinate syst

Fig. 3 – Local coordinate system of the cross-section. 
x ¼ x1�y0sin’;

y ¼ y0cos’ þ e0sin
p x1
L

� �
;

z ¼ z0;
(2)

where w is the angle of rotation of the cross-section about the z-
axis given in the form of (3):

’ ¼ arctan e0
p

L
cos

px1
L

� �h i
; ’ 2 h�arctan e0

p

L

� �
; arctan e0

p

L

� �
i:
(3)

Coordinates y0 and z0 are coordinates of an arbitrary point
of the cross-section acc. to the scheme in Fig. 3, relative to the
local coordinate system of cross-section y*–z*, where y*, z* are
principal axes with origin at the center of gravity of the cross-
section. The bow imperfection for FB about y-axis (FBy) was
introduced analogously.

2.2. FE mesh

Meshing of the cross-section was performed with 10 elements
on the flange width, 20 elements on the web height and 2
elements on the web and flange thickness, see Fig. 4. The
number of finite elements presents a compromise between the
acceptable accuracy and computation time. Two elements on
the cross-section thickness may appear to be small, since
there is a suspicion that with an 8-node solid element with
only three degrees of freedom (dof) in each node, the element
might behave poorly in plasticity analysis, because it can only
model something corresponding to a constant stress state.
Different variants with finer mesh were tested, but had
relatively little effect on the accuracy of the LCC [62]. Two
values of non-dimensional slenderness, lz ¼ ð0:5; 0:8Þ, were
considered. In comparison to the mesh applied here, smooth
mesh in [62] provides a higher mean value of LCC, but only in
em of the cross-section.

Fig. 4 – Cross-section mesh.
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the order of hundreds of percents. The correlation between
LCC of a rough and a smooth mesh is almost 1.0 [62]. More
elements per thickness led to slightly different stress curves,
but had virtually no effect on the resulting resistance.
According to [59] the aspect ratio for quadrilaterals should
not exceed 20; otherwise, disturbance of analysis results may
occur. For this reason, the number of elements per column
length was chosen so that the maximum ratio of the longest to
the shortest side of the hexahedral of the element was 8. The
number of elements per column length is thus linearly
dependent on the length of the column. A similar meshing
has proven successful in models of beams subjected to
bending [54,63]. The FE model with initial imperfection (1)
for FBz is shown in Fig. 5.

2.3. Boundary conditions and load

Boundary conditions are introduced for FBz and FBy. For case
FBz boundary conditions are introduced on all the nodes in the
axes of the web of both end cross-sections, see Fig. 6.

For case FBy translation in the direction of the y-axis (uy = 0)
is restricted along the whole length of the member in the axial
connections between the web and flanges, see Fig. 7. Further-
more, translation of all nodes lying directly on the y-axis is
prevented in the direction of axes x and z (ux = uz = 0) at one
end of the beam (x = 0). On the other end (x = L) translation is
only restricted in the direction of the z-axis, since load is
applied here in the direction of the x-axis.

The boundary conditions simulated on both ends, illus-
trated in Figs. 6 and 7 for x = 0 and x = L, restrict twist rotation
and translations along the principal axes of the section. It
should be noted that the warping profile along the flanges in
this modelling approach does not comply with the assump-
Fig. 5 – FE model in Ansys.

Fig. 6 – Boundary conditions for FBz.
tions used in the beam theory of thin-walled members of open
cross-sections.

The load is introduced via a force block at the axial nodes of
the web of the end cross-section x = L, see Fig. 8. The end
sections are modelled in such a way that failure does not occur
in the artificial elastic material and the modelled ends of the
compressed member are not the limiting factors for the LCC. In
order to prevent punching shear on both ends of the
compressed member due to stress concentration, the first
set of elements behind the end cross-sections are assigned
linear elastic material with 100 times higher modulus of
elasticity than the adjacent material.

Although such modelling has some differences form the
assumptions used in the beam theory of thin-walled open
section members, it provides almost identical load-deflection
Fig. 7 – Boundary conditions for FBy.

Fig. 8 – Application of force block.
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curves in the elastic state. The accuracy of the model was
verified by comparing the results of the elastic LCC with the
analytical LCC [64], where an almost complete agreement was
observed.

2.4. Material model

An elastoplastic material model acc. to ENV 1993-1-5 (Annex
C), case b was used. This standard permits the use of a stress–
strain diagram with non-zero hardening slope to overcome
numerical instability. The value of E/10000 was selected for the
model, see Fig. 9.

