

FireDES 1.0

Uživatelský manuál k softwaru FireDES verze 1.0

Obsah

1	Úvo	od	4
2	Gra	fické prostředí	4
	2.1	Okno aplikace	
	2.2	Roletová nabídka	
	2.2.	1 Soubor	5
	2.2.	2 Výpočet	5
	2.2.	3 Zobrazit	6
	2.2.	4 Nápověda	6
	2.3	Pracovní oblast	6
	2.3.	1 Výpočetní geometri	e7
	2.3.	2 Výsledné teplotní p	ole7
	2.3.	3 Ovládací panel	
	2.4	Informační řádek	9
3	Nur	nerický model	9
	3.1	Přenos tepla vedením	9
	3.2	Přenos tepla sáláním	
	3.3	Přenos tepla konvekcí	
4	Ryc	hlý návod	
	4.1	Hranice barev obrázku	

1 Úvod

Software FireDES verze 1.0 je desktopová aplikace určená pro nestacionární numerický výpočet 2D teplotního pole s proměnnou výpočetní geometrií v čase simulující odhořívání asfaltové suspenze mezi kameny. Výpočetní síť v rastru 512 x 256 buněk je importována z obrázkové bitmapy a vzniklá soustava 131 072 lineárních rovnic je řešena Gauss-Seidlovou iterační metodou. Výpočetní geometrie, stejně jako materiálové vlastnosti, okrajové podmínky a výsledné teplotní pole je uloženo do souboru s příponou [*.frd].

Obr. 1. - Vzhled softwaru FireDES verze 1.0

Software FireDES verze 1.0 vzniknul v rámci spolupráce VUT v Brně a firmy K.B.K. fire, s.r.o. v rámci projektu číslo TA04031642 s názvem »Asfalty v silničních tunelech«, realizovaného v programu ALFA Technologické agentury ČR. Autory softwaru jsou doc. Mgr. Tomáš APELTAUER, Ph.D.; Ing. Jiří APELTAUER; Bc. Aliaksandra MISHUK; Ing. Tomáš FEČER a Ing. Josef PLÁŠEK, Ph.D.

2 Grafické prostředí

Grafické prostředí softwaru FireDES je vytvořeno vlastními grafickými objekty, které svým vzhledem respektují systémové nastavení operačního systému Windows XP a vyšší. Grafické prostředí programu je vytvořeno objektem: okno aplikace (viz 2.1.), roletová nabídka (viz 2.2.), hlavní pracovní oblast (viz 2.3.) a informační řádek (viz 2.4.).

2.1 Okno aplikace

Program FireDES je vytvořen v samostatném okně operačního systému Windows XP a vyšším s doporučeným grafickým rozlišením minimálně 900 x 700 obrázkových bodů. Záhlaví okna je doplněno o nabídku minimalizace okna, normalizace okna a zavření okna.

2.2 Roletová nabídka

Roletová nabídka v horní části okna aplikace je složena ze čtyř hlavních položek Soubor (viz 2.2.1.), Výpočet (viz 2.2.2.), Zobrazit (viz 2.2.3.) a Nápověda (viz 2.2.4.). Každá z těchto hlavních nabídek obsahuje další podnabídky.

2.2.1 Soubor

Nabídka Soubor je pro uživatele trvale dostupná a obsahuje položky: Otevřít, Uložit, Uložit jako, Import, Export a Zavřít.

Otevřít	zobrazí dialogové okno pro otevření dříve uloženého soboru programu FireDES s příponou [*.frd].
Uložit	uloží data do aktuálně otevřeného souboru typu [*.frd] na adresu, která je zobrazena v informačním řádku, viz 2.4.
Uložit jako	zobrazí dialogové okno pro uložení bitového soboru programu FireDES s příponou [*.frd].
Import	zobrazí dialogové okno pro načtení výpočetní geometrie pomocí obrázkového soboru s příponou [*.bmp], [*.png], [*.gif], [*.jpg] a [*.tiff]. Výška importovaného obrázku bude zachována a šířka obrazu bude buď oříznuta, nebo opakována.
Export	zobrazí dialogové okno pro uložení aktuálního obrazu v grafickém prvku Výpočetní geometrie (viz 2.3.1.) a Výsledné teplotní pole (viz 2.3.2.) s příponou [*.png].
Zavřít	ukončí běh programu FireDES a zavře okno aplikace.

