HOW TO DESIGN AND CHECK SIMPLE JOINTS?

…worked examples for CO001

SECONDARY BEAM TO PRIMARY BEAM CONNECTION

<table>
<thead>
<tr>
<th>Alternative 1 – end plate</th>
<th>Alternative 2 – fin plate</th>
</tr>
</thead>
</table>

Perspective view

Side view

Side view
PRIMARY BEAM TO COLUMN CONNECTION

<table>
<thead>
<tr>
<th>Alternative 1 – end plate</th>
<th>Alternative 2 – fin plate</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
BRACING CONNECTIONS

<table>
<thead>
<tr>
<th>Alternative 1</th>
<th>Alternative 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
WORKED EXAMPLE 1:
BRACING CONNECTION IN ALTERNATIVE 1

Normal force in bracing diagonal

Due to wind load (design of vertical bracing, only tension diagonal is active)

\[N_{Ed} = 454 \text{ kN} \]

Diagonal section: 2×L80/8, thickness of leg \(t_a = 8 \text{ mm} \), steel S235

Gusset plate: thickness \(t_p = 15 \text{ mm} \), steel S235

Bolts

Design: bolts M20, material 8.8

\[f_y = 640 \text{ MPa} \] \(f_y \) bolt yield strength

\[f_{ub} = 800 \text{ MPa} \] \(f_{ub} \) bolt ultimate strength

\[d = 20 \text{ mm} \] \(d \) bolt diameter

\[d_0 = 22 \text{ mm} \] \(d_0 \) bolt hole diameter

\[A = 314 \text{ mm}^2 \] \(A \) gross cross section of the bolt

\[A_s = 245 \text{ mm}^2 \] \(A_s \) tensile stress area of the bolt

\[e_1 = 50 \text{ mm} \] \(e_1 \) end distance

\[p_1 = 80 \text{ mm} \] \(p_1 \) spacing

\[e_2 = 35 \text{ mm} \] \(e_2 \) edge distance (smaller of them)
bolt connection in shear

Shear resistance

\[F_{v,Rd} = n_s \cdot \frac{a_v \cdot f_{ub} \cdot A_s}{\gamma_{M2}} = 2 \cdot \frac{0.6 \cdot 800 \cdot 245}{1.25} = 188 \text{ kN} \]

where

- \(n_s \) is number of shear planes
- \(a_v \) is factor for 8.8 if shear plane passes through the threated portion of the bolt
- \(A_s \) is used if shear planes passes through threated portion of the bolt

Bearing resistance

\[F_{b,Rd} = k_1 \cdot \frac{a_b \cdot f_u \cdot d \cdot t}{\gamma_{M2}} = 2.5 \cdot 0.76 \cdot 360 \cdot 20 \cdot 15 = 164 \text{ kN} \]

where

- \(k_1 = \min \left\{ 2.8 \cdot \frac{e_2}{d_0} - 1.7 \cdot 1.4 \cdot \frac{p_2}{d_0} - 1.7 \cdot 2.5 \right\} = \min \left\{ 2.8 \cdot \frac{35}{22} - 1.7 ; - ; 2.5 \right\} = \min \left\{ 2.75 ; - ; 2.5 \right\} = 2.5 \)
- \(a_0 = \min \left\{ \frac{e_1}{3d_0} \cdot \frac{p_1}{3d_0} \cdot \frac{1}{4} \cdot \frac{f_{ub}}{f_u} ; 1 \right\} = \min \left\{ \frac{50}{3.22} \cdot \frac{80}{3.22} \cdot \frac{1}{4} \cdot \frac{800}{360} ; 1 \right\} = \min \left\{ 0.76 ; 0.96 ; 2.22 ; 1 \right\} = 0.76 \)
- \(t = \min \left\{ t_p ; 2 \cdot t_u \right\} = \min \left\{ 15 ; 2 \cdot 8 \right\} = 15 \text{ mm} \)

Number of bolts to satisfied condition

\[n_{bolt} = \frac{N_{Ed}}{\min \left\{ F_{v,Rd} ; F_{b,Rd} \right\}} = \frac{454}{\min \{188 ; 164\}} = 2.77 \]

\(\Rightarrow 3 \text{ bolts M20, 8.8} \)

