| | | | \(EJ_D \cdot \delta = \frac{h^3}{3} \left[1 + k \left(\frac{h_n}{h} \right)^3 \right] \)
| | | | KDE \(k = \frac{J_D}{J_h} - 1 \)
| | | | \(EJ_D \cdot \delta = \frac{J_D}{J_h} \cdot \frac{e_h \cdot h^2}{2} + e_D \cdot h_n \left(h - \frac{h_D}{2} \right) \)
| | | | POZN: \(e_h, e_D \) dosazovat se znaménkem (např. od težiště osy sloupu
| | | | příslušného úseku
| | | | \(+ \), nalevo \(\Theta \)
| | | | \(EJ_D \cdot \delta = \frac{h^3}{6} \left\{ \left(\frac{d}{h} \right)^2 \left(3 - \frac{d}{h} \right) + k \left(\frac{c}{h} \right)^2 \left(3 \left(1 - \frac{d}{h} \right) + 2 \frac{c}{h} \right) \right\} \)
| | | | KDE \(k = \frac{J_D}{J_h} - 1 \)
| | | | \(EJ_D \cdot \delta = e_D \cdot h_n \left(h - \frac{h_D}{2} \right) \)
| | | | \(EJ_D \cdot \delta = \frac{h^4}{8} \left[1 + k \left(\frac{h_n}{h} \right)^4 \right] \)
| | | | KDE \(k = \frac{J_D}{J_h} - 1 \)
<table>
<thead>
<tr>
<th>Vzhled pro výpočet průhýbu špičky sloupů</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>(e_D)</td>
<td>(e_H)</td>
<td>(J_D)</td>
</tr>
</tbody>
</table>

\[
EJ_D \delta = \frac{J_D}{J_H} e_H \alpha \left(\frac{h_D}{2} \right) + e_D \left(h - \frac{h_D}{2} \right)
\]

\[
EJ_D \delta = b e_D \left(h - \frac{b}{2} \right)
\]

Platí oficiální konvence pro \(e_D / e_H \) podle případu č. 2 (v případech "6" a "7" jsou tedy pro uvedená schématy hodnoty \(e_H, e_D \) záporné).

Výpočet neznámých sil \(X \) je účelné provádět samostatně pro jednotlivé dílčí případy zatížení uvedené postupně v odst. 4.2.1 (zatížení stálé) a v odst. 4.2.2 (zatížení krátkodobé nahodilé). S použitím vzorců odpovídajících příslušnému typu zatížení sestavených v tab. 37, resp. v tab. 38 vypočteme podle uvedeného obecného výrazu odpovídající sílu \(X \) (pokud je třeba, superponujeme účinky od více typů vnějšího zatížení).

Souhrn a označení veličin neznámých složek je obecně přehledně uveden v tab. 39. V uvedené tabulce je a ohledem na přehlednost dalšího výpočtu zavedeno rovněž označení jednotlivých typů zatížení symboly \(A \) až \(U \). V případech, kdy různé typy zatížení působí vůbec současně, je stanovena též příslušná výsledná veličina \(X \) (například pro stálé zatížení \(A \), \(B \), \(C \) veličina \(X_1 \), nemí-li tím ztížena možnost sledování různých kombinací (u jeřábů ponecháváme raději dílčí účinky a příslušné složky \(X \) odděleně).

Dále potřebujeme stanovit nejnepříznivější kombinaci všech účinků ovlivňujících dimenze konstrukčních součástí příčné vazby. K tomu účelu se stavíme nejprve přehled silových účinků (momentů, normálních a posouvajících sil) v základních charakteristických řezích 1-1, 2-2, 3-3 (pro dimenzování špičky), 4-4, 5-5, 6-6 (pro dimenzování dříku) a 7-7 (pro dimenzování patky) - viz obr. 141.
Výpočet je účelné provádět v tabulce, například ve formě vyznačené obecně v tab. 40. Výchozí hodnoty zatížení a odpovídajících složek X jsou označeny symboly zavedenými v tab.39.

Výpočet provádíme pro uvolněný sloup v levé řadě sloupů. Hodnoty shrnuté v tab. 40 již umožňují sestavit kombinace zatěžovacích účinků a zjistit silové veličiny rozhodující v jednotlivých řezech pro dimenzování. Výpočet lze přehledně shrnout v tabulce, například jak je naznačeno uspořádáním tab.41.

Číslování kombinovaných účinků v jednotlivých sloupcech odpovídá tab.40.

Pro jednotlivé řezy můžeme potom z tab.41 vyčlenit rozhodující kombinace v jednotlivých úrovních:

a) \(+ M_{\text{max}} (\gamma) \) a odpovídající \(F, T \)
b) \(- M_{\text{max}} (\gamma) \) \(\rightarrow F, T \)
c) \(F_{\text{max}} \) \(\rightarrow + M, T \)
d) \(F_{\text{max}} \) \(\rightarrow - M, T \)
e) \(F_{\text{min}} \) \(\rightarrow + M, T \)
f) \(F_{\text{min}} \) \(\rightarrow - M, T \)
g) \(T_{\text{max}} \) \(\rightarrow M, F \)