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Summary 

A new efficient technique to impose the statistical correlation when using 
Monte Carlo type method for statistical analysis of computational problems is 
proposed. The technique is based on stochastic optimization method called 
Simulated Annealing. The comparison with other techniques presently used 
and intensive numerical testing showed the superiority and robustness of the 
method. No significant obstacles have been found working also with large 
problems (large number of random variables). Advantages and limitations of 
the approach will be discussed. Remarks on positive definiteness of target 
correlation matrix will be made. Numerical examples show the efficiency of 
the method. 
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1. Introduction 
The aim of statistical and reliability analysis of any computational problem 
which can be numerically simulated is mainly the estimation of statistical 
parameters of response variable and/or theoretical failure probability. Pure 
Monte Carlo simulation (MC) cannot be applied for time-consuming 
problems, as it requires large number of simulations (repetitive calculation of 
response). Small number of simulations can be used for acceptable accuracy 
of statistical characteristics of response using stratified sampling technique 
Latin Hypercube Sampling (LHS) [1, 2, 3, 4, 5, 6]. LHS strategy has been 
used by many authors in different fields of engineering. The classical 
reliability theory introduced the basic concept formally using the response 
variable Z = g(X), where g (computational model) represents functional 
relationship between elements of vector X (uncertainties - random variables). 
The paper is focused on the problem of efficient imposition of statistical 
correlation into quantities of the vector X within framework of MC 
(preferably LHS). Techniques presently available are discussed first. 



2. Sampling and Statistical Correlation 
The NSim samples (where NSim is number of simulations planned for each 
random variable Xi) are chosen from cumulative distribution function (CDF) 
domain in different ways, e. g. randomly by inverse transformation of CDF. In 
following we presume using LHS methodology for sampling. Table 1 
represents sampling scheme, where simulation numbers are in rows and 
columns are related to random variables and NV is number of input variables. 

Table 1 Sampling scheme for NSim deterministic calculations of g(X) 

 

There are generally two problems related to statistical correlation: First, 
during sampling undesired correlation can be introduced between random 
variables (columns in Table 1). For example instead a correlation coefficient 
zero for uncorrelated random variables undesired correlation, e.g. 0.6 can be 
generated. It can happen especially in case of very small number of 
simulations (tens), where the number of combinations is rather limited. 
Second task is to introduce prescribed statistical correlation between random 
variables defined by correlation matrix. Columns in Table 1 should be 
rearranged in such way to fulfill these two requirements: to diminish 
undesired random correlation and to introduce prescribed correlation. The 
efficiency of LHS technique was showed first time in [1], but only for 
uncorrelated random variables. A first technique for generation of correlated 
random variables has been proposed by [4]. The authors showed also the 
alternative to diminish undesired random correlation. The technique is based 
on iterative updating of sampling matrix; Cholesky decomposition of 
correlation matrix has to be applied. The technique can result in a very low 
correlation coefficient (absolute value) if generating uncorrelated random 
variables. But authors of [5] have found that the approach tends to converge to 
an ordering which still gives significant correlation errors between some 
variables. The scheme has more difficulties when simulating correlated 
variables. The correlation procedure can be performed only once, there is no 
way to iterate it and to improve the result. These obstacles stimulated the 
authors of [5], they proposed so called single-switch-optimized ordering 
scheme. Their approach is based on iterative switching of the pair of samples 
of Table 1. The authors showed that theirs technique clearly performs well 

Simulation Var. 1 Var. 2 Var. 3 … Var. NV 
1 x1, 1 x1, 2 x1, 3 … x1, NV 
2 x2, 1 x2, 2 x2, 3 … x2, NV 

… … … … … x3, NV 
NSim xNSim, 1 xNSim, 2 xNSim, 3 … xNSim,NV 



enough, but it may still converge to a non-optimum ordering. A different 
method is needed for simulation of both uncorrelated and correlated random 
variables. Such method should be efficient enough: reliable, robust and fast. 

