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The presented paper deals with an analysis of the effects of random imperfections on the

load carrying capacity of a steel beam, which is subjected to the effects of lateral-torsional

buckling arising from equal and opposite end bending moments. The load carrying capacity

of a hot-rolled steel beam was analyzed in the analytical form. Histograms obtained from

experimental research were available for most imperfections. Realizations of the input

imperfections were computed using the Latin Hypercube Sampling method. Global sensi-

tivity analysis was used to identify those imperfections, whose variability has a dominant

effect on the load carrying capacity. Sensitivity analysis identified three continuous intervals

of beam slenderness in which the load carrying capacity is sensitive to different types of

imperfections. Reliability of design according to the EUROCODE 3 standard was verified by

performing the statistical analysis of the ultimate limit state.
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1. Introduction

I-beams are usually made of structural steel and are used in
construction and civil engineering [1]. An I-shaped section is a
very efficient form for carrying both bending and shear loads in
the plane of the web, but has low carrying capacity in the plane
associated with bending about its minor principal axis, and
is furthermore inefficient in carrying torsion [1]. I-beams
can thus be effectively used for carrying bending about their
major principal axis. The load carrying capacity of an I-beam
decreases with its increasing length (slenderness) due to
lateral-torsional buckling (LTB).
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The LTB behaviour of I-beams is very sensitive to
imperfections [2,3]. The methods for modelling imperfections
can be classified as deterministic or random [4]. Random
uncertainty of imperfections can be taken into account in
stochastic models using random variables or random fields
[5,6]. The thesis [5] studies very similar subject matter as the
presented paper, i.e. the effects of random imperfections on
the stability of steel structures. The thesis [5] presents on a
series of slender I-beams the simulation of buckling variability
combining advanced methods of nonlinear structural shell
finite elements and modern stochastic process theory. The
greater the complexity of the stochastic model, the more
information on input random imperfections is needed. At
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present, in the case of frame structures, we can encounter
problems focused on the modelling of initial geometric
imperfection using linear combinations of eigenmodes [7].
Works aimed at the global sensitivity analysis of the influence
of imperfections on limit states of structures occur rarely,
although imperfections may drastically reduce the theoretical
ultimate strength of perfect members.

The presented paper deals with the statistical and global
sensitivity analyses of the LTB reliability of a simply
supported hot-rolled steel European IPE 220 beam with initial
random imperfections. The beam IPE 220 has an I-shaped
cross-section, see Fig. 1 and [8–10]. Attainment of the limit
state (in general, occurrence of failure) cannot, due to
technical and economic reasons, be eliminated completely.
Structures are therefore designed so that the probability of
failure is minimal while the structure is still cost-effective.
There are two types of structural limit states. One is pertinent
to the load carrying capacity (ultimate limit state), and the
other to serviceability (serviceability limit state). In the
context of stability problems of steel structures, the load
carrying capacity is generally more important than the
structural serviceability, because it is related to ensuring
the structure safety against collapse.

The load carrying capacity is generally a random variable
that is dependent on input random material and geometric
imperfections. The load carrying capacity is most frequently
studied experimentally in a laboratory, while its random
properties are studied using numerical, stochastic models and
Fig. 1 – IPE cross-section.
with the aid of computers. The reliability required for steel
structures is obtained through design according to EN 1990 [11]
and EN 1993 (EUROCODE 3) [12]. According to [11], the design
load carrying capacity can be obtained as the lower quantile of
the random load carrying capacity, see, e.g. [13,14,8]. EURO-
CODE 3 lists the rule for evaluation of the design buckling
resistance moment using characteristic values of material
properties, nominal values of geometric characteristics, and
partial safety factors. The design reliability according to [12]
may be verified using the general principles for structural
design of civil engineering works given in [11].