Angle

Ultimate resistance of the net-cross section at holes

Due to holes for bolts, angle gross cross section is reduced, net area resistance is:

\[N_{u,Rd} = \beta \cdot \frac{A_{net} \cdot f_u}{\gamma_{M2}} = \frac{0.59 \cdot 2108 \cdot 360}{1.25} = 358 \text{ kN} \]

where \(A_{net} \) is net area of angle without holes for bolts

\[A_{net} = 2 \cdot (A - d_0 \cdot t_u) = 2 \cdot (1230 - 22 \cdot 8) = 2108 \text{ mm}^2 \]

\(\beta \) is reduction factor for angle connected by one leg according to the table below (linear interpolation for intermediate values of \(p_i \)
Spacing p_1	$\leq 2.5 \, d_0$	$\geq 5 \, d_0$
β_2 for two bolts | 0.4 | 0.7
β_3 for three or more bolts | 0.5 | 0.7

Reliability condition:

$$\frac{N_{Ed}}{N_{u,Rd}} = \frac{454}{358} = 1.27 \geq 1.0$$

\Rightarrow condition is not satisfied

Block tearing

Due to hole group, diagonal gross cross section is reduced. Design block tearing resistance for bolt group subject to eccentric loading

$$V_{\text{eff}, Rd} = \frac{0.5 \cdot f_u \cdot A_{nt}}{\gamma_{M2}} + \frac{f_y / \sqrt{3} \cdot A_{nv}}{\gamma_{M0}} = 0.5 \cdot 360 \cdot 384 \cdot 1.25 + \frac{235 / \sqrt{3} \cdot 2480}{1.00} = 55 + 336 = 391 \, kN$$

where

A_{nt} is net area subjected to tension

$$A_{nt} = 2 \cdot t_a \cdot (l_{nt}) = 2 \cdot 8 \cdot (35 - 11) = 384 \, \text{mm}^2$$

A_{nv} is net area subjected to shear

$$A_{nv} = 2 \cdot t_a \cdot (l_{nv}) = 2 \cdot 8 \cdot (50 + 80 + 80 - 22 - 22 - 11) = 2480 \, \text{mm}^2$$

Reliability condition:

$$\frac{N_{Ed}}{V_{\text{eff}, Rd}} = \frac{454}{391} = 1.16 \geq 1.0$$

\Rightarrow condition is not satisfied

Gusset plate

Block tearing

Due to hole group, gusset plate gross cross section is reduced. Design block tearing resistance for bolt group subject to eccentric loading

$$V_{\text{eff}, Rd} = \frac{0.5 \cdot f_u \cdot A_{nt}}{\gamma_{M2}} + \frac{f_y / \sqrt{3} \cdot A_{nv}}{\gamma_{M0}} = 0.5 \cdot 360 \cdot 510 \cdot 1.25 + \frac{235 / \sqrt{3} \cdot 2325}{1.00} = 73 + 315 = 388 \, kN$$

where

A_{nt} is net area subjected to tension

$$A_{nt} = t_p \cdot (l_{nt}) = 15 \cdot (45 - 11) = 510 \, \text{mm}^2$$

A_{nv} is net area subjected to shear

$$A_{nv} = t_p \cdot (l_{nv}) = 15 \cdot (50 + 80 + 80 - 22 - 22 - 11) \ldots$$
Reliability condition:

\[
\frac{N_{\text{Ed}}}{V_{\text{eff2,Rd}}} = \frac{454}{388} = 1.17 \geq 1.0
\]

\[= \textit{condition is not satisfied}\]

Fillet weld

\[N_{\text{Ed}} = 454 \text{ kN}\]

force in diagonal

\[N_{h,\text{Ed}} = N_{\text{Ed}} \cdot \cos \alpha = 454 \cdot \cos 31^\circ = 389 \text{ kN}\]

horizontal force portion

\[N_{v,\text{Ed}} = N_{\text{Ed}} \cdot \sin \alpha = 454 \cdot \sin 31^\circ = 233 \text{ kN}\]

vertical force portion

\[a = 5 \text{ mm} \quad \text{effective throat thickness of a fillet weld}\]

\[L = 419 \text{ mm} \quad \text{effective length of a fillet weld}\]

\[e = 68 \text{ mm} \quad \text{force eccentricity (brace diagonal axis) to centroid of the fillet weld}\]

\[
\tau_{\parallel} = \frac{N_{h,\text{Ed}}}{2 \cdot L \cdot a} = \frac{389.10^3}{2 \cdot 419 \cdot 5} = 93 \text{ MPa}
\]