2.5. Residual stress

The buckling capacity is influenced by the residual stress in the
member. The temperature dependent production process of
rolled sections results in the residual stress distribution in the
cross-section and along the length of the section product.
These include the rolling temperature, cooling conditions,
straightening procedures, and the material properties of the
steel [1]. Literature provides many suggestions for the
modelling of residual stress in FE-analysis [47,65]. The
commonly used residual stress pattern for rolled I sections
is the linear stress pattern, see Fig. 10. This pattern was used
for the analyses performed in this paper.

The results of numerical simulations found in most
references refer the magnitude of residual stresses to either
the material yield strength [58,61] or to the nominal stress of fy,
n = 235 MPa, see Fig. 10. Experimental research of residual
stress in hot-rolled sections of similar shapes produced from
different steel grades show that the distribution and magni-
tude of residual stress are very similar [1,61]. Generally, the
residual stress of hot-rolled steel I-beams should not refer to
the yield strength without specifying the steel grade and the
cross-sectional shape, see the discussion and literature review
in [61].

Residual stress distribution of the beam sR is introduced
into the FE model in the form of equivalent temperate load
through initial thermal load step in the manner described in
[54,61,63]. The stiffer elastic material of the end sections of the
model presented here results in an inconsistency of the final
residual stress block at the points of the rolled section ends,
see Fig. 11. This inconsistency has no effect on LCC, because
the simplified assumption of constant residual stress block
along the rolled product length (parent material) is maintained
and plasticization starts at x = L/2. The rolled section ends are
modelled using elastic, one hundred times stiffer blocks in
Fig. 9 – Stress–strain diagram.
which failure due to plasticization cannot occur. There is a
slight inconsistency of the final stress block in the adjacent
touching parent material, however, it is not a factor that would
influence the LCC. The correctness of the LCC calculation was
verified on compressed column models with artificial end
zones (higher modulus of elasticity, higher yield strength)
extending up to L/4 from the ends of the columns [66].

Temperature change DT at a point of the cross-section is
given by Eq. (4):

DT ¼ � sR

E�at
(4)

where sR is the residual stress at the given point and at is the
thermal expansion coefficient, considered as at = 1.2E�5 [K�1].
The distribution of the longitudinal stress sx resulting from
temperature change DT is shown in Fig. 11. �sR is attained at
the end of the flanges and at the centre of the web (blue) while
approximately 0.8sR (red) is in the flange-to-web connection.

2.6. Load-carrying capacity

The LCC of the column was evaluated using the geometrical
and material non-linear solution with imperfections, includ-
ing residual stresses. During loading of the column with
displacement in the direction of its longitudinal axis, the force
reaction Rx is obtained at the other end. The total LCC is
defined by the peak of the curve, see Fig. 12.

2.7. Verification of modeling within the elastic range

The modeling described above was verified within the elastic
range for lz ¼ 0:4; 0:5; . . .; 1:6 [67]. The stochastic comparison of
the elastic LCCE calculated using the FE model described above
Fig. 10 – Application of linear temperature change DT.



Fig. 11 – Distribution of residual stress initiated by DT.

Fig. 12 – Defining the LCC using the force reaction graph.
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(but without residual stress and linear stress–strain relation-
ship), and the formula for elastic resistance R based on beam
theory published in [64] is provided in [67]. The maximum
average relative difference between the R and LCCE is
calculated for lz ¼ 0:4 as 1.23%. The correlation between
results is almost 1.0 for each slenderness. Such a good match
confirms the accuracy of the finite element model within
elastic range. Unfortunately, LCC from Fig. 12 was not verified
by inelastic analytical solution.

3. Input random imperfections

The columns studied in the present article are produced from
carbon steel grades S235 and S355. The yield strength of steel
S235 is a random variable whose statistical characteristics
were evaluated from 562 samples taken from a third of flanges
of hot-rolled European steel members IPE 160 to IPE 220 [41].
The mean value of 297.3 MPa and standard deviation of
16.8 MPa were considered, see Table 1. The probabilistic model
Table 1 – Probabilistic models of input imperfections.