The derivation of the close-form formula for the elastic
load carrying capacity of an imperfect IPE-beam loaded in
bending is performed in this article. The analysis stems from
the works of [15] and [16,17]. Imperfections are considered as
random variables according to the results of experimental
research [9,25]. The influence of random imperfections on
the ultimate limit state of slender beams is studied using
global sensitivity analysis (SA) [18] analogously as, e.g. in [19].
The imperfections, which have the greatest effect on
reliability and should thus be addressed in experiments
with the aim of the most precise determination of their
random variability, were determined applying SA. The
reliability of design according to [12] was verified using
statistical analysis of the ultimate limit state. Non-dimen-
sional beam slenderness lLT evaluated according to [12],
enabling a more general comparison of results, was consid-
ered as the analysis parameter.

2. Lateral-torsional buckling of straight beams

The first available theoretical work on LTB of solid rectangular
beams was published by Michell [20] and Prandtl [21]. Their
work was extended by Timoshenko [22,23] to include the effect
of warping torsion in IPE-beams.

For an idealized perfectly straight elastic IPE-beam, there
are no out-of-plane x-z deformations until the applied bending
moment M reaches the critical value Mcr and the beam buckles
by deflecting laterally and twisting, see Fig. 2. This case
represents a simple configuration, and buckling analysis leads
to a close-form solution [24].

The deflection v and twist angle w of the buckled shape can
be obtained from two differential equations:

EIz
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where E is Young's modulus of elasticity, G is shear modulus,
Iz is the second moment of area about axis z, Iv is warping
section constant, and It is torsion constant. The solution of
Eqs. (1) and (2) satisfying the boundary conditions at the
supports
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Fig. 2 – Buckling of simply supported IPE-beam.
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is given by the buckled shape with sinusoidal curvature

v ¼ McrL2

p2EIz
’ ¼ av;c sin

px
L

� �
(4)

where av,c is the indeterminate amplitude of deflection. Eq. (4)
satisfies equilibrium equations (1) and (2) when

Mcr ¼ p

ffiffiffiffiffiffiffiffiffiffiffiffiffi
EIzGIt

p
L

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ p2EIv
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s
(5)

This defines the elastic critical moment for LTB. The effect of
the major axis curvature is neglected in Eq. (5).

3. Deformation of beams with initial curvature
and twist

The elastic deformation of simply supported beams with
initial curvature v0 and twist w0 caused by equal and opposite
end bending moments M can be analyzed using the minor axis
bending and torsion equations, see, e.g. [15].
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þ Mð’ þ ’0Þ ¼ 0 (6)
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The initial curvature v0 and twist w0 were considered affine
to the buckled shape (4) as a sine function.

v0
av0

¼ ’0
a’0

¼ sin
px
L

� �
(8)

where av0 and a’0 are amplitudes of initial deflection and twist.
The solution of (6) and (7) satisfying boundary conditions (3) is
given by

v
av

¼ ’

a’
¼ sin

px
L

� �
(9)

where av and aw are amplitudes of deflection v and twist w of
an imperfect beam loaded by bending moment M. If we
differentiate Eq. (7) once and substitute into it from Eq. (6),
we obtain
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Substituting w from (9) into (10) and v0 and w0 from (8), we
obtain

a’ ¼ M2

M2
cr � M2 av0

p2EIz
ML2

þ a’0

� �
(11)

The initial curvature v0 and twist w0 in (8) are identical in
form to the buckled shape (4), thus with consideration to (8)
and (4), we can write for amplitudes av0 and a’0 :

av0
a’0

¼ McrL2

p2EIz
(12)

Substituting av0 from (12) into (11) and upon correction, we
obtain Eq. (13).

a’
a’0

¼ M
Mcr � M

(13)

Using (8), (9), (12), (13) and upon substitution into (6), we
obtain

av
av0

¼ M
Mcr � M

(14)

The longitudinal stress sx in the beam is the sum of the
stresses due to the major axis bending, minor axis bending,
and warping.

sx ¼ M
Iy
z � E

@2v
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@2’