\[
\sigma_v = \frac{N_{v,\text{Ed}}}{2 \cdot L \cdot a} = \frac{233.10^3}{2 \cdot 419 \cdot 5} = 56 \text{ MPa}
\]

\[
\sigma_M = \frac{N_{v,\text{Ed}} \cdot e}{2 \cdot \frac{1}{6} \cdot L^2 \cdot a} = \frac{233.10^3 \cdot 68}{2 \cdot \frac{1}{6} \cdot 419^2 \cdot 5} = 54 \text{ MPa}
\]

\[
\sigma_\perp = \tau_{\parallel} = \frac{\sigma_v + \sigma_M}{\sqrt{2}} = \frac{56 + 54}{\sqrt{2}} = 78 \text{ MPa}
\]
Reliability conditions:

\[
\sqrt{\sigma_1^2 + 3 \cdot \left(\tau_1^2 + \tau_n^2 \right)} \leq \frac{f_u}{\beta_w \cdot \gamma_{M2}} \\
\sqrt{78^2 + 3 \cdot (78^2 + 93^2)} \leq \frac{360}{0.8 \cdot 1.25}
\]

\[
224 \text{ MPa} \leq 360 \text{ MPa} \quad \Rightarrow \text{condition is satisfied}
\]

\[
\sigma_1 \leq \frac{0.9 \cdot f_u}{\gamma_{M2}}
\]

\[
78 \text{ MPa} \leq \frac{0.9 \cdot 360}{1.25} = 259 \text{ MPa} \quad \Rightarrow \text{condition is satisfied}
\]

where \(\beta_w \) is correlation factor according to the table 1.

Table 1.

<table>
<thead>
<tr>
<th>Steel grade</th>
<th>(\beta_w)</th>
</tr>
</thead>
<tbody>
<tr>
<td>S235</td>
<td>0.80</td>
</tr>
<tr>
<td>S275</td>
<td>0.85</td>
</tr>
<tr>
<td>S355</td>
<td>0.90</td>
</tr>
<tr>
<td>S420</td>
<td>1.00</td>
</tr>
<tr>
<td>S460</td>
<td>1.00</td>
</tr>
</tbody>
</table>
WORKED EXAMPLE 2:
SECONDARY BEAM TO PRIMARY BEAM CONNECTION IN ALTERNATIVE 2

Force in connection

Action on connection is reaction of secondary beam

\[F_{\text{ed}} = 70 \text{kN} \]

Secondary beam: IPE 200, thickness of web \(t_w = 5.6 \text{ mm} \), steel S235

Fin plate: thickness \(t_p = 10 \text{ mm} \), steel S235

Bolts

Design: bolts M16, material 8.8

- \(f_{yb} = 640 \text{ MPa} \) bolt yield strength
- \(f_{ub} = 800 \text{ MPa} \) bolt ultimate strength
- \(d = 16 \text{ mm} \) bolt diameter
- \(d_0 = 18 \text{ mm} \) bolt hole diameter
- \(A = 201 \text{ mm}^2 \) gross cross section of the bolt
- \(A_s = 157 \text{ mm}^2 \) tensile stress area of the bolt
- \(e_1 = 40 \text{ mm} \) end distance
- \(p_1 = 60 \text{ mm} \) spacing
- \(e_2 = 35 \text{ mm} \) edge distance (smaller of them)

\(\Rightarrow \) bolt connection in shear
Shear force per one bolt

\[F_{v, Ed} = \frac{F_{Ed}}{n_{bolt}} = \frac{70}{2} = 35 \text{kN} \]

Shear resistance

Shear resistance per one bolt

\[F_{v, Rd} = n_s \cdot \alpha_v \cdot f_{sb} \cdot A_s \cdot \frac{\gamma_{M2}}{\gamma} = 1 \cdot \frac{0.6 \cdot 800 \cdot 157}{1.25} = 60 \text{kN} \]

where

\(n_s \) is number of shear planes
\(\alpha_v \) is factor for 8.8 if shear plane passes through the threaded portion of the bolt
\(A_s \) is used if shear planes pass through threaded portion of the bolt

Reliability criterion

\[\frac{F_{v, Ed}}{F_{v, Rd}} = \frac{35}{60} = 0.58 \leq 1.0 \]

