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Abstract The paper presents a follow-up study of
numerical modeling of complicated interplay of size
effects in concrete structures. The major motivation
is to identify and study interplay of several scaling
lengths stemming from the material, boundary condi-
tions and geometry. Methods of stochastic nonlinear
fracture mechanics are used to model the well pub-
lished results of direct tensile tests of dog-bone spec-
imens with rotating boundary conditions. Firstly, the
specimens are modeled using microplane material and
also fracture-plastic material laws to show that a por-
tion of the dependence of nominal strength on structural
size can be explained deterministically. However, it is
clear that more sources of size effect play a part, and we
consider two of them. Namely, we model local material
strength using an autocorrelated random field attempt-
ing to capture a statistical part of the combined size
effect, scatter inclusive. In addition, the strength drop
noticeable with small specimens which was obtained
in the experiments could be explained either by the
presence of a weak surface layer of constant thickness
(caused e.g. by drying, surface damage, aggregate size
limitation at the boundary, or other irregularities) or
three dimensional effects incorporated by out-of-plane
flexure of specimens. The latter effect is examined by
comparison of 2D and 3D models with
the same material laws. All three named sources
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(deterministic-energetic, statistical size effects and the
weak layer effect) are believed to be the sources most
contributing to the observed strength size effect; the
model combining all of them is capable of reproduc-
ing the measured data. The computational approach
represents a marriage of advanced computational non-
linear fracture mechanics with simulation techniques
for random fields representing spatially varying mate-
rial properties. Using a numerical example, we docu-
ment how different sources of size effects detrimental
to strength can interact and result in relatively com-
plicated quasibrittle failure processes. The presented
study documents the well known fact that the experi-
mental determination of material parameters (needed
for the rational and safe design of structures) is very
complicated for quasibrittle materials such as concrete.

Keywords Size effect · Scaling · Random field ·
Weak boundary · Crack band · Dog-bone specimens ·
Quasibrittle failure · Crack initiation · Stochastic
simulation · Characteristic length · Weibull integral ·
Microplane model · Fracture-plastic model

1 Introduction

This paper studies interacting size effects on the nomi-
nal strength of concrete structures using a combination
of finite element software enabling nonlinear analy-
ses and probabilistic methods. The target is to identify
possible sources of size effect, study them and model
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28 M. Vořechovský, V. Sadílek

them together in one complex model. We want to show
how the different sources interact with each other. We
are particularly interested in the interaction of different
material length scales and the effect of such interaction
on strength size effect.

The work is related to previous papers by other
authors among which the most influential is the work
by Gutiérrez and de Borst (2002), dealing with deter-
ministic and statistical lengths and their role in size
effect. Several very influential works were produced in
the 1990s; Carmeliet and Hens (1994) and Carmeliet
and de Borst (1995). They combined a simple non-
local damage model and simulation of a bi-variate ran-
dom field of material properties (damage threshold and
strain softening) within a single finite element com-
putational model, and studied the two different length
parameters: the characteristic length of the nonlocal
damage model, and the correlation distance for the ran-
dom field. The illustrated example presenting finite-
element analyses of direct-tension tests has shown that
the specimen exhibits structural behavior that is repre-
sentative of nonsymmetrical deformation, with a non-
linear stress-displacement curve. It has also shown that
the two sources of size effect can be modeled satis-
factorily well. Their model utilizes experience gained
from a paper by Mazars et al. (1991), who also studied
the two sources of size effect in cementitious materials
using a continuous damage model, and compared the
results with experiments on both notched and unnot-
ched bending beams. Unfortunately, they did not con-
sider more than one random property, and ignored its
spatial correlation. The interplay of deterministic and
statistical size effects is one of the central topics in PhD
thesis by Vořechovský (2004b). Some analytical results
supported by a large computational case study of the

Malpasset dam failure are published by Vořechovský
et al. (2005), Bažant et al. (2007b).

Even though we have the ambition to study the size
effect phenomena in general terms, we have decided
to illustrate the problem using a particular example for
the sake of easier comprehension and transparency. In
particular, we numerically study the well published
experimental results of direct tensile tests on dog-bone
specimens with rotating boundary conditions of vary-
ing size (size range 1:32) performed by van Vliet and
van Mier and summarized in the PhD thesis by van Vliet
(2000) and in papers by van Vliet and van Mier (1998,
1999, 2000a,b), van Mier and van Vliet (2003), Dyskin
et al. (2001). We are interested in the series of “dry”
concrete specimens A to F (dimension D varying from
50 to 1,600 mm, see Fig. 1 and Table 1); a series accom-
panied by tensile splitting verification tests. The paper
attempts an explanation of the interacting size effects
on the mean and variance of nominal strength by a com-
bination of random field simulation of local material
properties and “weak boundary” effects, and a nonlin-
ear fracture mechanics simulation based on a cohesive
crack model. There has been much effort expended on
different explanations of the experimentally obtained
size effects on strength from several different points of
view. Firstly, the effect of a non-uniform distribution of
strains in the smallest cross-section was studied using
simple linear constitutive law (van Vliet and van Mier
1999, 2000a), and a separation of structural and mate-
rial size effects was discussed. Van Vliet and van Mier
(1999) argue that most of the experimentally observed
size effect could be explained by strain/stress gradients
that develop due to several reasons. The results were
also compared to the Weibull theory (Weibull 1939)
based on the weakest-link model which was found to

r

D

D

D/4

D/4

D/5

rotating stiff

monitored
vertical
displacements

andu uupp low

0.6 D

weakened
layer
thickness

F,u1600

24
00

FD ECBA

A

F,u

e=D/50F,u

(b)(a) (c)

Fig. 1 (a) Dog-bone series (specimens A to F) tested by van
Vliet and van Mier (1998); (b) elastic principal stress field;
(c) 2D model in ATENA software with a surface layer. Strain

ε is calculated using the separation �u = uupp − ulow of two
points over the control length lc = 0.6D
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Computational modeling of size effects 29

Table 1 Experimental data.
Specimens’ dimensions,
nominal strengths, sample
size, c.o.v. and
corresponding Weibull
modulus m

D r = 0.725D σN mean Specimens (#) c.o.v [%]
(mm) (mm) (std. dev.) (MPa) (shape par.)

A 50 36.25 2.54 (0.41) 10 16.2 (7.27)

B 100 72.5 2.97 (0.19) 4 6.28 (19.7)

C 200 145 2.75 (0.21) 7 7.67 (16.0)

D 400 290 2.30 (0.09) 5 4.02 (31.1)

E 800 580 2.07 (0.12) 4 5.91 (21.0)

F 1600 1160 1.86 (0.16) 4 8.67 (14.1)

fit the mean nominal strength of sizes B to F (van
Vliet and van Mier 1998, 1999, 2000a,b, van Mier
and van Vliet 2003). The slope of the mean size effect
curve corresponds to a Weibull modulus of 12, which
does not coincide exactly with the measured scatter
of strengths at each size. However, this is required in
the Weibull type of size effect. Secondly, the effect of
Gaussian stress fluctuation with non-uniform loading
was studied by Dyskin et al. (2001), and the developed
model, employing a limiting distribution of indepen-
dent Gaussian variables with linear trend, agrees with
the experimental data very well. Van Mier and van Vli-
et also compared the data to the “Delft lattice model”
using a simple local elastic-brittle material with both
regular and random lattices, and they obtained good
results. The statistical part of experimentally obtained
size effect has also been modeled by Lehký and Novák
(2002), employing a limiting distribution of indepen-
dent Weibull variables describing the distribution of
strength.

The present work extends a previous work presented
by Vořechovský (2007) in several ways. In this paper,
we firstly try to explain the mean size effect curve
with deterministic effects (not taking into account the
local material strength with a random field). To do so,
two material laws are compared, namely the micro-
plane material model and fracture-plastic model imple-
mented as NLCEM model in ATENA software
(Červenka and Pukl 2005). There is a partial expla-
nation of the decreasing slope of the mean size effect
curve (MSEC) in a double-logarithmic plot (nominal
strength versus characteristic size). However, the strong
decrease in the mean strength of the smallest specimen
A is believed to be sufficiently captured by a modeled
weak surface layer with a thickness of about 2 mm.
A parametric study of the influence of “weak layer”
thickness and the percentage reduction in the layer’s

strength compared to the bulk strength was presented
by Vořechovský (2007). Next, we approximate the local
material strength via an autocorrelated random field,
attempting to capture the statistical size effect, scatter
inclusive, and finally combine all sources together. All
above named studies are performed in two dimensions.
In order to quantify possible effects of out-of-plane
flexure we have performed three dimensional model-
ing taking into account the reported non-uniformity of
stiffness over the specimens’ width.