2.2.2 Výpočet

Nabídka Výpočet je pro uživatele dostupná pouze po importu geometrie nebo otevření souboru [*.frd]. Nabídka Výpočet obsahuje položky: Spustit výpočet, Ukončit výpočet, Tepelná vodivost, Tepelná kapacita, Objemová hmotnost a Histogram barev.

Spustit výpočet	funkcionalita vytvoří výpočetní matici a spustí iterační výpočet Gauss-Seidlovou iterační metodou na 4 výpočetních vláknech.
Ukončit výpočet	funkcionalita předčasně ukončí běžící výpočet na všech výpočetních vláknech a uvolní systémové prostředky.
Tepelná vodivost	zobrazí dialogové okno pro export součinitele tepelné vodivosti λ [W/(m·K)] v jednotlivých bodech výpočetní geometrie o rozměru 512 (sloupců) x 256 (řádků) odpovídající obrazovým bodů.
Tepelná kapacita	zobrazí dialogové okno pro export měrné tepelné kapacity <i>c</i> [kJ/(kg·K)] v jednotlivých bodech výpočetní geometrie o rozměru 512 (sloupců) x 256 (řádků) odpovídající obrazovým bodů.

Uživatelský manuál k softwaru FireDES verze 1.0

Objemová hmotnost	zobrazí dialogové okno pro export objemové hmotnosti ρ [kg/m ³] v jednotlivých bodech výpočetní geometrie o rozměru 512 (sloupců) x 256 (řádků) odpovídající obrazovým bodů.
Histogram barev	zobrazí dialogové okno pro export četnosti barev (stupňů šedi) ve škále RGB v jednotlivých bodech výpočetní geometrie.

2.2.3 Zobrazit

Nabídka Zobrazit je pro uživatele dostupná pouze po importu geometrie nebo otevření souboru [*.frd]. Nabídka Zobrazit obsahuje položky: Časový krok – první, Časový krok – předchozí, Časový krok – následující, Časový krok – poslední a Zobrazit teploty v geometrii.

Časový krok – první	funkcionalita zobrazí v grafickém objektu Výpočetní geometrie (viz 2.3.1.) odpovídající geometrii a v objektu Výsledné teplotní pole (viz 2.3.2.) rozložení teplot v prvním časovém kroku.
Časový krok – předchozí	funkcionalita zobrazí v grafickém objektu Výpočetní geometrie (viz 2.3.1.) odpovídající geometrii a v objektu Výsledné teplotní pole (viz 2.3.2.) rozložení teplot v předchozím časovém kroku.
Časový krok – následující	funkcionalita zobrazí v grafickém objektu Výpočetní geometrie (viz 2.3.1.) odpovídající geometrii a v objektu Výsledné teplotní pole (viz 2.3.2.) rozložení teplot v následujícím časovém kroku.
Časový krok – poslední	funkcionalita zobrazí v grafickém objektu Výpočetní geometrie (viz 2.3.1.) odpovídající geometrii a v objetu Výsledné teplotní pole (viz 2.3.2.) rozložení teplot v posledním časovém kroku.
Teploty v geometrii	funkcionalita zobrazí v grafickém objektu Výpočetní geometrie (viz 2.3.1.) buď teplotní pole, nebo bílé pozadí a to pouze u buněk s materiálem Asfalt, které překročily teplotu hoření, více 3.1.

2.2.4 Nápověda

Nabídka Nápověda je pro uživatele trvale dostupná a obsahuje položku "O programu" po jejímž zvolení se zobrazí dialogové okno se stejným textem jako je v úvodu manuálu, viz 1.

2.3 Pracovní oblast

Hlavní pracovní oblast programu FireDES je opticky rozdělena vertikálním a horizontálním posuvníkem na 3 dílčí grafické části. Pracovní oblast na levé straně zobrazuje importovanou Výpočetní geometrii (viz 2.3.1.) a Výsledné teplotní pole v daném časovém okamžiku (viz 2.3.2.). Pracovní oblast na pravé straně okna je určena pro nastavení nestacionární numerické simulace (viz 2.3.3.).