\(\Rightarrow \) condition is satisfied

Bearing resistance

Bearing resistance per one bolt

\[F_{b, Rd} = \frac{k_1 \cdot \alpha_b \cdot f_u \cdot d \cdot t}{\gamma_{M2}} = \frac{2.5 \cdot 0.74 \cdot 360 \cdot 16 \cdot 5.6}{1.25} = 48 \text{kN} \]

where

\[k_1 = \min \left\{ 2.8 \cdot \frac{e_2}{d_0} - 1.7; 1.4 \cdot \frac{P_2}{d_0} - 1.7; 2.5 \right\} = \min \left\{ 2.8 \cdot \frac{35}{18}; -1.7; 2.5 \right\} = \min \{3.74; -; 2.5\} = 2.5 \]

\[\alpha_b = \min \left\{ \frac{e_1 \cdot P_1}{3d_0 d_0}, \frac{1}{4} \cdot \frac{f_{sb}}{f_u} : 1 \right\} = \min \left\{ \frac{40}{3 \cdot 18}; \frac{60}{3 \cdot 18}; \frac{1}{4} \cdot \frac{800}{360} : 1 \right\} = \min \{0.74; 0.86; 2.22; 1\} = 0.74 \]

\[t = \min \left\{ t_p, t_w \right\} = \min \{10; 5.6\} = 5.6 \text{ mm} \]

Reliability criterion

\[\frac{F_{v, Ed}}{F_{b, Rd}} = \frac{35}{48} = 0.73 \leq 1.0 \]

\(\Rightarrow \) condition is satisfied
Fin plate

Shear resistance

\[V_{\text{pl,Rd}} = A_v \cdot \frac{f_y}{\sqrt{3}} \cdot \frac{1400 \cdot 235}{\gamma_{M0}} = 190 \text{kN} \]

where \(A_v \) is gross cross area of fin plate

\[A_v = h_g \cdot t_g = 140 \cdot 10 = 1400 \text{mm}^2 \]

Reliability criterion

\[\frac{F_{\text{Ed}}}{V_{\text{pl,Rd}}} = \frac{70}{190} = 0.37 \leq 1.0 \]

\(\Rightarrow \text{condition is satisfied} \)

Block tearing

Due to hole group, fin plate gross cross section is reduced. Design block tearing resistance for bolt group subject to eccentric loading

\[V_{\text{eff2,Rd}} = \frac{0.5 \cdot f_u \cdot A_{nt}}{\gamma_{M2}} + \frac{f_y}{\sqrt{3}} \cdot \frac{A_{nv}}{\gamma_{M0}} = \frac{0.5 \cdot 360 \cdot 261}{1.25} + \frac{235}{1.00} = 38 + 99 = 137 \text{kN} \]

where

\[A_{nt} \] is net area subjected to tension

\[A_{nt} = t_p \cdot (l_{nt}) = 10 \cdot (35 - 9) = 261 \text{mm}^2 \]

\[A_{nv} \] is net area subjected to shear

\[A_{nv} = t_p \cdot (l_{nv}) = 10 \cdot (60 + 40 - 18 - 9) = 730 \text{mm}^2 \]

Reliability condition:

\[\frac{F_{\text{Ed}}}{V_{\text{eff2,Rd}}} = \frac{70}{137} = 0.51 \leq 1.0 \]

\(\Rightarrow \text{condition is satisfied} \)

Secondary beam

Block tearing

Due to hole group, secondary beam web gross cross section is reduced. Design block tearing resistance for bolt group subject to eccentric loading

\[V_{\text{eff2,Rd}} = \frac{0.5 \cdot f_u \cdot A_{nt}}{\gamma_{M2}} + \frac{f_y}{\sqrt{3}} \cdot \frac{A_{nv}}{\gamma_{M0}} = \frac{0.5 \cdot 360 \cdot 146}{1.25} + \frac{235}{1.00} = 21 + 55 = 76 \text{kN} \]

where
A_{nt} is net area subjected to tension
\[A_{nt} = t_w \cdot (l_{nt}) = 5.6 \cdot (35 - 9) = 146 \text{ mm}^2 \]

A_{nv} is net area subjected to shear
\[A_{nv} = t_w \cdot (l_{nv}) = 5.6 \cdot (60 + 40 - 18 - 9) = 409 \text{ mm}^2 \]

Reliability condition:
\[\frac{F_{Ed}}{V_{eff, Rd}} = \frac{70}{76} = 0.92 \leq 1.0 \]
=> *condition is satisfied*