2 Experiments

The experiments by van Vliet and van Mier are well
documented in the seven references cited in the intro-
duction. We will briefly mention only those necessary
data needed to explain the computational model: all
other details can be found in the cited publications.
Dog-bone shaped specimens were loaded in uniaxial
tension with geometrically scaled eccentricity from the
vertical axis of symmetry e = D/50. The loading plat-
ens were allowed to rotate freely in all directions around
the loading points at the top and bottom concrete faces.
The loading platens were glued to the concrete. Six dif-
ferent sizes were tested; all specimens were geometri-
cally similar (see Fig. 1a). The specimen thickness was
kept constant (b = 0.1 m), implying a transition from
plane strain like conditions at the smallest size to plane
stress conditions for the large sizes. The concrete mix-
ture was reported to have an average cube compres-
sive strength of 50 MPa and a maximum aggregate size
dmax = 8 mm.

For comparative purposes, it is necessary to define a
nominal strength σN. Since the eccentricity of the load-
ing points has been geometrically scaled in both experi-
ments and numerical models, we can ignore its effect on
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30 M. Vořechovský, V. Sadílek

the linear state stress field and define the nominal stress
σ simply as a function of the characteristic dimension
D (maximum specimen width), instantaneous tensile
force F applied at the concrete faces at the eccentric-
ity e and the cross sectional area in the middle of the
specimen A (= 0.6Db = 0.06D m2):

σ = F

A
(1)

Having defined the nominal stress, we define the nom-
inal strength σN as the nominal stress attained at max-
imum loading force (σN = Fmax/A).

Note that the smallest specimen size A has a width in
the ‘neck-area’ of only 30 mm. Compared to the max-
imum aggregate size of 8 mm, it must be questioned
whether such a small specimen (being too small in size
to be considered a representative volume element) can
still be treated identically to the rest of the series.

The authors of experiments have reported that spec-
imens were casted such that, during manufacturing of
specimens, the back surfaces were at bottom (mould
side) and that casting took place in three layers
van Vliet and van Mier (1999). This procedure is likely
to induce stiffness differences in the direction of cast-
ing which could be more pronounced in relatively thick
small specimens rather than in large specimens, see
specimen A in Fig. 1a and Fig. 6 right.

3 The deterministic models

3.1 Two-dimensional modeling

Most of the present studies were performed with 2D
models. We start with microplane modeling and com-
pare the results to fracture-plastic models later on.

A strong contribution to the non-uniformity of the
nominal strength is the “energetic-deterministic” size
effect caused by an approximately constant fracture
process zone (FPZ) size with stress redistribution
in specimens of all sizes; see e.g. Bažant and Planas
(1998). This effect can be modeled e.g. by the finite
element method provided that the fracture energy and
the whole shape of pre- and post-peak behavior is cor-
rectly introduced. We created the deterministic model
in the ATENA software package (Červenka and Pukl
2005), using Bažant’s microplane material model (ver-
sion 4) (Bažant et al. 2000) and the crack band model
(Bažant and Oh 1983) as a simple regularization. The

basic idea of the crack band model for strain-soften-
ing in tension (and also of the model of Pietruszczak
and Mróz (1981) for strain-softening in shear) is to
modify the material parameters controlling the smeared
cracking such that the energies dissipated by large and
small elements per unit area of the crack band would
be identical. The choice of the microplane constitutive
model is supported by the fact that M4 seems to be
the best model able to capture the complex behavior
of concrete under general conditions. The crack band
model has been chosen as the only technique widely
used and incorporated in commercial codes due to its
simplicity. The M4 microplane model does not explic-
itly work with strain decomposition into elastic and
inelastic parts and therefore the so-called equivalent
localization element (Červenka et al. 2005) has been
implemented into ATENA. This technique removes the
problem of the spurious mesh size dependence of the
results, while a certain dependence on the mesh orien-
tation still remains (for a concise overview of various
numerical methods and their ability to analyse locali-
zation and failure in engineering materials see de Borst
et al. (2004)).

Specimens were loaded by deformation increments
and the force F was monitored, see Fig. 1c. We ignored
the transition from plane strain to plane stress condi-
tions with growing specimen size in two-dimensional
models where we have modeled the whole series of
sizes with a plane stress model. Verifications using
three dimensional models follow. Based on the infor-
mation about the average cube compressive strength of
50 MPa, ATENA generated a set of consistent micro-
plane parameters: K1 = 1.5644 · 10−4, K2 = 500,
K3 = 15, K4 = 150 (Caner and Bažant 2000), crack
band cb = 30 mm, number of microplanes 21 (an effi-
cient formula that still yields acceptable accuracy
involves 21 microplanes to integrate over a sphere
(Bažant and Oh 1986)). The parameters K1 through
K4 are phenomenological microplane model param-
eters and they do not have a physical meaning; they
can be understood as scaling parameters of given curve
shapes (criteria) describing the so-called “boundaries”.
Briefly, K1 plays a role in relations for the tensile nor-
mal boundary (needed for tensile cracking, fragment
pullout and crack closing), and also compressive devi-
atoric and tensile deviatoric boundaries (spreading and
splitting); K1 and K2 affect shear boundary (friction);
K1, K3 and K4 are present in the relations for both
tensile and compressive volumetric boundaries (pore
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Fig. 2 Comparison of deterministic nominal stress-strain dia-
grams obtained with microplane model and fracture-plastic
model for a range of structure sizes. Bottom right: nominal
strength dependence on structure size obtained with the two
material models compared to experiment average strengths with
errorbars

collapse, expansive breakup); for a full description see
Bažant et al. (2000).

We changed the crack band to 8 mm, a value that
enables us to explain most of the experimentally
obtained size effect, see Fig. 2 bottom right. The crack
band size is related to the fracture energy of the mate-
rial and controls the size at which the continuum com-
putational model undergoes transition from relatively
ductile to elastic-brittle failure (transition between two
horizontal asymptotes in the size effect plot, see Fig. 2
bottom right). By varying the strength related param-
eter K1 (while keeping the characteristic length �ch or
cb constant), the whole curve moves up and down as
a rigid body. Another noticeable fact is that in the size
effect plot the curve can be shifted right or left as a
rigid body just by changing cb. More specifically, the
deterministic nominal strength computed for a certain
size of D using a cb value is also the nominal strength
of size s D computed with crack band width s cb (s is a
positive scaling parameter):

for ∀s > 0: σ det
N (D, cb) = σ det

N (s D, s cb) (2)

This has a direct implication noticed already by other
authors before for the case of a fictitious crack (Bažant
and Planas 1998): the nominal structural strength
depends, when all other parameters are fixed, on the
dimensionless ratio of D and �ch. The fictitious crack
can be shown to be equivalent to the smeared crack

band model for mode I fracture under consideration
(see Bažant and Planas 1998, p. 255). The character-
istic length �ch has a linear relationship with the crack
band width cb (Bažant and Planas 1998). In our case,
therefore, we can write that the nominal strength is
proportional to the tensile strength times a function
of the ratio between D and �ch; a fact exploited in
Eq. 4 and discussed later on in this paper. It should not
remain unnoticed that Eq. 2 has a direct relation to the
Vashy-Buckingham�-theorem (Vashy 1892, Bucking-
ham 1914) on dimensional analysis (see e.g. Barenblatt
1996). It turns out that, when the ratio between D and
cb (or �ch) is close to unity, the structure is in transition
between two important asymptotes: plastic and elas-
tic solutions. More precisely, if the structure is much
smaller than �ch (D/cb → 0), the behavior is fully
elastic-plastic and can be simply predicted based on
the knowledge of direct tensile strength ft (the yield-
ing point in this case). On the other hand, if the struc-
tural size D is much larger compared to cb (or �ch), the
behavior is linear elastic with a sudden failure at the
onset of reaching the direct tensile strength ft at any
point in the material, see e.g. Vořechovský et al. (2005),
Bažant et al. (2007b). In this case, what matters is the
profile of principal tensile stresses over the structure,
see Fig. 1b.

