English

Katalog předmětů

Identifikace

KódCD004
NázevSpolehlivost konstrukcí
Course nameTheory of Structures Reliability

Zařazení

Zařazení ve studijních programech

Rozsah výuky

Přednášky2 [hodiny/týden], nepovinná
Cvičení2 [hodiny/týden], povinná

Zabezpečení výuky

ÚstavÚstav stavební mechaniky
GarantDrahomír Novák

Obsahové informace

Student ovládá přímou metodu výpočtu pravděpodobnosti a také aproximační metody, hlavně Cornellův index spolehlivosti. Student ovládá simulační metody Monte Carlo a Latin Hypercube Sampling. Student je schopen (samostatně) odhadovat pravděpodobnost poruchy či jiných jevů pomocí těchto simulačních metod. Student má povědomí o možnostech spolehlivostního návrhu podle norem Eurocode a o spolehlivostním pozadí těchto norem. Student vypracuje semestrální projekt spočívající ve výpočtu pravděpodobnosti jím zvoleného jevu a v prezentaci výsledků před ostatními studenty.
Úvod do teorie spolehlivosti, vysvětlení „spolehlivostního“ pozadí norem pro navrhování (např. Eurocode), odolnost konstrukce a vliv zatížení jako dvě nezávisle proměnné, mezní stavy a filosofie jejich návrhu podle norem, teoretická pravděpodobnost poruchy, podmínky spolehlivosti, rezerva spolehlivosti, index spolehlivosti, numerické simulační metody typu Monte Carlo, Latine Hypercube Sampling, Importace Sampling, základní metody analýzy nevyrovnanosti pravděpodobnosti poruchy návrhu konstrukce podle norem pro navrhování, základní metody statistické, citlivostní analýzy a pravděpodobnostní analýzy v aplikaci na navrhování ocelových konstrukcí. Úvod do rizikového inženýrství.

Harmonogram přednášky

  • 1.Úvod do teorie spolehlivosti, vysvětlení „spolehlivostního“ pozadí norem pro navrhování (např. Eurocode) odolnost konstrukce a vliv zatížení jako dvě nezávisle proměnné, podmínky spolehlivosti, rezerva spolehlivosti.
  • 2.Mezní stavy a filosofie jejich návrhu podle norem.
  • 3.Měřítka spolehlivosti: teoretická pravděpodobnost poruchy, index spolehlivosti.
  • 4.Aproximační metody FORM a SORM.
  • 5.Numerická simulační metoda Monte Carlo, ukázky aplikací.
  • 6.Úloha výpočtového modelu, nejistoty v modelování, hrubé chyby.
  • 7.Numerické simulační metody Latin Hypercube Sampling, Importance Sampling, ukázky aplikací.
  • 8.Náhodné procesy a náhodné pole – metoda stochastických konečných prvků, ukázky aplikací.
  • 9.Pravděpodobnostní optimalizace, otázky životnosti konstrukcí, využití statistické a citlivostní analýzy při navrhování konstrukcí a při verifikaci a kalibrace normových procedur pro navrhování.
  • 10.Weibullova teorie porušení.
  • 11.Nevyrovnanosti pravděpodobnosti poruchy návrhu konstrukce podle norem pro navrhování, možnosti modelování neurčitých veličin.
  • l2.Úvod do rizikového inženýrství.
  • 13.Spolehlivostní software - doplnění, závěr, shrnutí a rekapitulace látky.

Harmonogram cvičení

  • 1. Statistické zpracování náhodné veličiny.
  • 2. Opakovaní pravděpodobnosti a matematické statistiky na příkladech.
  • 3. Výpočty pravděpodobnosti poruchy s použitím Cornellova indexu spolehlivosti.
  • 4. Jednoduchý příklad na simulační metodu Monte Carlo v Excelu.
  • 5. Příklad na metodu Latin Hypercube Sampling v Excelu.
  • 6. Složitější výpočty s pomocí simulačních metod v Excelu.
  • 7. Výpočet předchozích příkladů v softwaru Freet.
  • 8. Odhad pravděpodobnosti poruchy s využitím metody FORM.
  • 9. Aplikace metody Importance Sampling.
  • 10. Úvodní cvičení k semestrálnímu projektu, zpracovaní ukázkového projektu.
  • 11. - 13. Práce na individuálním semestrálním projektu.
Znalosti z pružnosti a plasticity, stavební mechaniky, pravděpodobnosti a statistiky.

Základní literatura předmětu

TEPLÝ, Břetislav a NOVÁK, Drahomír: Spolehlivost stavebních konstrukcí, CERM Brno, 1999

Doporučená literatura ke studiu předmětu

SCHNEIDER, J.: Introduction to safety and reliability, ETH Zurich, 1996