Symbol Characteristic Densit

t2 Flange thickness Gauss
fy Yield strength S235 Gauss

Yield strength S355 Gauss
E Modulus of elasticity Gauss
e0 Initial imperfection Gauss
sR Residual stress Gauss
is based on the assumption that the yield stress statistics
obtained for IPE sections are also representative for IPN
sections. From the technical point of view, the production
processes of steel members IPN 200 and IPE 160 to IPE 220 are
very similar. The same statistical characteristics of yield
strength can be introduced for different types of hot-rolled
members of similar dimensions if more accurate data is
unavailable [16]. This was applied, for e.g. in [2,68].

It may be noted that the variation coefficient 16.8/
297.3 = 0.0565 is lower than the value of 0.07 listed in
probabilistic model [16] in the section Static Properties of
Structural Steel-Rolled Sections.

Table 1 lists the statistical characteristics of yield strength
of steel S355 taken from [46], where the mean value 393.8 MPa
and standard deviation 22 MPa were evaluated from measure-
ments of ten steel sheets. The statistical characteristics [46] are
in very good agreement with our measurements from 2001,
when the mean value of 394.5 MPa and standard deviation of
19.808 MPa were obtained from the examination of yield
strength performed on 243 samples of European hot-rolled
steel members U65 to U140 [43]. It may be noted that mean
values of 393.8 MPa and 394.5 MPa are almost identical and
standard deviation values of 22 MPa and 19.808 MPa differ by
approximately 10 percent. The experimentally obtained
variation coefficients 22/293.8 = 0.0559 [46] and 19.808/
294.5 = 0.0502 [43] are lower than the value of 0.07 recom-
mended in [16].

The statistical characteristics of Young's modulus E are
taken from [69]. E is considered with mean value of 210 GPa
and standard deviation of 10 GPa so as to ensure consistency
and comparability with previous studies [34,54,63]. Recent
research [70], supported by literature review of 12 sources from
the year 1929 to 2002, lists the mean value of 208 GPa and
standard deviation of 5.2 GPa obtained from the evaluation of
more than 2200 samples. The article [70] draws attention to
interesting differences in the statistics of E of steel S235 (S355)
y Mean Standard deviation

 11.3 mm 0.518 mm
 297.3 MPa 16.8 MPa
 393.8 MPa 22 MPa
 210 GPa 10 GPa
 0 L/1960
 90 MPa 18 MPa
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published in [71], which lists the mean value of 205.5 GPa
(209.2 GPa) and standard deviation of 7 GPa (5.4 GPa) from the
evaluation of 278 samples of steel S235 (77 samples of steel
S355).

The statistical characteristics of flange thickness are
considered according to the results of experimental research
[45]. The flange tapering (angle of inclination), flange width
and other geometric imperfections of the cross-section are
considered as deterministic using nominal characteristics.
The residual stress at the end of the flanges (see Fig. 11) is
considered with the mean value of 90 MPa and variation
coefficient 0.2 [47]. The mean value of e0 is zero and standard
deviation L/1960 is proportional to the length L so that 95% of
observations (LHS runs) of amplitude e0 lie in the tolerance
limits � L/1000, see e.g. [58,61]. All input random geometric
and material imperfections are listed in Table 1.

4. Establishment of a polynomial surrogate
model

The relationships between information flowing in and out of
the model are often analysed using strategies based on
random samples [31]. Unfortunately, the computational
burden of the FE model does not permit collection of sufficient
LHS runs for real-time SSA evaluation. Therefore, LCC, which
is the output of the non-linear FE model, is approximated
using a surrogate model (5)

LCC�Y ¼
X2

a¼0

X2

b¼0

X2

c¼0

X2

d¼0

X2

e¼0

ca�Xa
1�Xb

2�Xc
3�Xd

4�Xe
5 (5)

Polynomial (5) allows the rapid realization of samples
without loss of non-linear and interaction effects of input
imperfections on the LCC. Polynomial (5) has 243 terms with
243 associated constants ca obtained using the least squares
method with 300 + 100 support points, which are stratified
using the LHS method [51,52]. The first 300 LHS runs of the FE
model are performed for the artificial random variables X1,
X2, . . ., X5 in Table 2. The standard deviations in Table 2 are
higher than the actual imperfection in Table 1. The reason for
introducing higher (artificial) standard deviations is to provide
a sufficiently wide domain for approximation (5), which would
make it possible to use large numbers of LHS runs in SSA. The
other 100 support points of the FE model are realized for (real)
probabilistic models of imperfections in Table 1 with settings
of the absolute value for each random realization e0. The
approximation domain of the polynomial (5) is defined by the
Table 2 – Artificial random variables for approximation.