From this we can also deduce the value of
σN(∞, cb) ≡ σN,∞, it being the large size asymp-
tote in Fig. 2 bottom right. Simply, it is the nominal
stress when the extreme principal tension reaches the
direct tensile strength ft . Note that in the definition
of σN the eccentricity of loading and possible stress
concentration in the specimen’s neck are not reflected
and therefore ft �= σN,∞. The ratio of ft/σN,∞ can
be deduced by considering two effects: (i) stress con-
centration due to curved sides of the specimens and,
(ii) eccentricity of the loading force. The first factor
equals 1.24 (ratio between the maximum stress attained
at the curved boundary and a remote uniform stress).
The second factor of 1.2 can be computed from normal
stress due to centric normal force plus bending moment
= F/A(1 + 6e/0.6D) = F/A(1 + 0.2). The multiple
of these two factors 1.24 × 1.2 = 1.49 agrees well
with FEM simulations of the eccentrically loaded large
sized specimens giving ft/σN,∞ = 1.49.

Regarding the asymptotic strength of small speci-
mens σN(0, cb) ≡ σN,0 one can argue that a speci-
men made of ideal elastic-plastic material reaches its
maximum force when the whole neck cross section is
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yielding (at stress equal to ft). Therefore the theoretical
limit nominal strength equals ft , no matter the eccen-
tricity and the curved shape. Our FEM simulations with
both microplane and NLCEM models predict the max-
imum nominal stress of small specimens at σN,0 ≈
0.95 ft = 1.42 σN,∞. This value is, at the same time,
the maximum size effect that can be captured determin-
istically by considering stress redistribution (≈ 42%
reserve), see the right hand ordinate in Fig. 2.

In order to compare the way microplane model cap-
tures the energetic-deterministic size effect due to stress
distribution, we performed a parallel study with the
fracture-plastic model named ‘NLCEM’ (nonlinear
cementitious) in ATENA software. In this model the
conventional parameters are used to define a mate-
rial law. The most relevant are: the cube compressive
strength of 50 MPa (we have set it equal to the one in mi-
croplane model and used it to generate the implicit val-
ues for the rest of the material parameters applied in the
integration points mentioned next), uniaxial compres-
sive strength fc = 42.5 MPa, modulus of elasticity E
(set to 36.95 GPa such that the stiffness initial
of microplane model and NLCEM models were equal),
uniaxial tensile strength ft = 3.2 MPa, fracture energy
GF = 200 N/m (exponential crack opening obtained
experimentally by Hordijk 1991). Using this set of
material parameters we have performed determinis-
tic computations with a wide range of structure sizes
(overlapping the tested range). Comparison of stress-
strain diagrams obtained with the two material models
is presented in Fig. 2 together with the size effect plot
in the transition zone. It can be seen that the overall
ideal plastic behavior is the limiting behavior for the
smallest specimens while elastic-brittle-like curves are
obtained for the large sizes. Note, that the transition is
different with NLCEM and microplane models. When
the structural size is very small, microplane model pre-
dicts strong pre-peak stiffness reduction even though
the initial stiffness is equal to the one in NLCEM mate-
rial model. The large size asymptotic strength is equal
for both models and so does the small size asymptotic
strength. The transition though is slightly different and
depends on the boundaries in microplane model and
crack-opening curve with other material parameters in
NLCEM model.

The role of fracture energy in NLCEM model for
scaling of structural strength is very similar to the role
of crack band in the microplane model in Eq. 2. It can
be easily checked that, for fixed E and ft:

for ∀s > 0: σ det
N (D, GF) = σ det

N (s D, s GF) (3)

It is because the Irwin’s characteristic length
�ch = E GF/ f 2

t scales linearly with GF and therefore
varying GF is equivalent to varying �ch. In other words,
the size effect plot in Fig. 2 bottom right can be shifted
right or left as a rigid body just by changing GF: σ det

N
(D, GF/s) = σ det

N (s D, GF), see Fig. 4. Not only the
nominal strength is equal for the scaled structure. If
both the structure size and fracture energy in NLCEM
model are scaled s times, the stress and displacement
fields take the same values over the scaled coordinates.
The same was true in the case of microplane modeling:
if both the structure and crack band width is scaled s
times, the stress and displacement fields take the same
values over the scaled coordinates. This fact simplifies
the preprocessing of numerical models of a size effect
series: simply create a model of one size only and vary
GF (or cb) instead of D.

3.2 Effect of varied GF and cb at element and
structural levels

We have performed simple numerical experiments with
ATENA software using which we document the effects
of varied GF and cb on tensile response of (i) one ele-
ment and (ii) dog-bone specimens.

Fig. 3 presents stress-strain (force-displacement)
diagrams of one square finite element of unit size loaded
in uniaxial tension. The top row shows the situation
with NLCEM model, in which the original fracture
energy GF = 2, 000 N/m is multiplied by several fac-
tors s ranging from 1/20 to 10 ( ft and E were kept
constant at values mentioned above). The bottom row
shows a similar numerical experiment in microplane
model with original crack band width cb = 30 mm mul-
tiplied by factors s ranging from 1/10 to 32 (again, the
other parameters were kept as before). It is known (see
e.g. Bažant and Planas 1998) that when using the crack
band technology, the finite element can be imagined
to consist of an inelastic part with softening behav-
ior and a perfectly elastic spring coupled in a series
(see Fig. 3 top left). It can be seen that both the initial
(spring) stiffness E and tensile strength are not affected
by variations of GF or cb. The area below the curves
is almost perfectly proportional to the scaling factor s
(see the right hand side plots in Fig. 3 of stress against
scaled inelastic strains, that collapse into one curve).
There is one condition, though, for the scalability of
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fracture energy, that is thoroughly described in sect.
8.6.4 of Bažant and Planas (1998): the finite element
can not be arbitrarily large compared to the character-
istic length (or cb). Or, equivalently in NLCEM model,
the fracture energy of a single finite element must be
greater than the elastic strain energy accumulated in the
spring at the peak stress: G(E)

F > f 2
t /(2E). The prob-

lem is that snap-back behavior can not be captured by
the nodal displacement controlled computation. There-
fore, one can see that when s is small in the two material
models, the finite elements dissipate more energy than
they should. If no other criterion (such as those recom-
mended in Bažant and Planas (1998), sect. 8.6) can be
implemented in the finite element program used, cau-
tion must be paid that the element fracture energy of
the crack band is greater than the elastic energy of the
spring. The finite element fracture energy in our case
is simply G(E)

F = GF/L(E), where L(E) is the width
of elements perpendicular to the direction of cracking.
We have checked that this criterion was fulfilled in all
dog bone models studied in this paper. This was one
important limitation when exploiting Eqs. 2 and 3 for
the simplified modeling of size effect tests and applies
to modeling of very large structures using the reference
sized model with an identical mesh (and with reduced
GF [cb] in NLCEM [microplane] model respectively).
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Another limitation when using the reference size to
mimic a very large size is that if the numerical mesh is
kept in the whole series, the resolution of stresses (e.g.
in the fracture process zone) might become insufficient.

Since the dog bone specimens are not loaded just by
uniform tension, stress redistribution can take place. It
was concluded that varying fracture energy (or crack
band width) is in fact equivalent to varying the propor-
tion between structural size and characteristic length
(characterizing the material heterogeneity scale). In
order to document this numerically using the dog bone
specimens models, we have varied the fracture energy
GF by multiplying it with parameter s (s = 2, 4, 8, 16,

32 and their inverses, the largest to the smallest ratio
equals 1:1,024) and plotted the nominal strength of
specimens as a representative parameter against the
structural size (which was kept constant). If we, how-
ever, shift the points towards the size D/s, the points
fall exactly on the size effect curve computed with a
constant GF and varied size D, see Fig. 4. The nominal
strength dependence on size in the studied case of dog-
bone specimens for instance, can be fitted very well
with the following formula (Bažant and Planas 1998):

σ det
N (D) = σN,∞

(
1 + Db

D + l p

)
(4)

where, aside from Db ≈ 300 mm, l p is a second deter-
ministic characteristic length controlling the center of
transition to the left ‘plastic’ horizontal asymptote. The
value of l p can be deduced from the ratio of ‘ideal-
plastic’ limiting strength and ‘elastic-brittle’ limiting
strength ηp = (1 + Db/ l p) ≈ 1.42; therefore l p ≈
714 mm (which happens to be quite close to the Irwin’s
characteristic length �ch = E GF/ f 2

t ≈ 720 mm).
Formula (4) gives the transition from perfectly plastic
behavior for D/ l p → 0 (corresponding to an elastic
body in which the crack is filled with a perfectly plastic
glue), through quasibrittle behavior, to perfectly brit-
tle behavior for D/Db → ∞. For the meaning of the
parameters and justification of the formula, the reader
is referred e.g. to Bažant et al. (2007b) and references
therein.