@x2
v (15)

where v is the sectorial coordinate of the point. For the doubly
symmetric IPE-beam depicted in Figs. 1 and 2, v = �zy. Eq. (15)
may be rewritten using (9), (13), (14) as
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where Iy is the second moment of area about axis y. Substitu-
tion of (12) into (16) yields

sx ¼ M
Iy
z þ av0

Pz
Iz

1 þ Pz
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z
� �

M
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px
L
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where Pz = p2EIz/L
2. Extreme longitudinal stresses are at x = L/2,

at the edges of flanges at y = b/2, z = h/2 (tension) and at y = �b/2,
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z = �h/2 (compression). Maximum absolute values of longitu-
dinal stress sx,max are obtained from the equation

sx;max ¼ M
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þ av0
		 		 Pz

Wz
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h
2

� �
M

Mcr � M
(18)

where Wy = 2Iy/h is elastic section modulus about axis y, and
Wz is elastic section modulus about axis z. The absolute value
of av0 is considered in (18) so that input values of av0 may
generally be positive and negative values, see Table 1. Let us
denote the maximum elastic value of M as the elastic load
carrying capacity MR. If elastic limit is taken as the yield
strength fy, then MR can be evaluated from the equation
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The solution of (19) yields the close-form equation (20) for
the elastic load carrying capacity MR [16].

MR ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4Q2

1 þ 4Q1ðQ4 � 2McrQ3Þ þ Q2
4 þ 4McrQ4Q2 þ 4M2

crQ
2
2

� �q
4McrWz

þ 2Q1 þ Q4 þ 2McrQ2

4McrWz

(20)

where

Q1 ¼ f yMcrWyWz

Q2 ¼ McrWz þ Pz av0j jWy

Q3 ¼ McrWz � Pz av0j jWy

Q4 ¼ hP2z av0j jWy

(21)

4. Modelling of random imperfections

The load carrying capacity of a hot-rolled steel IPE-beam is
generally a random variable, which is a function of random
geometric and material characteristics. Stochastic analysis of
the load carrying capacity can be performed on the computer
using Monte Carlo based virtual simulations. The evaluation of
MR using the close-form equation (20) is fast and thus suitable
for sampling based SA methods, which require repeated
evaluation of MR.

The profile IPE 220 chosen for the present study has been used
extensively in previous reliability studies [8,10] of structural
ultimate limit state. Geometric characteristics depicted in Fig. 1
are random variables obtained from results of experimental
Table 1 – Input random quantities.

Symbol Value Density

h Cross-section height Histogram
b Flange width Histogram
t1 Web thickness Histogram
t2 Flange thickness Histogram
r Radius of curvature Gauss 

e0 Initial imperfection Gauss 

E Modulus of elasticity Gauss 

m Poisson's ratio Gauss 

fy Yield strength Histogram
research [25], apart from the radius of curvature r, which was
not measured. It was assumed that random variable r had mean
value equal to the characteristic value of 12 mm. The variation
coefficient r was considered the same as the value of the flange
as 0.046, i.e. standard deviation is 0.552 mm.

Initial geometrical imperfections were assumed to
follow the shape of the first eigenmode pertaining to LTB.
The Gauss probability density function with mean value of
zero (perfectly straight beam) was considered for the
amplitude of initial curvature e0. Standard deviation of the
amplitude of initial curvature e0 was evaluated based on the
assumption that 95% of the realizations of e0 were found
within the tolerance limits �L/1000 [26,27]. The standard
deviation e0 obtained in such a manner is slightly lower than
it was used in studies [10,17]. Both initial deflection av0 and
rotation a’0 were considered. According to [26], we can write
that

e0 ¼ av0 þ h
2
a’0 (22)

The relationship between av0 , a’0 and e0 is depicted in Fig. 3.
Upon substitution from (12) into (22), we obtain

av0 ¼
e0

1 þ ðh=2ÞðPz=McrÞ (23)