Symbol Characteristic De

X1 Flange thickness Recta
X2 Yield strength S235 Recta

Yield strength S355 Recta
X3 Modulus of elasticity Recta
X4 Initial imperfection Recta
X5 Residual stress Recta
minimum and maximum in Table 2 to enable the evaluation of
up to 500 thousand LHS runs of random inputs from Table 1.

5. Sobol global sensitivity analysis of LCC

Sobol's method [29,30] is a global sensitivity analysis method,
which is based on the principle of variance decomposition, see
e.g. [31]. SSA determines the fractional contribution of input
factors to the variance of the model output based on a measure
of importance [31]. Given a model in the form Y = f(X1, X2, . . .,
XM), where Y is a scalar output and Xi are M independent input
factors of non-zero variance, the first-order sensitivity index Si
may be defined as [72]:

Si ¼
VXi

EX� i
Y Xijð Þ� �

V Yð Þ (6)

where Xi is the ith factor and X�i denotes the matrix of all
factors but Xi. The variance in the numerator of (6) is the
expected reduction in the variance of the model output corre-
sponding to the fixing of Xi. The variance V(Y) in the denomi-
nator of (6) is the total (unconditioned) variance. The second-
order sensitivity index Sij can be written as:

Sij ¼
VXiXj

EX� ij
Y Xi; Xj

��� �� �

V Yð Þ (7)

where Xj is the jth factor and X�ij denotes the matrix of all
factors but Xi, Xj; and so on for higher order indices. The total
number of Sobol indices is 2M � 1. The sum of all Sobol indices
is equal to one.

X
i

Si þ
X
i

X
j > i

Sij þ
X
i

X
j > i

X
k > j

Sijk þ � � � þ S123...M ¼ 1 (8)

Relations for the second and higher order indices hold if the
input factors are independent, which is the setting adopted
throughout the present work. The method for numerical
calculation (6) based on the LHS method was practically
described e.g. in [73].

In the study presented here, SSA is performed using the
polynomial approximation of the model output Y (5). The
sensitivity indices are evaluated using the LHS approach from
the pdfs in Table 1. Computation of VXi

has the computational
burden of ten thousand samples of EX� i

Y Xijð Þ, where one
sample of EX� i

Y Xijð Þ is computed using ten thousand indepen-
dent runs. The total computational cost for the evaluation of
the numerator (6) is 10,0002 runs. The denominator in (6) is
nsity Minimum Maximum

ngular 8.83 mm 13.77 mm
ngular 217.43 MPa 377.17 MPa
ngular 289.21 MPa 498.39 MPa
ngular 162.46 GPa 257.54 GPa
ngular 0 4.76 L/1960
ngular 0 MPa 180 MPa



Table 3 – Member length L vs. non-dimensional slenderness.

Buckling Steel Function Domain

About axis z S235 L�1:78�lÅz lÅz 2 h0; 1i
About axis z S355 L�1:44�lÅz lÅz 2 h0; 1i
About axis y S235 L�7:51�lÅy lÅy 2 h0; 1i
About axis y S355 L�6:11�lÅy lÅy 2 h0; 1i
LTB S235 L�2:04�lÅLT�0:4�lÅ2LT þ 1:63�lÅ3LT�0:3�lÅ4LT lÅLT 2 h0; 2i
Where unit of L is [m] and units of lÅz; lÅz; lÅLT are non-dimensionals.

Fig. 13 – SSA of LCC – FBz.

Fig. 14 – SSA of LCC – FBy.

Fig. 15 – Si from FBz vs. Si from LTB [54].
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evaluated from 500 thousand LHS runs, which is a relatively low
computational burden. The mentioned number of runs is used
for the evaluation of each of the 25 � 1 = 31 sensitivity indices.

6. Sensitivity analysis results

Non-dimensional slenderness lz and ly defined in [74] were
considered as deterministic parameters, which were changed
using the step-by-step method with the step of 0.01. The
values of L for the IPN 200 member can be approximately
calculated using the relations in Table 3.
There are two main SSA result groups, which are very
similar in buckling tasks. The first group associates indices Si of
FBz, see Fig. 13. The second group associates Si of FBy, see
Fig. 14. In each group, SSA results for two steel grades S235 and
S355 are similar with the exception of the influence of residual
stress, which is more significant in steel S235, and the
influence of yield strength, which is more significant in steel
S355.