It is an occasional practise to study a random model
response of structures with varied (randomized) frac-
ture energy (keeping an identical crack opening law
curve shape). If the size effect relation such as the one in
Eq. 4 is known, the probabilistic distribution of random
strength σN for a given size D can be written analyti-
cally just using a random variable transformation. The
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Fig. 4 Strength scaling using varying fracture energy GF (or cb)
in a logarithmic size effect plot

situation is more complicated when randomizing the
tensile strength and material toughness simultaneously.

3.3 Three-dimensional modeling

We have mentioned that the two dimensional models
were created assuming plane stress conditions. One
might get an impression that this simplification could
be a source of an error, because the smallest specimen
width is not negligible compared to other dimensions,
see Fig. 1 left. Also, one can argue that a 2D model can
be insufficient, because in the experiment, the hinges
(pendulum system) could freely rotate in all directions
enabling also out of plane rotation.

We have modeled the dog-bone specimens of all
sizes in the three dimensional version of ATENA
program using the same material law (fracture-
plastic model NLCEM). The study was performed (i)
with uniform stiffness distribution and also (ii) with a
three-layer material of three different Young’s
moduli E .

In the homogeneous case we have used the same
elastic modulus as in the two-dimensional models.
There is nearly no difference between the 2-D and
3-D model responses. The maximum forces and the
σ–ε diagrams are almost identical, see Fig. 5. The only
marginal difference observed with small specimens was
that the strains obtained in the core of the neck cross
section was slightly greater than the strains obtained
in the front and back surfaces. This might be a result
of inducing tension in point hinges placed in the bot-
tom and top loading platens that were not infinitely
stiff. The reason for using the point hinges was to allow
rotations of the platens in all directions. The diagrams
of the medium sized and large specimens did not dif-
fer in the pre-peak branches, see Fig. 5. Large speci-
mens in 3D showed different shapes of the post-peak
branches obtained in the front and back faces. The
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Fig. 5 Comparison of σ–ε diagrams obtained with 2D and 3D
models

reason is that numerically the symmetry of the model
was lost and the specimen started to flex at the onset of
strain localization.

As for the nonhomogeneous case we have used the
values and followed the concept of a previous study by
van Vliet and van Mier (1999). It has been speculated
also by Vořechovský (2007) that the effect of out-of-
plane flexure might be an additional reason for average
strength drop noticeable with small specimens. One
might expect that in the smallest specimens the crack
front is not initiated over the whole specimen width.
Rather, due to stiffness inhomogeneity induced by the
casting procedure (causing, in fact, internal eccentric-
ity) the crack might initiate from the front face and
the specimen flex out of the 2-D modeling plane. The
authors of experiments have reported that due to the
casting of the specimens, the front layers have dif-
ferent material properties than the back layers. Van
Vliet and van Mier (1999) have shown that the nominal
strength drop for the smallest size can nearly entirely
be explained by strain/stress gradients that can develop
due to the specimen’s shape, eccentricity of the external
load, material inhomogeneity and eigen-stresses due
to differential shrinkage. They performed a thorough
study using a linear model in which they considered
normal stresses due to (i) tension (with a stress concen-
tration factor corresponding to the dog-bone shape), (ii)
bending moment due to the in-plane eccentricity and
(iii) the out-of-plane bending moment caused by dif-
ferent stiffness in the casting and mould sides. They
showed that most of the observed size effect could be
explained with such a model.

We have modified the homogeneous 3D model by
dividing the width of 100 mm into three layers of differ-
ent thicknesses depending on the manufacturing pro-
cess (see Fig. 6 right). The weighted average of the three
moduli was equal to the modulus used in the homoge-
neous case. The three values 35.13, 30.59 and 24.93
GPa were set such that their ratios are equal to the
ratios used by van Vliet and van Mier (1999). Their
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Fig. 6 Left: Strain distribution along the edges of the smallest
cross section of an eccentrically loaded inhomogeneous speci-
men. Comparison of our ATENA results with analyses by van
Vliet and van Mier (1999). Right: Three-layered inhomogeneous
model in ATENA 3D software

reasoning was as follows: the front face is less stiff and
this causes an internal eccentricity. Therefore, micro-
cracking starts to initiate from the front face leading to
a further decrease of local stiffness and increasing the
micro-cracking even more. However, our computations
with three dimensional models employing nonlinear
material law did not support this idea. For large sizes
the layered material stiffness makes no difference due
to negligible specimen width compared to other dimen-
sions. In small size specimens the response is relatively
ductile, see Figs. 2 and 5. Even though the cracking did
initiate from the front surface rather than from the back
surface (see Fig. 1a) the inelastic response of material
points is nearly perfectly elastic-plastic and the overall
behavior is also ideally elastic-plastic.

The greatest difference predicted by the models was
obtained with medium sized specimens C where the
response is between the brittle and plastic limits and the
100 mm width is still comparable to other specimens
dimensions. For specimen size C we present the com-
puted strain profile in the linear pre-peak phase along
the edges of the smallest cross-section (neck). Figure 6
compares these computations with previously obtained
results of van Vliet and van Mier (1999). These compu-
tations confirm that the strain is far from uniformly dis-
tributed over the cross section and microcracking does
not initiate simultaneously (even if the material was
homogeneous). This fact supports the conclusion of van
Vliet and van Mier (1999) that the nominal strength
σN increases from A to C and then decreases as the
size goes to F and that this can be partly explained
by the effect of strain gradients. On the other hand,
when the effect of nonlinear material response is taken
into account, one must consider that strain gradients
obtained in linear analysis do not hold in fully micro-
cracked small specimens. Fig. 17 in (van Vliet and van

Mier 1999) shows that linear analysis with strain gra-
dients qualitatively overestimates the strength drop of
small specimens. Our linear elastic strain profile pre-
sented in Fig. 6 has slightly less peaking thus suggesting
that there is a strong sensitivity of the peak strain on
the way the stiffness is distributed. The conclusion is
that possible strength drop obtained with the smallest
specimens might still be explained partly by a strong
non-homogeneity (presence of aggregates—grains up
to 8 mm size) combined with out-of-plane eccentricity
due to casting procedure, but the homogeneous model
based on cohesive stresses (perfectly plastic glue in the
limit) is not able to reproduce it.

Another possible cause was described and numer-
ically studied in the preceding paper by Vořechovský
(2007). The hypothesis was that the smallest specimen
suffers the most from having a surface layer of a mate-
rial with lower stiffness and strength. This can explain
the strength decrease in small specimens. A parametric
study with varied layer thickness and material strength
reduction in that layer is presented in that paper, Sect. 4.
The deterministic size effect studied until this point was
automatically included in the weak layer computation
because the same material model and parameters were
used. However, the most important effect of strength
reduction for large specimens cannot be modeled by
deterministic effects studied so far. Neither is the model
able to represent the strength scatter because random-
ness has not been considered in the model yet. Section 4
is focused on modeling local material strength param-
eters as a random property. Before proceeding to those
results, it is important to see how variations in ft of
NLCEM model [K1 in microplane model] influences
the response of a single finite element.

3.4 Effect of varied ft and K1 at a finite element level

Let us now study what happens if ft is randomized only
in NLCEM model of one finite element under uniaxial
tension. Figure 7 right studies such a situation, where
we have multiplied the original tensile strength by
s = 1/2, 1 and 2. Since the fracture energy is not
scaled, the initial softening slope of σ–ε diagram
depends on the peak stress ft to keep the same area
under the curve. We can write that if ft ∝ s then
GF = const. Therefore, if s > 1 the same element
becomes stronger but ‘more brittle’ and dissipates the
original amount of energy. The initial softening slope

123



36 M. Vořechovský, V. Sadílek

0

0.5

1

1.5

2

0 2 4 6 8 10 12 14

Microplane

0 100 200 300 400 500 600

(s f× K1
NLCEM

s fK1× ( × ) × ( × )s ft

(s f× t

s

s

s

s

s

s
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[NLCEM (right)] models, respectively, on uniaxial tensile
response of a single finite element

is in perfect negative dependence on ft , while GF is
independent of ft . Therefore, the size effect curve of
the whole structure in Fig. 2 bottom right (or Fig. 4)
computed with NLCEM model cannot be just moved
up and down by changing ft only (GF is not propor-
tional to ft). One would have to multiply GF by s2 to
achieve it because the characteristic length �ch ∝ s−2.