The statistical characteristics of Young's modulus E are
considered according to two independently performed exper-
imental researches [28]. The statistical characteristics of
Poisson's ratio are considered according to [29]. The third
variable characterizing material physico-mechanical proper-
ties is shear modulus of elasticity, which is calculated from the
following equation

G ¼ E
2ð1 þ mÞ (24)

The histogram and statistical characteristics of yield
strength of steel grade S235 were considered according to
[9], where the results of tensile tests of samples obtained from
a third of flanges of profiles IPE 160 to IPE 220 were published.
Residual stress was not considered. All input random
variables are clearly listed in Table 1. Truncated Gauss
probability density functions were considered for variables
r, E, m so as to eliminate the negative values. Statistical
correlations between input random variables are considered
as null.
 Mean Standard deviation

 220.22 mm 0.975 mm
 111.49 mm 1.093 mm
 6.225 mm 0.247 mm
 9.136 mm 0.421 mm

12 mm 0.552 mm
0 m L/1960
210 GPa 10 GPa
0.3 0.009

 297.3 MPa 16.8 MPa



Fig. 3 – Amplitudes of initial deflections e0, av0 and
rotation a’0 .

Fig. 4 – Statistical analysis MR for lLT ¼ 0:9 (L = 2.85 m).

Fig. 5 – Statistical analysis of MR.
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The sectional characteristics are functions of the geomet-
rical characteristics of the profile IPE illustrated in Fig. 1. It can
be noted that profile IPE 220, whose geometric characteristics
are listed in Table 1, is not a wide-flange beam. The profile IPE
illustrated in Fig. 1 can be divided into rectangles and four
rounded corners. The second moments of area Iy and Iz are
evaluated from the equations:

Iy ¼ 1
12

bh3 � 1
12

ðb � t1Þðh � 2t2Þ3 þ 0:03r4 þ r2ð4

� pÞ h
2
� t2 � r

3p � 10
3ðp � 4Þ

� �2

(25)

Iz ¼ 1
6
t2b

3 þ 1
12

ðh � 2t2Þt31 þ 0:03r4 þ r2ð4

� pÞ t1
2
þ r

3p � 10
3ðp � 4Þ

� �2

(26)

The torsion constant It is approximately given by the equation

It � 1:28
3

ð2bt32 þ ðh � 2t2Þt31Þ (27)

For equal flange IPE-beam

Iv ¼ Iz
ðh � t2Þ2

4
(28)

5. Statistical analysis of elastic load carrying
capacity

The statistical analysis was performed using the Latin Hyper-
cube Sampling method (LHS); it is an improved variant of the
Monte Carlo method [30,31]. LHS method was used to simulate
100 thousand runs of input random imperfections from Table 1.
The output random variable is MR (20). Simulation runs of MR of
the beam of length L = 2.85 m are depicted in Fig. 4. Results were
depicted using the non-dimensional slenderness lLT [12]. The
length L = 2.85 m corresponds to non-dimensional slenderness
lLT ¼ 0:9, which was evaluated according to [12] from the
equation

lLT ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Wpl;y f y;n
Mcr;n

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
67069
Mcr;n

s
(29)

where Wpl,y = 285.4 � 103 mm3 is the nominal plastic section
modulus about axis y of profile IPE220, fy,n = 235 MPa is the
nominal value of yield strength, and Mcr,n is the elastic critical
moment (5), which is a function of L and the nominal geometric
and material characteristics according to [12]. Practically, the
procedure is such that a value of lLT is chosen and the
corresponding beam length L is evaluated from Eq. (29). Pairs
(lLT ¼ 1:0, L = 3.31 m), (lLT ¼ 1:1, L = 3.82 m), etc. were obtained
in this manner.

The mean value MR,m = 64.9 kNm and design value
MR,0.1 = 46.6 kNm calculated according to [11] as 0.1 percentiles
are depicted in Fig. 4. The design value MR,0.1 is lower (safer)
than the mean value MR,m. Value MR,0.1 was evaluated from the
fundamental definition of probability in such a way that 100
random realizations had a value lower than 46.6 kNm. The
procedure for the calculation of 0.1 percentile was described in
detail in [25].