Fillet weld

\[F_{Ed} = 70 \text{ kN} \]

\[M_{Ed} = F_{Ed} \cdot e = 70 \cdot 0.075 = 5.25 \text{ kNm} \]

Action of secondary beam

additional moment due to eccentricity

\[a = 4 \text{ mm} \quad \text{effective throat thickness of a fillet weld} \]

\[L = 140 \text{ mm} \quad \text{effective length of a fillet weld} \]

\[\tau_{ll} = \frac{F_{Ed}}{2 \cdot L \cdot a} = \frac{70 \cdot 10^3}{2 \cdot 140 \cdot 4} = 63 \text{ MPa} \]

\[\sigma_M = \frac{M_{Ed}}{2 \cdot \frac{1}{6} \cdot L^2 \cdot a} = \frac{5.25 \cdot 10^6}{2 \cdot \frac{1}{6} \cdot 140^2 \cdot 4} = 201 \text{ MPa} \]

\[\sigma_{\perp} = \frac{\sigma_M}{\sqrt{2}} = \frac{201}{\sqrt{2}} = 142 \text{ MPa} \]

Reliability conditions:
\[\sqrt{\sigma_{ll}^2 + 3 \cdot (\tau_{ll}^2 + \tau_{ll}^2)} \leq \frac{f_u}{\beta_w \cdot \gamma_{M2}} \]
\[\sqrt{142^2 + 3 \cdot (142^2 + 63^2)} \leq \frac{360}{0.8 \cdot 1.25} \]
\[304 \text{ MPa} \leq 360 \text{ MPa} \]
=> *condition is satisfied*

\[\sigma_{\perp} \leq \frac{0.9 \cdot f_u}{\gamma_{M2}} \]
\[142 \text{ MPa} \leq \frac{0.9 \cdot 360}{1.25} = 259 \text{ MPa} \]
=> *condition is satisfied*
WORKED EXAMPLE 3:
PRIMARY BEAM TO COLUMN CONNECTION IN ALTERNATIVE 1

Forces in connection

Action on connection is reaction of primary beam

\[F_{\text{Ed}} = 150 \text{ kN} \]

Primary beam: castellated beam made of IPE 300, thickness of web \(t_w = 7.1 \text{ mm} \), steel S235

Column: HEB 300, thickness of flange \(t_f = 19 \text{ mm} \), steel S235

End plate: thickness \(t_p = 15 \text{ mm} \), steel S235

Bolts

Design: bolts M16, material 8.8

- \(f_{yb} = 640 \text{ MPa} \) bolt yield strength
- \(f_{ub} = 800 \text{ MPa} \) bolt ultimate strength
- \(d = 16 \text{ mm} \) bolt diameter
- \(d_0 = 18 \text{ mm} \) bolt hole diameter
- \(A = 201 \text{ mm} \) gross cross section of the bolt
- \(A_s = 157 \text{ mm} \) tensile stress area of the bolt
- \(e_1 = 45 \text{ mm} \) end distance
- \(p_1 = 95 \text{ mm} \) spacing
- \(e_2 = 50 \text{ mm} \) edge distance (smaller of them)
- \(p_2 = 110 \text{ mm} \) spacing
=> bolt connection in shear

Shear force per one bolt

\[F_{v,Ed} = \frac{F_{Ed}}{n_{bolt}} = \frac{150}{6} = 25 \text{ kN} \]

Shear resistance

Shear resistance per one bolt

\[F_{v,Rd} = n_s \cdot \frac{\alpha_v \cdot f_{sb} \cdot A_s}{\gamma_{M2}} = 1 \cdot \frac{0.6 \cdot 800 \cdot 157}{1.25} = 60 \text{ kN} \]

where

- \(n_s \) is number of shear planes
- \(\alpha_v \) is factor for 8.8 if shear plane passes through the thread portion of the bolt
- \(A_s \) is used if shear planes pass through thread portion of the bolt

Reliability criterion

\[\frac{F_{v,Ed}}{F_{v,Rd}} = \frac{25}{60} = 0.42 \leq 1.0 \quad \Rightarrow \text{condition is satisfied} \]