A somewhat different situation is when strength
parameter K1 is varied in the microplane model. Fig. 7
left shows results when a single element has K1 mul-
tiplied by s = 1/2, 1 and 2. The tensile strength of
one element scales linearly with s, but the whole σ–ε

is scaled radially, keeping the instantaneous softening
slopes equal at corresponding loading stages. In other
words, if ft ∝ s then GF ∝ s2 and the characteristic
length �ch = const. This can be viewed as a perfect
positive dependence between ft and GF.

Note that, there can be imagined another alternative
in which, with ft ∝ s the energy GF ∝ s. The soften-
ing curve would have to decrease towards an identical
strain value irrespective the peak stress ft . The char-
acteristic length �ch ∝ s−1. This would also imply a
perfect positive dependence between ft and GF.

These illustrations are important when randomizing
both peak stress and fracture energy simultaneously.
The most frequent combination in academic studies
is the simultaneous randomization of GF and tensile
strength ft . For example, it was shown previously by
Vořechovský (2004b), Vořechovský and Novák (2004)
that a strong positive correlation between these two
parameters, when they are both randomly varying spa-
tially, increases the slope of size effect curve in the
transitional region between the two asymptotic limits
(positive correlation, in fact, speeds up the convergence
towards the classical Weibull statistical size effect).

4 The stochastic model

We believe that the strong size effect on strength in the
experimental data is predominantly caused by the spa-
tial variability/randomness of local material strength.
Therefore, in the previous study (Vořechovský 2007),
we considered the strength related parameter in the mi-
croplane model denoted K1 in ATENA to be random,
and performed Monte Carlo type simulations for each
size of specimen. The same strategy was performed
here also with the NLCEM fracture-plastic material
model in which we randomized the tensile strength
ft . In particular, we sampled 64 random field realiza-
tions of the parameter K1 [ ft] for each size and com-
puted the responses (complete σ–�u diagrams, stress
fields, crack patterns, etc.). The reason for sampling the
local material strength by a random field instead of by
independent random variables is that we believe that
in reality the strength of any two close locations must
be strongly related (correlated) and that such a rela-
tionship can be suitably modeled by an autocorrelated
random field, see Fig. 8 right.

The distribution of local tensile strength at each
material point is assumed to be identical and Weibull
distributed, see Fig. 8 top-left. The reason for selecting
Weibull distribution is that the strength of large sized
structures obeys this form of extreme value distribution.
It can be argued that small to medium structures have
Gaussian strength distribution with Weibullian left tail
(Bažant and Pang 2007). A simple argument to support
such a distribution comes from the fact that a random
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Fig. 8 Top-left: Weibull probability distribution function of the
randomized parameters K1 [ ft ] (Eq. 5) compared to Gaussian
distribution with equal mean and variance (dashed line). Bot-
tom-left: Autocorrelation function (Eq. 6). Right: Realization of
a Weibull random field of K1 compared with dog-bone speci-
mens type A – E. The dashed lines correspond to the mean and
mean ± one standard deviation of K1 [ ft ]
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strength of Daniels’s fiber bundle model has this form
(see e.g. Vořechovský and Chudoba 2006, Bažant and
Pang 2007 for more details on the distribution). More
fundamental arguments are presented in another paper
in this issue (Pang et al. 2009). However, the difference
between the Gaussian and Weibullian core with equal
mean value and variance (see Fig. 8) has a negligible
effect on the first few statistical moments of a random
strength of small to medium structures. More impor-
tantly, the strength of large structures depends solely on
the Weibull left tail, which is modeled correctly when
assuming the whole distribution Weibullian.

The local probability of failure pf (cumulative Wei-
bull distribution function Fσ ) depending on stress level
σ reads:

pf = Fσ (σ ) = 1 − exp

[
−

(
σ

σ0

)m]
(5)

where σ0 = scale parameter of Weibull distribution, a
value of 1.6621·10−4 MPa is used for K1 and 3.4 MPa
for ft; m = shape parameter of Weibull distribution
(dimensionless, depends solely on cov = coefficient of
variation), m = 7.91 being used for random K1 and ft

in the two parallel studies.
To obtain results consistent with the previous deter-

ministic analyses, we kept the value of parameters ft

[K1] as the mean values, i.e. 3.2 MPa [1.5644 · 10−4].
The second parameter of Weibull distribution has been
set with regard to the cov of the nominal strength of
the smallest specimen A (in experiments the cov of
strengths of size A was 0.16). This choice is supported
by the fact that size A has the largest sample size (10
replications, see Table 1). Therefore, the estimation of
variance has a higher statistical significance than for
other sizes. We will explain later on why this choice is
not quite correct. For simplicity, we used the value of
cov = 0.15 (15% variability of local material strength).
This is a relatively high value implying the unusually
low Weibull modulus mentioned above. Note that a
different choice of Weibull modulus based e.g. on the
scatter of nominal strengths for size C would lead to a
greater m (≈ 16, see the rightmost column of Table 1)
and therefore less scattered results (cov ≈ 0.08) and
a milder slope in the asymptotic size effect curve for
D → ∞. On the other hand, the scatter of experimen-
tally obtained peak forces is much higher for size A
suggesting that there was a strong influence of addi-
tional imperfections in shape, geometry and boundary

conditions (eccentricity, etc). As will be seen later, the
asymptotic slope of the mean size effect −2/7.91 does
not equal the value of −2/12 suggested by averages
of all sizes except size A (and used in a simple Wei-
bull slope fit by van Vliet and van Mier (2000a,b)). The
issue of the correct choice of statistical scatter of the
material strength is further discussed in Sect. 5.

A discretized random field can be viewed as a set of
(auto)correlated random variables. The most important
parameter (in a given form of autocorrelation function)
is the autocorrelation length controlling the distance
over which the random material strengths are corre-
lated. We used the squared exponential autocorrelation
function (Fig. 8 bottom-left):

R = exp

[
−

(
d

lr

)2
]

(6)

where d = distance between two points; lr = correla-
tion length, a value of 80 mm used for a random fields
of K1 [ ft].

The correlation length lr is here assumed to be a
material (and possibly structural) constant related to
both the microstructure (grain size and defect distri-
bution and their frequency, i.e. on their distance from
each other), and also on the production technique (com-
pacting, etc.). The autocorrelation function takes values
close to unity for any two close points in the specimen
(unit correlation is the upper limit for two coinciding
points). For a pair of remote points the autocorrelation
decays to zero implying no statistical correlation for
the material properties of those two points. It can be
shown that for specimens much smaller than one auto-
correlation length, the realization of a random field of
the local strength K1 is a constant function over the
whole region (see Figs. 8 right and 9), and all local
strengths of the whole specimen can be represented
by just one random variable (instead of a number of
spatially correlated variables). Since the specimen’s
nominal strength is just a simple transformation of the
input strength parameter K1 [ ft] (no spatial variability,
allowing cracks to localize in other locations than in
deterministic analysis), we knew that the mean nomi-
nal strength of the smallest specimen will be the same
as that obtained by deterministic analysis. That is why
we used the K1 [ ft] from deterministic analysis as the
mean value of the random field of K1 [ ft]. We set
the correlation length lr such that the computed size
effect curve ’bends’ between a constant and Weibull
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Fig. 9 Stress/strength fields corresponding to the peak load for
selected realizations and specimen sizes. Results are computed
with randomized NLCEM material model. Fields from top: ran-
dom strength field (threshold), principal stress of a brittle material

scaled to correspond to the peak load (nominal strength), actual
principal stress at peak load, cracking strain at the bottom plane.
See also selected realizations in Fig. 10

asymptotes at a crossover specimen size C, which bet-
ter fits the experiments, see also Sect. 4.1.