The results of the statistical analysis of MR depicted in Fig. 5
were evaluated for parameter lLT using the step-by-step



Fig. 6 – Standard deviation of MR vs lLT.
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method with the step of 0.01. The statistical analysis of MRwas
evaluated for one million simulation runs of the LHS method
for fixed value lLT. For the sake of comparison, the design
buckling resistance moment denoted in [12] as Mb,Rd is
depicted as well. Similar to its handling of column buckling
[12] uses the Perry–Robertson formula for the characterization
of beam LTB. The results of statistical analysis indicate
reduced reliability of design according to [12] for relatively
slender beams. It is apparent from Fig. 5 that if lLT < 1:5, then
MR,0.1< Mb,Rd< MR,m< Mcr,n. If 1:5 < lLT < 20, then MR,0.1< Mb,Rd

< Mcr,n < MR,m. If 1:5 < lLT, then Mcr,n/MR,0.1 � 1.3. If lLT ¼ 2, then
Mcr,n/Mb,Rd � 1.12, and if lLT < 2, then 1.12 < Mcr,n/Mb,Rd. The
most dangerous ratio Mcr,n/Mb,Rd � 1.011 was found for
lLT ¼ 18, it is not alarming, because beams with very high
slenderness are not practically used in engineering practice.
These conclusions are relevant mainly for slender beams; the
reliability analysis of short beams will be supplemented in
Section 7.

The decrease of MR,0.1 in contrast to MR,m is most influenced
by the standard deviation of MR, see Fig. 6. The maximum
value of standard deviation occurs for lLT ¼ 0:91. It is
interesting to note that if lLT > 3, then the variation coefficient
value of MR is approximately constant – 0.092.

6. Sensitivity analysis of elastic load carrying
capacity

SA of a model output aims to quantify the relative importance
of each model input parameter in the determination of the
value of an assigned output variable [32]. Within the scope of
modelling, the notion of ‘‘sensitivity analysis’’ has different
meaning to different people, see, e.g. [18,33–35]. Regarding
building structures, SA is an important part of the reliability
analysis of concrete structures [36], masonry systems [37], and
geotechnical structures [38]. For the identification of important
parameters in models of steel structures, SA was applied, e.g.
in [39–42].

Generally, there are two types of SA: local SA and global SA
[18]. Local SA puts emphasis on the local (point) impact of
input factors on the model output; local SA involves partial
derivatives (analytical or numerical). The local SA is practica-
ble when the variation around the midpoint of input factors is
small. Global SA focuses on the output uncertainty over the
entire range of values of input parameters [32].

The influence of input random quantities Xi in Table 1 on
the output MR (20) should be studied by means of global SA.
The presented paper deals with global Sobol's SA [43,44], which
can be used for the non-linear function (20) with statistical
independent input quantities having any type of distribution.
Sobol's SA of MR (20) is flexible, accurate and informative, and
can be performed at reasonable computational cost. The main
breakthrough in [43] is the computation algorithm that allows
a direct estimation of global sensitivity indices using values of
model output Y(MR) only [44]. Sobol first order sensitivity
indices may be written in the form:

Si ¼
VðEðYjXiÞÞ

VðYÞ (30)

Si measures the first order (e.g. additive) effect of Xi on the
model output Y (MR). The second order sensitivity index Sij is
the interaction term (31) between factors Xi, Xj. It captures that
part of the response of Y to Xi, Xj that cannot be written as a
superposition of effects separately due to Xi and Xj.