2.3.1 Výpočetní geometrie

Výpočetní geometrie zobrazuje importovaný obrázek ve stupních šedi v rozlišení 512 x 256 obrazových bodů. Barevná škála všech odstínů šedi <0; 255> je rozdělena uživatelem definovanou hodnotou na Asfalt a Kamenivo (viz 4.1.). Grafický pohyb v této oblasti je možný prostředním tlačítkem myši a zvětšení/menšení obrazu kolečkem myši. Dvojitý klik prostředním tlačítkem myši zobrazí výpočetní geometrii ve výchozím nastavení.

2.3.2 Výsledné teplotní pole

Výsledné teplotní pole zobrazuje barevnou bitmapu v rozlišení 512 x 256 obrázkových bodů v barevné škále 100 barev (barevný přechod: modrá/žlutá/červená). Teplotní pole v daném časovém okamžiku je zobrazeno v barevné škály od 0 °C do maximální teploty v modelu (podle okrajových podmínek). Pohyb v této grafické oblasti je možný prostředním tlačítkem myši a zvětšení/menšení obrazu kolečkem myši. Dvojitý klik prostředním tlačítkem myši zobrazí výpočetní geometrii ve výchozím nastavení.

2.3.3 Ovládací panel

Ovládací panel v pravé části okna je určen pro nastavení numerické simulace, a proto je rozčleněn podle zvyklosti na Výpočetní model (viz 2.3.3.1.), Vlastnosti materiálů (viz 2.3.3.2.), Okrajové podmínky výpočtu (viz 2.3.3.3.), Numerický výpočet (viz 2.3.3.4.) a Výsledky numerické simulace (viz 2.3.3.5.).

2.3.3.1 Výpočetní model

Výpočetní model slouží k nastavení diskretizace importovaného obrazu a nastavení hraniční barvy, která rozdělí importovanou geometrii na Asfalt a Kamenivo, viz 4.1.

Tloušťka vzorku	výška importovaného obrazu se zachovává a mění se pouze šířka obrazu buďto oříznutím nebo opakováním. Proto je možné v numerickém modelu zadat skutečnou výšku vzorku.
Šířka vzorku	šířka vzorku je vždy dvounásobkem výšky z důvodu výpočetního rastru 512 x 256 obrazových bodů.
Rozměr výpočetní sítě	rozměr výpočetní sítě je výška vzorku dělená 256 pixely, tedy výpočetní síť (diskretizace) je ekvidistantní s pevným počtem 512 x 256 výpočetních buněk (počet řešených rovnic 131 072).
Hranice barev obrázku	importovaný obraz je vždy převeden do stupňů šedi <0; 255> a hraniční barva v barevné škále RGB rozděluje tmavé odstíny na Asfalt a světlejší na Kamenivo. Nastavení této hranice se doporučuje podle exportovaného histogramu barev v nabídce Výpočet > Histogram barev (viz 4.1.).

2.3.3.2 Vlastnosti materiálů

Vlastnosti materiálu slouží k definici tepelně-technických vlastností u jednotlivých materiálů Asfalt a Kamenivo v importovaném numerickém modelu.

- Kamenivoje počítáno jako nehořlavý materiál definovaný tepelně-technickými
vlastnostmi a to součinitelem tepelné vodivosti λ [W/(m·K)], měrnou
tepelnou kapacitou c [kJ/(kg·K)] a objemovou hmotností ρ [kg/m³].
- Asfaltje počítán jako hořlavý materiál definovaný tepelně-technickými
vlastnostmi a to součinitelem tepelné vodivosti λ [W/(m·K)], měrnou
tepelnou kapacitou c [kJ/(kg·K)], objemovou hmotností ρ [kg/m³],
teplotou vzplanutí $T_{\rm V}$ [°C] a teplotou hoření $T_{\rm H}$ [°C], viz 3.1.

2.3.3.3 Okrajové podmínky výpočtu

Okrajové podmínky výpočtu slouží k definici okolního prostředí.