The samples of random fields evaluated at the loca-
tions of integration points were simulated by methods
described in Vořechovský (2008, 2004b). In the
method, the support of the field is discretized (nodes
of the random field mesh may coincide directly with
the integration points of the FEM mesh). Based on
the discretization and a given autocorrelation function
(Eq. 6) an autocorrelation matrix C is assembled. Such
a matrix is symmetric and positive definite and has
orthogonal eigenvectors � and associated eigenvalues
� such that C = ���T . The (discretized) Gaussian
random field X is expanded using a Gaussian random
vector ξ and the computed eigenmodes as
X = � (�)1/2 ξ . If non-Gaussian fields are to be sim-
ulated, the Nataf model is usually employed (Liu and
Der Kiureghian 1986). The simulated random fields
are stationary, isotropic and homogeneous. Briefly, the
described orthogonal transformation of the covariance
matrix has been used in combination with Latin Hyper-
cube Sampling of the random part of field expansion
(Novák et al. 2000). Such a combination proved itself to
be very effective in providing samples of random fields
leading to high accuracy in estimated response statistics
compared to classical Monte Carlo sampling. Numer-
ical studies documenting this efficiency are published

in (Vořechovský 2008). This is an extremely important
property in cases when the evaluation of each response
is very time consuming. In our case the evaluation is
represented by one computation of response by the non-
linear finite element method with the microplane or
NLCEM material model inside. Obviously, this is very
expensive and we must keep the number of simulations
as low as possible. The number of 64 simulations was
tested to be high enough and to provide stable and accu-
rate statistical estimates of fields’ statistics (averages,
sample standard deviations, autocorrelation structure)
as well as reproducible estimates of structural response
statistics (nominal strength etc.).

The automatic simulation of all structural responses
was done by SARA software integrating (i) ATENA
software (evaluation of response) and (ii) FREET soft-
ware (Vořechovský 2004b, Novák et al. 2003b, 2006)
(simulation of samples of random parameters, statisti-
cal assessment).

In Fig. 10 we plot selected realizations of the random
strength field in NLCEM model for all sizes A – F,
some of which are better visualized in Fig. 9. Similarly,
Fig. 11 presents selected plots for randomized micro-
plane model. We note that a similar scaling rule as in
Eq. 2 can be written for the role of statistical length
(here in the form of autocorrelation length lr ). For a
given random strength field (statistical distribution and
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Fig. 10 Simulated random
strength field realizations
and corresponding crack
patterns in deformed
specimens right after
attaining the maximum
force Fmax. Fields were
simulated and crack widths
were computed at the
integration points of finite
elements using the NLCEM
material model

Fig. 11 Selected crack
patterns from the series with
randomized microplane
models. Intended for direct
comparison with Fig. 10

autocorrelation structure) only the dimensionless pro-
portion D/ lr matters (recall the dimensional analysis):

for ∀s > 0 : σN (D, lr ) = σN (s D, s lr ) (7)

Again, this can be used to simplify modeling because
one size can be used with varying lr instead of varying
D with a constant lr . Similarly to Eq. 2, this property

illustrates the scaling properties with lr standing for a
probabilistic (or statistical) scaling length. Similarly as
with the deterministic size effect caused by stress redis-
tribution in FPZ, the probabilistic size effect curve rep-
resents a transition between two asymptotes (horizontal
for D → 0 and an inclined straight line for D → ∞).
The transition happens around a cross-over size ls
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(discussed below in Sect. 4.1), i.e. when the non-dimen-
sional size D/ ls takes values approximately between
0.1 and 10.

It can be seen that as the ratio of autocorrelation
length and specimen size D decreases, the rate of spatial
fluctuation of random field realizations grows. There-
fore, there are an increasing number of locations with
low material strength (locations prone to failure). Or,
in other words, with increasing specimen size there is
an increased probability that there will be a weak spot
in highly stressed regions. This effect has long been
referred to as the statistical size effect. The classical
statistical size effect is modeled by the simple weakest
link model and is usually approximated by the Wei-
bull power law (Weibull 1939). However, as explained
in (Vořechovský 2004b,a, Vořechovský and Chudoba
2006), the classical Weibull model is not able to account
for spatial correlation between local material strengths.
Rather, the Weibull model is based on IID (independent
and identically distributed) random variables linked in
series. The effect of such a consideration is that the
strength of an infinitely small specimen is infinite. In
the Weibull model every structure is equivalent to a
chain under uniaxial tension, a chain of independent
members having an identical statistical distribution of
stress. If the local strength is modeled by an autocor-
related random field (and we consider the autocorre-
lation length to be a material property), the small size
asymptote of strength is equivalent to the distribution
of local material strength. On the other hand, the large
size asymptote is exactly identical to that of the Wei-
bull model (for a proper choice of reference length and
the corresponding scale parameter of Weibull distribu-
tion in the Weibull model). The autocorrelation length
plays an important role as a statistical scaling length in
a material controlling the transition from a one strength
random variable model (full correlation in small struc-
tures) to many independent local strengths (large struc-
tures, Weibull model); see (Vořechovský 2004b) for
details.

In Fig. 12 we plot computed sets of ‘nominal stress–
strain’ (σ–ε) diagrams obtained with the NLCEM
model and sketch the definition of strain (the separation
of two measuring points �u over the control length).
The corresponding diagrams obtained with microplane
law were published in (Vořechovský 2007). In there,
several selected load displacement curves were high-
lighted and the corresponding realizations of random
strength fields of microplane K1 parameter together
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Fig. 12 Nominal stress-strain diagrams (64 realizations)
obtained with randomized NLCEM material model

with crack patterns were presented. In the same paper,
besides the most frequent simple σ–�u functions, we
have purposely highlighted several curves with unusual
shapes (snap-back type or “a loop”). When testing
concrete structures in routine practice such special
shapes can only occasionally be experimentally mea-
sured. They would indicate that the control length was
not properly designed (with respect to the specimen
shape and material strength variability) and that local-
ized strains occur outside the control length. As dis-
cussed there, some of the unusual or unexpected curves
were obtained partly due to the definition of displace-
ment �u, and mainly due to the spatial randomness
with (too) high variability. In the analyses with NLCEM
material law, these loops nearly did not occur. For com-
parison purposes of the peak strength of the determin-
istic σ–ε diagrams with the mean values of nominal
strength are added into Fig. 12. The difference between
them grows with specimen size. While for size C the
mean strength still nearly coincides with the peak of the
deterministic diagram, for specimen size F the deter-
ministic curve is above all 64 random realizations of the
diagram, see Fig. 12. This feature is related to the tran-
sition from the central limit theorem applicable to small
sizes (nominal strength is a result of a sum of random
strength of many links arranged in parallel) to extremes
of independent variables (the smallest local strength
compared to stress dictate the structural strength).

The crack patterns of two randomly chosen speci-
mens A 60 and B 10 (see Fig. 10) show the most fre-
quent location of strain localization. Fig. 9 shows how
the maximum principal stress field would look at the
peak load if no redistribution takes place and when
the stress could exceed the local strength. This figure
also shows the actual (redistributed) stress field that
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can be described as a ‘deformable ball pressed towards
sealing (strength realization) from bottom’. Samples
of random fields in both cases (A, B) are nearly con-
stant functions and therefore there is no space left for
the weakest link principle. The small eccentricity of
load and relatively narrow neck of dog bone specimens
guarantee that cracking will initiate on the right side of
the neck. Pattern C 22 in the same figure documents
that the local strength can be, in some locations, so
small that the relatively low stresses in that location
can initiate fracturing. In specimen C 22 the rotation
of platens was opposite to the usual direction. Since the
damage localized out of the distance (control length)
over which we measured the separation �u, the corre-
sponding σ–ε has the snap-back-like shape. The fact
that the specimen breaks in the relatively low stressed
region is associated with the relatively high variability
of local material strength. Simply, the realization of the
strength field in the cracked region was the closest to the
principal tensile stress profile, see Fig. 9. If a different
strength distribution was chosen (especially lower var-
iability), the occurrence of fracturing outside the neck
area would be suppressed. The selection of material
parameter variability was in this numerical example
too high as will be discussed in Sect. 5. Pattern C 51 is
also quite unusual. Similar features can occasionally be
found in series D. We illustrate the random sampling
of crack initiation in the same figure. In series F the
autocorrelation length becomes so small compared to
specimen dimension that again cracks mostly initiate
on the right side of the neck in nearly all cases, see
Fig. 9. The specimen F 5 in Fig. 9 illustrates the case
when the strength realization is hit by the stress field
at two points simultaneously. In such cases, two major
parallel cracks can develop at the peak load even in a
relatively large structure with small amount of stress
redistribution prior reaching the peak load.