Si j ¼
VðEðYjXi; XjÞÞ

VðYÞ � Si � S j (31)

Other Sobol sensitivity indices enabling the quantification of
higher order interactions may be expressed similarly.X
i

Si þ
X
i

X
j > i

Si j þ
X
i

X
j > i

X
k > j

Si jk þ � � � þ S123...M ¼ 1 (32)

The number of members in (32) is 2M � 1, i.e. for M = 3, we
obtain 7 sensitivity indices S1, S2, S3, S12, S23, S13, S123; for M = 9,
we obtain 511 sensitivity indices, which is excessively large for
practical usage. The main limitation in the determination of all
members of (32) is the computational demand.

Sensitivity indices were evaluated applying the LHS
method. The conditional random arithmetical mean E(YjXi)
was evaluated for 100 000 simulation runs; the variance V(E
(YjXi)) was calculated for 100 000 simulation runs as well. The
variance V(Y) of MR is calculated on the assumption that all
input imperfections are considered to be random ones;
1 000 000 runs were applied as well.

The results of Sobol's SA in Fig. 7 evaluated for lLT ¼ 0:93
(L = 2.99 m) show that Sobol's SA ranks the initial imperfection
e0 as the most important imperfection in determining MR. For
illustration, the random dependence between e0 and MR is
depicted in Fig. 8. For beams with lLT ¼ 0:93, it may be noted
that, if the standard deviation of e0 is increased by 50%, then
the value of MR,0.1 decreases by 9%. Further significant
imperfections include t2 and fy, whilst h, b, t1, E have relatively
low influence, see Fig. 7. The difference 1 �PiSi � 0.005 in
Fig. 7 shows that stochastic interactions in the model (20) are
very small. Imperfections m and r with first-order sensitivity
indices approximately equal to zero may be considered as
deterministic (non-random) variables having no effect on
the variability of MR. Practically, the deviation of MR may be
significantly reduced by decreasing the variability of e0, e.g. by
implementing stricter tolerance limits in production. The
deviation of MR decreases the most, if e0 is considered as a
deterministic (non-random) value.



Fig. 7 – Sobol's SA for lLT ¼ 0:93.

Fig. 9 – Box-whisker plots for lLT ¼ 0:93.
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Figs. 9 and 10 show box-whisker plots graphically depicting
groups of numerical data through its seven numbers: sample
minimum, one standard deviation below the mean value,
lower quartile, median, upper quartile, one standard deviation
above the mean value, and sample maximum. Each graph was
evaluated using 100 000 simulation runs of the LHS method. In
Fig. 9, the first graph from the left depicts the statistics of MR

evaluated assuming that all variables listed in Table 1 are
considered as random variables. For the other graphs in Fig. 9,
statistics of MR have been evaluated assuming that all
variables in Table 1 are considered as random, apart from
the fixed (constant) variable listed under the graph. Fig. 10
depicts statistics of MR evaluated for ten fixed values e0. It is
apparent from Figs. 9 and 10 that the random variability MR

(box height) decreases the most by fixing (freezing) e0. It is clear
from Fig. 10 that all seven monitored statistical characteristics
decrease with increasing value of constant e0.

The results of Sobol's SA depicted in Fig. 11 were evaluated
for parameter lLT using the step-by-step method with the step
Fig. 8 – Random dependence between e0 and MR for l ¼ 0:93.
of 0.01. Imperfections fy, e0, t2 deserve increased attention. For
lLT < 0:71, the variability of fy has the greatest influence on the
variability of MR. On the contrary, for lLT > 1:0 the variability of
MR is practically not influenced by the variability of fy. If
lLT > 1:13, then t2 is the dominant variable, otherwise t2 is the
second dominant variable. The second dominant variable for
lLT > 1:13 is Young's modulus E the variability of which cannot
be practically influenced in production. The difference
1 �PiSi = 0.012 shows that the higher order interactions
between input variables in Table 1 are practically negligible
in the model (20).
Fig. 10 – Box-whisker plots for lLT ¼ 0:93.



Fig. 13 – Statistical analysis of inelastic buckling resistance
MP.

Fig. 12 – Statistical analysis of MR for varying values of b.