Greater differences are evident from the comparison of
Figs. 13 and 14. There is higher sensitivity to e0, sR, t2 and on the
contrary, lower sensitivity to E and fy in Fig. 13. Indices Si are
the same if l ¼ 0. It is interesting that (i) the green curve Sfy in
Fig. 13 (S355, FBz) is the same as (ii) the black curve Sfy in Fig. 14
(S235, FBy). The overlap Sfy (i) and (ii) does not mean the same
for Si of the other imperfections, where for l < 0:9 we observe
higher values of St2 and SsR and lower values of Se0 for S355 in
Fig. 13 (green curve) in comparison with St2, SsR and Se0 shown
for S235 in Fig. 14 (black curve).

Fig. 15 shows the comparison of indices Si from Fig. 13 with
Si determined for hot-rolled steel beam IPN 200 subjected to
lateral–torsional buckling (LTB) due to bending moment about
the major principal axis, see [54] Fig. 19. The present study and
[54] are based on a similar FE model and use the same pdfs of t2,
fy, E, e0, sR. However, different loads and different stability
phenomena are considered in the evaluation of the LCC. It is
apparent from Fig. 15 that the LCC of the compressed column
is more than twice more sensitive to the initial imperfection e0,
which is an unexpectedly big difference. For the increasing
part of the curve Se0 it holds that the ratio of the black Se0 (FBz)
to red Se0 (LTB) is constant at approximately 2.34, i.e. the



Fig. 16 – SSA of LCC – FBz. Fig. 17 – SSA of LCC – FBy.
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increasing part of the curve (approximately for l < 1:1) is
similar in shape, but has a different scale. For l < 1:1 LCC of the
compressed column is more sensitive to the variability of
residual stress, but for l > 1:1 SsR are practically identical. LCC
of a member under bending is more sensitive to the flange
thickness t2. The effects of fy, E are approximately the same in
both cases. Similar observations can be made from the
comparison of Fig. 15 (LTB) and Fig. 14 (S235), with the
difference that SsR are approximately equal and approximately
double the influence of E is apparent from Fig. 14.

Higher-order interactions are relatively small in compari-
son with, for e.g., SSA results of frame systems [73]. However,
they supplement the information on the overall effect of
imperfections on LCC. Figs. 16 and 17 show the values of the
largest second-order sensitivity indices, the remaining higher-
order sensitivity indices are lower and are not plotted. The
decisive second-order interaction is from the pairs E, e0 and fy,
e0. In all of the cases of slenderness solved here, fy is involved in
the higher-order interactions. This is the difference in
comparison with SSA of LTB [54], where interaction between
fy and other imperfections did not occur for lLT > 2:0.

Figs. 13, 14, 16 and 17 show that the results of SSA obtained
for S235 and S355 are very similar, therefore l is a good
common platform for the analysis of the ultimate limit state of
compressed columns.

In the presented tasks, SSA was performed for compressed
columns with l�2, higher slenderness was not examined. The
reason is that very slender columns are seldom designed in
building practice and SSA would require much more compu-
tation time than in the case of columns with intermediate
slenderness. However, the results of SSA showed that
imperfections e0 and fy may also be involved in higher-order
interactions for l > 2. From this perspective, it may be
interesting to examine the interactions between plasticity
and instability effects for higher slenderness values. The
question is: From what value of l will higher-order interac-
tions between fy and other imperfections disappear and the
calculation of LCC become totally insensitive to plastic
yielding? At the same time, it may be interesting to investigate
whether there exists such a value of l, which when exceeded
Se0 = 0 and all higher-order sensitivity indices involved in
interactions with e0 will be equal to zero. Answering these
questions may present a new link between the classical
solution based on Euler's critical force and the response of a
real imperfect column.
For elastic resistance determined from analytical statistical
models [34,64], it is typical that the sensitivity to e0 is maximum
for l�lLT�0:9. In contrast, the FE models presented here and in
[54] have shown that the maximum sensitivity to e0 occurs for
l�lLT�1:1, see Fig. 13 (presented here), Fig. 14 (presented here)
and Fig. 19 (presented in [54]). FE modelling in comparison to
conventional analytical approaches is capable of analysing the
effects of imperfection e0 and residual stress separately.
Maximum sensitivity to the residual stress occurs for lLT�0:9
in the case of LTB [54], which also applies to the results
presented here in Fig. 14 (FBy). However, this does not apply to
the results in Fig. 13 (FBz), which show that the maximum
sensitivity to residual stress occurs for l�0:8. However, from a
technical point of view, it is a relatively small difference.