In series A, we never reported a snap-back-like curve
due to cracking outside the measuring distance, because
the random field is nearly a constant function over the
specimen. We can conclude that the most interesting
processes happen in specimens with a dimension com-
parable to one or two correlation lengths (region of
transition from one random strength variable to a set of
independent strength variables).

From comparisons in Sect. 3.4 it transpires that
comparisons between results with randomized ft in

NLCEM and K1 in microplane models cannot be done
directly. Rather, it was expected to shed some light
on the effect of having a perfect positive dependence
between material peak stress and fracture energy. It can
be seen that the post-peak curves in the bundles of dia-
grams in Fig. 12 computed with NLCEM are steeper
when they reach a higher peak (and opposite). On the
contrary, the softening slopes of diagrams in each bun-
dle obtained with the microplane model (Fig. 4 in
(Vořechovský 2007)) have the same post-peak slope,
if the snap back did not occur.

A question appears: which of the three alternatives
for randomization of tensile strength, fracture energy
and characteristic length described in Sect. 3.4 is more
realistic for real concrete? We do not give an answer,
because the two compared material models behave dif-
ferently clouding the picture. One would have to per-
form simulations with a single material model in which
the parameters are varied simultaneously according to
the three alternatives.

It might be interesting to compare the crack patterns
obtained with microplane model and NLCEM model
when the realization of a random field of K1 [ ft] is
identical (one is just a multiple of the other). We have
selected five crack patterns from our previous study
(Vořechovský 2007) and plot them here for compari-
son. An interested reader can find the same size and
number in Figs. 10 and 11. One can see that NLCEM
model predicts much more localized cracks compared
to the microplane model. In D03, for example, micro-
plane model predicts quite diffused cracking far from
the neck while NLCEM model just predicts some
microcracking there and the final magistral crack passes
through the neck. The relatively diffused cracking pre-
dicted by microplane model corresponds to milder
slopes of the pre-peak branches of diagrams in Fig. 2.
We note that the first guess might be different: when a
weak element starts to soften in NLCEM, it is an ele-
ment with a milder softening slope. This would support
somewhat tougher behavior of NLCEM models which
is not found here.

Finally we note that, in contrast to the experiments,
we did not control loading by displacement increments
�u. Instead, we loaded the specimens by displace-
ment at the ends, and therefore we were able to mon-
itor the snap-back type of curves without any
difficulty.
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4.1 The Weibull integral, extremes of random fields,
reference and representative volumes

We were able to simulate the random responses of spec-
imens smaller than A with random fields of K1, and
moreover we could simply use random variable sam-
pling to represent randomness in the small specimens
(each realization becomes a random constant function
over the specimen). On the other hand, it becomes very
expensive to simulate samples of random fields of spec-
imens much larger than F due to the need of a dense
discretization. Approaches already exist to overcome
the computational difficulties with the stochastic finite
element computation of large structures (Vořechovský
et al. 2006) but we will present another technique here.
Fortunately, only strength is random in our analysis and
we can use the classical Weibull integral for large struc-
tures. As explained in (Vořechovský 2004b,a, Vořecho-
vský and Chudoba 2006), if the structure is sufficiently
large, the spatial correlation of local strengths becomes
unimportant and the Weibull integral yields a solution
equivalent to a full stochastic finite element simula-
tion. We will briefly sketch the computational proce-
dure of evaluating the Weibull integral for structural
failure probability: details can be found e.g. in (Bažant
and Planas 1998). The Weibull integral has the form:

− ln(1 − Pf) =
∫
V

c [σ (x) ; m, σ0] dV (x) (8)

where Pf = probability (the cumulative probability
density) of failure load of the structure; c [•] = stress
concentration function.

There are several possible definitions of the stress
concentration function, see Bažant and Planas (1998).
In the studied specimens the major contributor to the
stress tensor is the normal stress σyy . The field of stress
σyy nearly coincides with the principal tensionσI . Since
only tensile stresses are assumed to cause a failure, we
defined the stress concentration function simply as:

c [σ (x) ; m, σ0] = 1

V0

〈
σI (x)

σ0

〉m

(9)

where V0 = ln
0 = reference volume associated with m

and σ0.
In Fig. 1b, we plot the computed field of the maxi-

mum principal stress (tension) over a specimen in an
elastic stress state. Numerical integration of this stress
field for different specimen sizes and failure probabili-
ties can be suitably rewritten in dimensionless coordi-
nates so that the computation becomes extremely easy.

In particular, let ξ = x/D, consider unit thickness
b and set the maximum elastic principal stress field
σI (x) = σN S (ξ) where σN is the nominal stress and
S (ξ) the dimensionless stress distribution independent
of D. If, in accordance with Bažant et al. (2007a), we
substitute these and dV (x) = Dn dV (ξ) into Eq. 8, we
get − ln(1 − Pf) = (σN/σ0)

m Neq or

Pf(σN) = 1 − exp

[
−Neq

(
σN

σ0

)m]
(10)

where the equivalent number of identical links in a
chain

Neq =
(

D

l0

)n

� (11)

depends on a geometry parameter

� =
∫
V

Sm(ξ) dV (ξ) (12)

This geometry parameter characterizes the dimensional
stress field that depends only on the structure geome-
try and boundary conditions. As defined in a recent
work by Bažant et al. (2007a), Neq can be interpreted
as the equivalent number of equally stressed material
elements of a size for which the reference material sta-
tistical properties has been measured. At this place,
we mention that asymptotically, the structure becomes
a chain of Neq equally stressed RVEs in a series, see
Fig. 13 right. Note that the number of the chain elements
with a random strength is proportional to the scaling
dimension n (two in our case). It is an occasional prac-
tise to place a fiber bundle model (FBM) inside a region
in which the crack is expected to be propagating, see
Fig. 13. Note however, that for the purpose of asymp-
totic strength prediction, this approach is inadequate. It

l 0

one
RVE

N Deq

F

2

f

NF

FF

l 0

ls
0

s l0
l0l0

Fig. 13 Illustration of a random strength representation. Refer-
ence size and s-times scaled structure. Left: incorrect scaling of
strength using FBM. Right: concept of RVEs in a solution using
Weibull integral
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is known that increasing the number of parallel fibers
nf (or microbonds) in the FBM asymptotically does
not decrease the mean strength per fiber (although the
variance decreases inversely proportionally to nf , see
e.g. Vořechovský and Chudoba 2006). So, scaling the
structure size s times brings about only length effect,
which is a one-dimensional effect, not two-dimensional
effect as it should be (Neq ∝ D2). The prediction of
an asymptotic random strength distribution would than
be incorrect, see (Vořechovský and Chudoba 2006) for
more details.

The present derivation is fully complying with the
recent work by Bažant et al. (2007a) in which the repre-
sentative volume element (RVE) is defined as the small-
est material volume whose failure causes the failure of
the whole structure (this definition is valid for positive
geometry structures, i.e. structures that fail, under load
control, as soon as the first RVE fails). The concept
of equivalent number Neq of equally stressed RVEs is
introduced to simplify the problem in cases when the
stress state is not uniform and the actual number identi-
cal volume elements are subjected to different stresses.
In both cases, the probabilities of failure of the structure
Pf are identical.

Consider now a case when all the RVEs are indepen-
dent of each other (as is the case of asymptotically large
structures). Since the structure survives as a whole if
and only if all the RVEs survive, one can write the sur-
vival probability as a product 1− Pf = (1 − P1)

Neq or,
equivalently (Bažant and Pang 2007):

Pf(σN) = 1 − [1 − P1(σN)]Neq (13)

This failure probability tend to

lim
Neq→∞ Pf(σN) = 1 − exp

[−Neq P1(σN)
]

(14)

where P1(σN) is the cumulative distribution function
of the strength of one RVE. Clearly, as Neq → ∞,
the structural strength distribution converges to Wei-
bull form.