Fig. 11 – Sobol indices Si vs lLT.
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For 0:71 � lLT � 1:13, MR is most sensitive to the variability
of e0. This can be clearly illustrated by the following study. Let
us consider the standard deviation of e0 as bL/1960 and repeat
the study, the results of which are depicted in Fig. 5. The
results depicted in Fig. 12 clearly show the effect of the size of
the standard deviation of e0 (coefficient b) on design value
MR,0.1. The value of MR,0.1 is most influenced by b for lLT ¼ 0:93,
see Fig. 12. For b ! 0 (e0 ! 0), we can notice that MR,0.1 is
smaller than Mcr,n, because the value of MR,0.1 is influenced by
the variability of other imperfections from Table 1. With the
exception of results depicted in Fig. 12, b = 1.0 was considered
in the rest of the article.

7. Statistical analysis of inelastic load carrying
capacity

The inelastic load carrying capacity can be determined by
specifying some type of empirical curve, which gives essen-
tially the elastic solution (20), and which terminates at the
plastic moment capacity for short (or fully braced) beams.
Some approximate relations and approaches suitable for
finding close-form solutions to this problem are listed, e.g.
in [45,46]. The inelastic load carrying capacity MP was
evaluated according to [17] as:

MP ¼ MR
Wy; pl

Wy
a þ MRð1 � aÞ (33)

Wy,pl is the inelastic section modulus about axis y. Variables
MP, Wy,pl, Wy in Eq. (33) are random and dependent on the
random variability of variables in Table 1. a is a deterministic
parameter considered according to [17] as

a ¼ 1

1 þ l
4
LT

  !4

(34)

Statistical analysis of MP was performed for one million simu-
lation runs of LHS method. Design value MP,0.1 was evaluated
according to [11] as 0.1 percentile. Reliability of design accord-
ing to [12] may, in the basic form, be verified by the analysis
MP,0.1 vs lLT, see Fig. 13.

For a beam with lLT ¼ 0, we can note that MP,0.1 = 69.5 kNm.
This value is 3% higher than Mb,Rd = 67.1 kNm according to [12],
see Fig. 13. It is apparent from the comparison of Fig. 13 and
Fig. 5 that results of statistical analyses are practically identical
(MR,m � MP,m and MR,0.1 � MP,0.1) for slender beams with
approximately lLT � 0:9. It can be further noted that Mb,Rd is
higher (less safe) than MP,0.1 for lLT � 0:7, see Fig. 13. This
indicates lower safety of design of slender beams according to
[12]. The results of the statistical analyses complement the
results of probabilistic analyses from [17], which showed a
relatively high probability of failure (little safety) of very
slender members designed according to [12].

8. Conclusion

The reliability of load bearing beams may be increased in
production primarily by decreasing the variability of initial
material and geometrical imperfections. This can be practically
achieved by setting appropriate tolerance limits of metallurgical
standards and by increased control during production.

Results of SA of the elastic load carrying capacity MR

presented in this article have shown that the safety of bent IPE-
beams may be significantly increased by decreasing the
random variability of variables fy, e0, t2, see Fig. 11.
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	 MR is significantly influenced by the variability of yield
strength fy for lLT < 0:71. If lLT ¼ 0, then it is a simple bending
task, where the load carrying capacity is dependent solely on
the magnitude of yield strength and the geometry of the
cross section. For lLT ¼ 0 the sensitivity coefficient of yield
strength is Sfy = 0.73, and since the higher order interactions
are very small the sum of sensitivity coefficients of variables
h, b, t1, t2, r can be considered as approximately 1 �
0.73 = 0.27, of which the flange thickness has the dominant
influence St2 ¼ 0:24 (variability of b, t1, r can be neglected),
see Fig. 11.

	 MR is significantly influenced by the variability of e0 if
0:71 � lLT � 1:13. MR is most sensitive to e0 for lLT ¼ 0:93. The
maximum value of the standard deviation of MR was
obtained for lLT ¼ 0:91, see Fig. 6. Beams with slenderness
around 0.9 occur very frequently in structural systems;
therefore it is necessary to pay increased attention to
random variable e0. We should strive for minimal values of e0
(straight beams).