Note that the accurate best result is obtained if all possible combinations of 
ranks for each column (variable) itself in Table 1 are treated. It would be 
necessary to try extremely large number of rank combinations (NSim!)NV-1. It is 
clear that this rough approach is hardly applicable in spite of the fast 
development of computer hardware. Note that we leave the concept of 
samples selection from N-dimensional marginal PDF (with different partial 
components) and prescribed covariance structure (correlation matrix). 

3. Stochastic Optimization Simulated Annealing 
The imposition of prescribed correlation matrix into sampling scheme can be 
understood as an optimization problem: The difference between prescribed K 
and generated S correlation matrices should be as small as possible. A suitable 
measure of quality of overall statistical properties can be introduced, e.g. the 
maximal difference of correlation coefficients between matrices Emax or a 
norm, which takes into account deviations of all correlation coefficients: 
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The norm E has to be minimized from the point of view of definition of 
optimization problem: the objective function is E and the design variables are 
related to ordering in sampling scheme (Table 1). It is well known that 
deterministic optimization techniques and simple stochastic optimization 
approaches can very often fail to find the global minimum. Such technique 
fails in some local minimum and then there is no chance to escape from it and 
to find the global minimum. It can be intuitively predicted that in our problem 
we are definitely facing the problem with multiple local minima. Therefore we 
need to use the stochastic optimization method, which works with some 
probability of escaping from local minimum. The simplest form is the two-
member evolution strategy, which works in two steps: Mutation and selection.  

1. Step 1 (mutation): In generation a new arrangement of random permuta-
tions matrix X is obtained using random changes of ranks, one change is 
applied for one random variable. Generation should be performed ran-
domly. Objective function (norm E) can be then calculated using newly 



obtained correlation matrix - it is usually called “offspring”. The norm E 
calculated using former arrangement is called “parent”. 

2. Step 2 (selection): The selection chooses the best norm between the “par-
ent” and “offspring” to survive: For the new generation (permutation table 
arrangement) the best individual (table arrangement) has to give a value 
of objective function (norm E) smaller than before. 

Such approach has been intensively tested using numbers of examples. It was 
observed that the method in most cases could not capture the global minimum. 
It failed in a local minimum and there was no chance to escape from it, as only 
improvement of the norm E resulted in acceptance of “offspring”.  
The step “Selection” can be improved by Simulated Annealing approach (SA), 
a technique, which is very robust concerning the starting point (initial 
arrangement of permutations table). The SA is optimization algorithm based 
on randomization techniques and incorporates aspects of iterative 
improvement algorithms. Basically it is based on the Boltzmann probability 
distribution:  
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where ∆E is difference of norms E before and after random change. This prob-
ability distribution expresses the concept when a system in thermal equilib-
rium at temperature T has its energy probabilistically distributed among all 
different energy states ∆E. Boltzmann constant kb relates temperature and en-
ergy of the system. Even at low temperatures, there is a chance (although very 
small) of a system being locally in a high energy state. Therefore, there is a 
corresponding possibility for the system to move from a local energy mini-
mum in favor of finding a better minimum (escape from local minimum). 
There are two alternatives in step 2 (mutation). Firstly, new arrangement (off-
spring) results in decrease of the norm E. Naturally offspring is accepted for 
new generation. Secondly, offspring does not decrease the norm E. Such off-
spring is accepted with some probability (2). This probability changes as tem-
perature changes. As the result, there is a much higher probability that the 
global minimum is found in comparison with deterministic methods and sim-
ple evolution strategies.  
In our case kb can be considered to be one. In classical application of SA 
approach for optimization there is one problem: how to set the initial 
temperature? Usually it should be considered heuristically. But our problem is 
constrained: Acceptable elements of correlation matrix are always from 
interval <-1; 1>. Based on this fact the maximum of the norm (1) can be 



estimated using prescribed and hypothetically “most remote” (unit correlation 
coefficients, plus or minus). This approach represents a significant advantage: 
The heuristic estimation of initial temperature is neglected; the estimation can 
be performed without the guess of the user and the “trial and error” procedure. 
The initial temperature has to be decreased step by step, e.g. using reduction 
factor fT after constant number of iterations (e.g. thousand) Ti+1 =Ti * fT. The 
simple case is to use e.g. fT = 0.95, note that more sophisticated cooling 
schedules are known in SA-theory [7, 8]. 