Teplota okolního vzduchu	je počítána v konvektivním přenosu tepla jako trvalá teplota okolního vzduchu T_A [°C] a současně slouží v numerickém modelu jako počáteční podmínka nestacionárního výpočtu.
Součinitel přestupu tepla	je vstupním parametrem v konvektivním přenosu tepla α [W/(m ² ·K)] a slouží ke konvektivnímu ochlazování povrhu modelu proudícím vzduchem z okolí o teplotě T_A [°C]
Vzdálenost požáru	slouží k výpočtu tvarového součinitele (view-factor) při přenosu tepla sáláním metodou S2S mezi povrchem modelu a požárem, viz 3.2.
Teplota požáru	je teplota požáru virtuálně hořícího vozu v definované výšce nad povrchem numerického modelu, viz 3.2.

2.3.3.4 Numerický výpočet

Řešený numerický výpočet je nestacionární v čase a proto je nezbytné nastavit počet časových kroků a jejich délka (časová diskretizace).

Počet časových kroků	první, tedy nultý časový krok je počítán jako ustálený stav, od nějž se odvíjejí všechny další časově nestacionární kroky.
Délka časového kroku	délka časového kroku vyjadřuje dobu trvání daných okrajových podmínek v aktuálně řešeném časovém kroku (časová diskretizace).

2.3.3.5 Výsledky numerické simulace

Nestacionární numerická simulace v programu FireDES je počítána v jednotlivých časových krocích s ekvidistantní časovou diskretizací, kterou si definuje uživatel a následně jsou v ní zobrazovány i výsledky.

Časový krok	udává pořadí aktuálně zobrazeného časového kroku
Časový okamžik	udává celkový čas od prvního časového kroku
Teplota na povrchu	je výsledkem tepelné bilance (konvekční a radiační složky) na povrchu modelu v prvním časovém kroku.

2.4 Informační řádek

Informační řádek zobrazuje aktuální pozici kurzoru myši ve směru x [mm] a y [mm], materiál v daném místě Asfalt nebo Kamenivo a teplotu v daném časovém kroku t [°C]. Informační řádek zobrazuje také aktuálně otevřený soubor [*.frd] a systémový čas. Úprava hodnot a pohyb v tohoto grafickém objektu není možný.

3 Numerický model

Numerický model v softwaru FireDES verze 1.0 je založen na dvourozměrném nestacionárním vedení tepla v nehomogenním materiálu s jednorozměrným přenosem sálavého a konvektivního tepla na povrchu importovaného modelu. Obecný tvar algoritmizované rovnice popisující přenos tepla v čase je založen na metodě tepelných bilancí, kdy sálavý tepelný tok q_{rad} [W], konvektivní tepelný tok q_{con} [W] a tepelný tok vedením tepla q_{ved} [W] vyvolají diferenciální změnu teploty ∂T [K] za časový krok $\partial \tau$ [s] v materiálu s měrnou tepelnou kapacitou c [J/(kg·K)] a objemovou hmotností ρ [kg/m³].

$$q_{con} + q_{rad} + q_{ved} = c\rho \frac{\partial T}{\partial \tau}$$

3.1 Přenos tepla vedením

Nestacionární dvourozměrné vedení tepla v nehomogenním numerickém modelu je počítáno v každém časovém kroku Fourierovou rovnicí difuze tepla. Vstupními tepelně-technickými parametry je měrná tepelná kapacita materiálu *c* [J/(kg·K)], objemová hmotnost ρ [kg/m³] a součinitel tepelné vodivosti v řešeném bodě λ [W/(m·K)].

$$\frac{\partial}{\partial x} \left(\lambda \frac{\partial T}{\partial x} \right) + \frac{\partial}{\partial y} \left(\lambda \frac{\partial T}{\partial y} \right) = c\rho \frac{\partial T}{\partial \tau}$$

Pokud je v aktuálně řešeném časovém kroku dosažena teplota vzplanutí Asfaltu T_V [°C] (definována uživatelem v 2.3.3.2.), pak je v daném bodě změněn materiál Asfalt na okrajovou podmínku teploty hoření T_H [°C] (definována uživatelem v 2.3.3.2.). V následujícím časovém kroku je pak v tomto bodě uvažována teplota hoření a materiál

Asfalt ve výpočetní geometrii zmizí. Tímto cyklickým postupem mezi jednotlivými časovými kroky je způsobeno odhořívání buněk s materiálem Asfalt, které v čase mizí.