	 MR is most sensitive to the variability of t2 if lLT > 1:13,
otherwise t2 is the second dominant variable. If lLT > 1:28
then the second dominant variable is Young's modulus E.

In probabilistic assessments of reliability, imperfections fy, e0,
t2 belong to the crucial input random variables, whose
variability should be determined through precise measure-
ment. The reliability of the beam increases if the variability of
parameters fy, e0, t2 decreases. Reduction of the variability of
flange thickness t2 can generally be recommended for all
slenderness values, see Fig. 11. It may be noted that while the
statistical characteristics of imperfections fy, t2 have long been
studied by experimental research [9,25], standard deviation of
the amplitude of initial curvature e0 is discussed in connection
with aleatory and also epistemic (fuzzy) uncertainties [10].

Let us now compare the SA results in this article with the
results of SA [19] examining the effects of initial imperfections
on the load carrying capacity R of a steel member under
compression. Non-dimensional slenderness lLT and l imple-
mented as analysis parameters enable approximate compari-
son of SA results of two different stability problems. The
comparison of results in Fig. 11 and Fig. 2 in [19] shows that
the effect of variability of t2 on MR (bending) is higher than the
effect of variability of t2 on R (compression), especially for
higher slenderness values. The effect of the variability of t2 on
MR is dominant for lLT > 1:13, see Fig. 11. The effect of e0 on MR

is slightly different than the effect of e0 on R [19]. Sensitivity
index Se0 describing the main effect of e0 on MR decreases very
rapidly if lLT > 0:93 and is practically null if lLT > 2:0, see Fig. 11.
On the contrary, Se0 describing the main effect of e0 on R
decreases relatively slower, e.g. for l ¼ 2:0, Se0 ¼ 0:22 [19].

The difference 1 �PiSi � 0 shows that the higher order
interactions effects [18] between input imperfections are
practically negligible in the model (20). A similar conclusion
was reached in [19]. Practically, this means that MR and R can
be approximated, in stochastic models, by additive models
that neglect these interactions.

Statistical analysis shows that for lLT < 0:7 design resis-
tance, Mb,Rd evaluated according to [12] is lower (safer) than the
value MP,0.1, see Fig. 13. On the contrary if lLT � 0:7, then
MR,0.1 < MP,0.1 < Mb,Rd, which suggests smaller design reliability
according to [12]. Reliability of IPE-beams with lLT � 0:7 can be
increased by decreasing the random variability of imperfec-
tions e0, t2, which have a large influence on MR.

The design of very slender beams lLT � 1:5 is relatively very
unsafe. The design value MR,0.1 obtained from the statistical
analysis is significantly lower than the design value Mb,Rd

according to [12] for slender beams. The standard [12]
considers the design buckling resistance moment Mb,Rd of
slender beams dangerously close to the elastic critical moment
Mcr,n. With the aim of ensuring a more safe design, standard
values Mb,Rd should be lower for very slender beams. This could
be achieved by increasing the values of partial safety factors or
the calibration of lateral-torsional buckling curves. As illus-
trated by the sensitivity analysis results it is necessary to strive
for the reduction of the random variability of imperfections,
especially of the flange thickness t2, for very slender IPE-
beams. This can be achieved by increased control in produc-
tion and the control of the hot-rolling process of these beams.

The reliability of hot-rolled IPE-beams can be influenced
just a little by changing the mean values of initial imperfec-
tions, which in most cases, should be equal to their nominal
values, see Table 1. An exception is the yield strength; its mean
value is greater than the characteristic value. Standards and
manufacturers guarantee minimum yield strength, which
reflects 5% quantile of the actual probability density distribu-
tion. However, the average yield strength is not guaranteed by
standards or by a manufacturer, and is based mainly on
production technology.
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