4. Numerical Examples 

4.1 Correlated Properties of Concrete 

In order to illustrate the efficiency of proposed technique, consider an example 
of correlation matrix, which corresponds to properties of a concrete. They are 
described by 7 random variables; parametric study of this example is given 
with emphasis on influence of number of simulations is given in [6]. It can be 
seen [6] that as number of simulations increases, correlation matrix is closer to 
the target one. Using standard PC correlating with SA took about one second. 
Fig. 1 shows the decrease of norm E during SA-process. Such figure is typical 
and should be monitored.  

Fig. 1 The norm E (error) vs. number of random changes (rank switches). 

 

Another example of utilization is given in [9] (this proceedings), where 
generation of uncorrelated random variables was needed to represent material 



strength over a structure instead of random field approach. 

In real applications of simulation technique in engineering (e.g. LHS), 
statistical correlation represents very often a weak part of a priori assumptions. 
Because of this pure knowledge a prescribed correlation matrix on input can 
be non-positive definite. The user can have difficulties to update correlation 
coefficients in order to make the matrix positive definite. The example 
presented here demonstrates that when non-positive definite matrix is on 
input, SA can work with it and resulting correlation matrix is as close as 
possible to originally prescribed matrix but the dominant constraint (positive 
definiteness) is satisfied automatically. Consider a very unrealistic simple case 
of statistical correlation for three random variables A, B a C according to the 
matrix K (columns and rows correspond to the ranks of variables A, B, C):  

The correlation matrix is obviously not positive definite. Strong positive 
statistical correlation is required between variables (A, B) and variables (A, 
C), but strong negative correlation between variables (B, C). It is clear that 
only compromise solution can be done. The method resulted in such 
compromise solution without any problem, S1 (number of simulations NSim was 
high enough to avoid limitation in number of rank combinations). Final values 
of norms are included on the right side: first line corresponds to norm Emax (1) 
second line (bold) means overall norm Eoverall (1). This feature of the method 
can be accepted and interpreted as an advantage of the method. In practical 
reliability problems with non-positive definiteness exist (lack of knowledge). 
It represents the limitation when using some other methods (Cholesky 
decomposition of prescribed correlation matrix).  

In real applications it can be a greater confidence to one correlation coefficient 
(good data) and a smaller confidence to another one (just estimation). Solution 
of mentioned problems is weighted calculations of both norms (1). For exam-
ple the norm Eoverall  (1) can be modified in this way: 
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where wi,j is weight of certain correlation coefficient. Several examples of 
choices and resulting correlation matrices (with both norms) are above. 
Resulting matrices S2 and S3 illustrate significance of proportions among 
weights. Weights are in lower triangle and matrix K is targeted again. Weights 
of accentuated members and resulting values are underlined. 

5. Conclusions 
The new efficient technique of imposing the statistical correlation when using 
Monte Carlo type simulation is suggested. The technique is robust, efficient 
and very fast. The method is implemented in a multipurpose software package 
FREET based on LHS for reliability analysis of computational problems. The 
method has several advantages in comparison with former techniques: 

1. The technique uses only random changes of ranks in sampling matrix. 
Number of simulations does not increase CPU time in practical cases, but 
for increasing number of random variables more SA simulations is needed 
to achieve a good accuracy. The technique is robust, Simulated Annealing 
can be terminated if the error (norm) is acceptable (users decision).  

2. The problem of imposing statistical correlation is constrained precisely; 
therefore the parameters for annealing can be estimated.  

3. The technique enables emphasizing of important coefficients using 
weights while others can be suppressed. 
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