3.2 Přenos tepla sáláním

Přenos tepla sáláním mezi virtuálně hořícím vozem a povrchem numerického modelu je počítán radiačním modelem "Surface to Surface" (S2S). Tento radiační model S2S předpokládá diatermní prostředí mezi povrchy a rovnoměrné rozložení sálavé tepelné energie podle tvarového součinitele známého, jako view-factor $\boldsymbol{\varphi}$ [-]. Stanovení tohoto tvarového součinitele $\boldsymbol{\varphi}$ [-] je metodou průmětu na polokouli nad povrhem numerického modelu.

Obr. 2. - Schéma radiačního modelu Surface to Surface (S2S).

Výpočet sálavého tepelného toku q_{rad} [W] je v modelu S2S vyčíslen z uživatelem definovaných okrajových podmínek (viz 2.3.3.3.) a to vzdáleností mezi virtuálně hořícím vozem a povrchem numerického modelu, teplotou požáru, teplotou okolního vzduchu a Stefan-Boltzmanovou konstantou σ = 5,67·10⁻⁸ W/(m²·K⁴).

$$q_{rad} = \sigma \cdot \sum_{i=0}^{m} \left(\varphi_i \cdot T_n^4 \right)$$

3.3 Přenos tepla konvekcí

Numerický model předpokládá ochlazování povrchu konvekčním tepelným tokem q_{con} [W] podle Newtonova ochlazovacího zákona. Přenos tepla konvekcí je tedy vyjádřen součinem mezi součinitelem přestupu tepla α [W/(m²·K)] a gradientem teplot mezi povrchem vozovky T_P [°C] a teplotou okolního vzduchu definovanou uživatelem T_A [°C] (viz 2.3.3.3.)

$$q_{con} = \alpha \cdot (T_P - T_A)$$

4 Rychlý návod

Cílem rychlého návodu je seznámení uživatele se softwarem FireDES verze 1.0 a není tedy výukovým textem v oblasti numerického modelování.

- Spusťte software FireDES verze 1.0 dvojím kliknutím na ikonu programu.
- Importujte výpočetní geometrii formou obrázku přes nabídku Soubor > Import
- Prostředním tlačítkem myši a kolečkem je možné si geometrii prohlédnout.
- Kliknutím na položku "**Tloušťka vzorku**" nastavte tloušťku naskenovaného vzorku.
- Kliknutím na položku "**Hranice barev v obrázku**" rozdělte barvou Asfalt a Kamenivo.
- Kliknutím na položky "**Vlastnosti materiálů**" nastavte tepelně-technické vlastnosti.
- Kliknutím na položky "**Okrajové podmínky výpočtu**" nastavte okrajové podmínky.
- Kliknutím na položky "**Numerický výpočet**" nastavte numerickou simulaci.
- Numerickou simulaci spustíte přes nabídku Výpočet > Spustit výpočet
- Informační řádek v dolní části okna aplikace zobrazuje průběh numerické simulace.
- Numerickou simulaci lze předčasně ukončit přes nabídku Výpočet > Ukončit výpočet
- Výsledky simulace lze prohlédnout přes nabídku Zobrazit > Časový krok následující
- Uložení výsledků simulace ve formátu [*.frd] je možné nabídkou Soubor > Uložit jako

4.1 Hranice barev obrázku

Vhodný výpočetní model má světlé Kamenivo a tmavý Asfalt. Právě tato optická vlastnost umožňuje v numerickém modelu importovaném formou obrázku jednoznačně rozlišit Kamenivo od Asfaltu. Software FireDES verze 1.0 proto umožňuje exportovat histogram barev Výpočet > Histogram barev ve formátu [*.csv]. Tento standardní datový soubor umožňuje vynesení grafu například v aplikaci Microsoft Excel. Vhodný výpočetní model se světlým Kamenivem a tmavým Asfaltem má ve vyneseném grafu dvě vlny. Právě nejnižší hodnota mezi vlnami lze považovat za Hranici barev v obrázku, která jednoznačně odděluje tmavý Asfalt a světlé Kamenivo.