7. Conclusion

SSA of LCC of columns of steel S235 and S355 yielded similar
results in the case of buckling about one axis y or z. This
conclusion applies to both first order sensitivity indices and
second order sensitivity indices. It confirms the validity of the
Eurocode 3 concept in which non-dimensional slenderness l is
introduced as a common platform for the determination of the
design buckling resistance.

The following conclusions can be drawn from the compari-
son of SSA of LCC pertinent to FBz with FBy:

- FBz is more sensitive than FBy to imperfection e0, flange
thickness t2, residual stress sR, see Figs. 13 and 14.

- FBy is more sensitive than FBz to Young's modulus E and
yield strength fy, see Figs. 13 and 14.

- FBz has maximum SsRwhen l ¼ 0:8 while FBy has maximum
SsR when l ¼ 0:9, see Figs. 13 and 14.

- Both FBz, FBy have maximum Se0 when l�1:1, see Figs. 13
and 14.

- FBz has the same curve Sfy for S355 as FBy Sfy for S235, see
Figs. 13 and 14.

- Both FBz, FBy have the same Siwhen l ¼ 0, see Figs. 13 and 14.
- Both FBz, FBy have identified dominant interaction of pairs E,
e0 and fy, e0 between all the other pairs, see Figs. 16 and 17.

- Eurocode introduces a more conservative buckling curve
(higher imperfection factor a) for FBz than for FBy. Taking
into account the results of SSA it can be concluded that
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higher sensitivity to e0, t2, sR found in FBz is taken into
account in Eurocode 3 by a higher value of imperfection
factor a. It can be noted that Eurocode 3 applies the
imperfection factor a only to the shape of the cross-section
and the axis of bending. The differences between FBz and
FBy identified here indicate other relevant circumstances
that may affect Eurocode 3 design criteria of reliability.

From the comparison of SSA of LCC pertinent to FBz with
LTB [54] we can observe two important differences:

- FBz is more than twice more sensitive to imperfection e0
than LTB, see Fig. 15.

- LTB is more sensitive to t2 than FBz, see Fig. 15.

The maximum sensitivity to e0 in elastoplastic FE models
occurs for higher non-dimensional slenderness (l�lLT�1:1) than
in elastic analytical models (l�lLT�0:9). The elastic resistance of
analytical models [34,64] is most sensitive to e0 for non-
dimensional slenderness 0.9, which is also the value for which
LCC of the FE model [54] is most sensitive to the residual stress.
The SSA results presented here corroborate the conclusions of
[54] on the possibilities of substituting the effect of residual stress
with the equivalent initial geometrical imperfection, which is
often introduced for design purposes in practice, see e.g. [75].

The maximum value Se0 for FBz is twice higher than the
maximum value Se0 for LTB, see Fig. 15. The reliability of
members with intermediate and higher slenderness subjected
to bending can be economically ensured, in particular by
reducing the random variability of t2 in production. On the
other hand, it would be most effective in the case of columns
under compression to reduce the random variability of e0,
which is technically and economically more demanding.

The yield strength is the dominant variable for steel
members with low slenderness. As was discussed in the
article, the variation coefficients of the yield strength of the
flanges of hot-rolled members of steel S235 and S355 obtained
from experimental research [41,43] are lower than the
conservative value of 0.07 recommended in [16].

The SSA presented here was applied to a specific member
with cross-section IPN 200. Although the IPN 200 section is not
a representative rolled section, the SSA results have clearly
shown the effects of initial imperfections of such a member,
whose principal second moments of area are relatively
different. According to our recent numerical experience, the
findings and conclusions presented here can be approximately
generalized and applied to other IPN and IPE hot-rolled (Class
1) section columns, whose cross-sections are close to IPN 200.
Similarities in SSA results were also found for FBy of H section
compression members with intermediate slenderness. How-
ever, there is a greater influence of sR and a smaller influence
of e0 in the case of FBz of H section members with intermediate
slenderness. This conclusion, however, needs to be verified
and supplemented by further studies.
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