Bearing resistance

Bearing resistance per one bolt

\[F_{b,Rd} = k_1 \cdot \alpha_b \cdot f_a \cdot d \cdot t \cdot \frac{\gamma_{M2}}{1.25} = 2.5 \cdot 0.83 \cdot 360 \cdot 16 \cdot 15 = 143 \text{ kN} \]

where

\[k_1 = \min \left\{ 2.8 \cdot \frac{e_3}{d_0} - 1.7 ; 1.4 \cdot \frac{p_3}{d_0} - 1.7 ; 2.5 \right\} = \min \left\{ 2.8 \cdot \frac{50}{18} - 1.7 ; 1.4 \cdot \frac{110}{18} - 1.7 ; 2.5 \right\} = \min \{6.08 ; 6.86 ; 2.5\} = 2.5 \]

\[\alpha_b = \min \left\{ \frac{e_1}{3d_0} ; \frac{p_3}{3d_0} - \frac{1}{4} ; \frac{f_{sb}}{f_a} ; 1 \right\} = \min \left\{ \frac{45}{3 \cdot 18} ; \frac{95}{3 \cdot 18} - \frac{1}{4} ; \frac{800}{360} ; 1 \right\} = \min \{0.83 ; 1.51 ; 2.22 ; 1\} = 0.83 \]

\[t = \min \left\{ t_p ; t_t \right\} = \min \{15 ; 19\} = 15 \text{ mm} \]

Reliability criterion

\[\frac{F_{v,Ed}}{F_{b,Rd}} = \frac{25}{143} = 0.17 \leq 1.0 \quad \Rightarrow \text{condition is satisfied} \]
End plate

Shear resistance

\[V_{pl,Rd} = \frac{A_v \cdot f_y / \sqrt{3}}{\gamma_{M0}} = \frac{8400 \cdot 235 / \sqrt{3}}{1,00} = 1140 \text{kN} \]

where \(A_v \) is gross cross area of fin plate

\[A_v = 2 \cdot h_p \cdot t_p = 2 \cdot 280 \cdot 15 = 8400 \text{ mm}^2 \]

Reliability criterion

\[\frac{F_{Ed}}{V_{pl,Rd}} = \frac{150}{1140} = 0,13 \leq 1,0 \]

=> condition is satisfied

Block tearing

Due to hole group, fin plate gross cross section is reduced. Design block tearing resistance for bolt group subject to concentric loading

\[V_{eff1, Rd} = \frac{f_u \cdot A_{nt}}{\gamma_{M2}} + \frac{f_y / \sqrt{3} \cdot A_{nv}}{\gamma_{M0}} = \frac{360 \cdot 1230}{1,25} + \frac{235 / \sqrt{3} \cdot 5700}{1,00} = 354 + 773 = 1127 \text{kN} \]

where

\(A_{nt} \) is net area subjected to tension

\[A_{nt} = 2 \cdot t_p \cdot (l_{nt}) = 2 \cdot 15 \cdot (50 - 9) = 1230 \text{ mm}^2 \]

\(A_{nv} \) is net area subjected to shear

\[A_{nv} = 2 \cdot t_p \cdot (l_{nv}) = 2 \cdot 15 \cdot (45 + 95 + 95 - 18 - 18 - 9) = 5700 \text{ mm}^2 \]

Reliability condition:

\[\frac{F_{Ed}}{V_{eff2, Rd}} = \frac{150}{1127} = 0,13 \leq 1,0 \]

=> condition is satisfied

Fillet weld

\(F_{Ed} = 150 \text{kN} \)

action of secondary beam

\(a = 4 \text{ mm} \)

effective throat thickness of a fillet weld

\(L = 272 \text{ mm} \)

effective length of a fillet weld

\[\tau_{ll} = \frac{F_{Ed}}{2 \cdot L \cdot a} = \frac{150 \cdot 10^3}{2 \cdot 272 \cdot 4} = 69 \text{ MPa} \]

\(\sigma_\perp = \tau_\perp = 0 \text{ MPa} \)
Reliability conditions:

\[
\sqrt{\sigma_1^2 + 3 \cdot \left(\tau_1^2 + \tau_2^2 \right)} \leq \frac{f_u}{\beta_u \cdot \gamma_{M2}}
\]

\[
\sqrt{0^2 + 3 \cdot (0^2 + 69^2)} \leq \frac{360}{0.8 \cdot 1.25}
\]

120 MPa \leq 360 MPa \quad \Rightarrow \text{condition is satisfied}

\[
\sigma_1 \leq \frac{0.9 \cdot f_u}{\gamma_{M2}}
\]

0 MPa \leq \frac{0.9 \cdot 360}{1.25} = 259 MPa \quad \Rightarrow \text{condition is satisfied}