Using Eq. 10 we can easily relate the parameters of
a random material strength to the mean value of the
structural strength:

σN = σ0

N 1/m
eq

	(1 + 1/m) = µ0

N 1/m
eq

(15)

where 	 (·) is the Gamma function. The material
strength is represented by the parameters of a random
RVE strength considered to follow Weibull distribution
or a Gaussian distribution with a Weibull tail described

by the shape parameter m and corresponding scale
parameter σ0, a pair yielding the mean strength value
µ0 of one RVE of size l0.

In the particular case of studied dog-bone speci-
mens, the Weibull solution gives the following results.
First, the thickness b = 100 mm is not scaled and there-
fore it does not contribute to the strength scaling. There-
fore we ignore the thickness and define volumes as
areas. When m = 7.91, as studied before, the geometry
parameter defined in Eq. 12 can be computed to equal
� ≈ 0.574. If one selects the length l0 to equal the
autocorrelation length lr = 0.08 m (see below for rea-
sons), each RVE has the mean strength µ0 = 3.2 MPa
and scale parameter σ0 = 3.4 MPa. The number of
equivalent RVEs in specimens of various sizes can be
calculated using Eq. 11, for size F the formula gives
Neq ≈ 230. Therefore, the average nominal strength of
size F is approximately 1.61 MPa. The resulting mean
size effect for other sizes is plotted in Fig. 14 (asymp-
totic mean size effect curve). Let us also mention that
another way of simulating the random strength of large
structures can be done utilizing the stability postulate
of extreme values (Fisher and Tippett 1928). Such a
computational procedure is an elegant trick using the
recursive property of the distribution function and is
described in Bažant et al. (2007b), Novák et al. (2003a),
Vořechovský (2004b) together with applications. The
results of such an approach (and also the Weibull inte-
gral as presented here) are valid only for extremely
large sizes where the effects of structural nonlinear-
ity (causing stress redistribution) disappear. There is
no characteristic material length in the classical (local)
Weibull theory, because the Weibull size effect is self-
similar—a power law with no characteristic length and
no upper bound. Rather, lr (or V0) in Weibull theory is
simply a chosen unit of measurement to which the spa-
tial density of failure probability is referred. For small
sizes there are two problems: (i) the spatial correlation
of local strengths and (ii) the effect of stress redistri-
bution. The result of the Weibull integral must be a
straight line in a double logarithmic plot of size ver-
sus strength (the size effect plot is a power law). These
two issues will be discussed next. Note that there exist
also a nonlocal alternative to the Weibull integral that
is commented on and compared with the classical local
Weibull integral in Sect. 5.2 of (Vořechovský 2007).

Because the statistical and energetic physical causes
of size effect are different and independent, the sta-
tistical length lr cannot be affected by changes in the
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deterministic length cb (or similarly changes in GF).
The mean value of a random nominal strength σN must
be bounded when D → 0, (i.e., the statistical size effect
cannot cause a strength increase when the structure is
too small as in the classical Weibull theory). The upper
bound on the mean statistical size effect can be eas-
ily calculated as the deterministic strength of a struc-
ture with no stress redistribution allowed (cb/D → 0
or GF/D → 0), see the bottom horizontal asymp-
tote in Fig. 14. The same bound is also obtained as the
mean value of the distribution of extremes (minima)
of random fields representing local material strength
(Vořechovský 2004b, Vořechovský and Chudoba 2006).

To study the statistical size effect of structures with
no redistribution, one has to select the size of the RVE in
the case when a random material strength is described
by random fields. Note that in the case of uncorre-
lated Weibull strengths the choice is arbitrary; the ref-
erence length is related to the strength scale parameter
through a power law. In the autocorrelated case the
choice depends on the autocorrelation length — the
length l0 must be equal to a length over which the local
strengths are nearly uncorrelated. Therefore, we con-
sider the equality between the autocorrelation length
(Eq. 6) and the length l0 from here on:

lr = l0 (16)

An area A0 = l2
0 or a volume V0 = l3

0 has now the
mean strength of µ0.

To show the difference between the statistical size
effect in the Weibull sense and when autocorrelated
strength is assumed, one must isolate the statistical
effects from the deterministic effects. The pure sta-
tistical size effect (i.e. the size effect of the structure
with no stress redistribution) can be numerically sim-
ulated by replacing the crack band or fracture energy
with zero and using the same realizations of a random
strength fields. Numerical results are plotted in Fig. 14
using a line with solid boxes and errorbars. One can see
that the calculated mean size effect curve is a smooth
transition between two asymptotic cases: the constant
upper bound for small sizes and the Weibull asymptote
for large sizes. The cross-over size ls can be calcu-
lated from the equality of deterministic strength of a
large structure σN,∞ ≡ σ det

N (∞, cb) ≡ σ det
N (D, 0) =

2.15 MPa and the mean Weibull strength of 3.2 MPa in
Eq. 15. This equality yields

ls = l0 �−1/n
[

µ0

σN,∞

]m/n

(17)
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which gives, in our numerical example ls ≈ 510 mm,
see the abscissa scale in Fig. 14. The transition can
be approximated using the formulas proposed earlier
by Vořechovský (2004b), Vořechovský and Chudoba
(2006) as approximations to extremes of random pro-
cesses:

σN (D) = σN,∞
(

D

ls
+ ls

ls + D

)−n/m

(18)

or

σN (D) = σN,∞
(

ls
ls + D

)n/m

(19)

The numerically obtained mean of statistical solution
lies in between these two approximations. These for-
mulas represent extension of extremes of stationary
and ergodic Weibull random processes (Vořechovský
2004a,b, Vořechovský and Chudoba 2006) to n-dimen-
sional random fields. The formulas were originally
applied to predictions of the strength of thin fibers
(Vořechovský and Chudoba 2006) and later in the
context of the energetic-statistical size effect in quasi-
brittle structures failing after crack initiation, see
(Vořechovský et al. 2005, Bažant et al. 2007b).

5 Analysis of the results

By introducing three different scaling lengths we are
able to independently incorporate three different effects
in the model resulting in three size effects on nominal
strength. The crack band width cb (deterministic scal-
ing length, linearly related to the fracture energy GF)
controls at which size the transition from ductile to elas-
tic-brittle microplane model behavior takes place, and
therefore it controls the transition between two hor-
izontal asymptotes in the size effect plot (see Fig. 2
bottom right). The second introduced length (weak
boundary thickness tw) together with material strength
reduction controls at which size there will be a sig-
nificant reduction in nominal strength. The reduction
becomes amplified with decreasing specimen size and
causes an opposite slope of size effect than with
the deterministic and statistical ones (see Fig. 2 of
(Vořechovský 2007)). The last introduced length is the
autocorrelation length lr controlling the transition from
randomness caused by overall material strength scatter
(one random variable for material strength) to a set of
independent identically distributed random variables of
local material strengths via an autocorrelated random

field. In other words, it controls the convergence to the
Weibull statistical size effect based on the weakest link
principle.

In the case of a random field description of local
strength we can see the following behavior. If the possi-
bility to redistribute stresses (nonlinear phenomena) is
suppressed (vanishing characteristic length represented
by cb or GF compared to specimen size), the Weibull
asymptote is reached from bottom, see the solid boxes
in Fig. 14. If the deterministic length is comparable to
the statistical one, the transition to Weibull solution is
from above, because small sizes exceed the nominal
strength σN,∞ (solid circles in the figure).

Numerical simulations show that the autocorrelation
length may, with its role as a measure of the rate of fluc-
tuation of local material parameters, significantly influ-
ence the damage process and the global response of the
structure. Especially when local strength is varied ran-
domly and the relative variability is high, the spread of
damaged zones will be dependent on both: crack band
size (or similarly nonlocal length in nonlocal damage
models) and also on the autocorrelation length/struc-
ture. When the correlation length is much larger than
the specimen, the realizations of a random strength
are nearly constant functions and the damage spread
is governed solely by the deterministic effects (stress
fields and concentrations influenced by redistributions
due to the nonzero nonlocal or crack band length), see
A 60 in Fig. 9. Here, with reference to the discussion
on the concepts of nonlocal averaging in Sect. 5.2 of
(Vořechovský 2007), we note that the so-called fracture
process zone size depends on actual stress fields, which
are also influenced by presence of specimen bound-
aries, apart from the usually attached physical meaning
of the function of the maximum aggregate size in con-
crete. All these can be put on the side of deterministic
effects. On the contrary, when the spatial distance of
serious local flaws or defects (the correlation length) is
very small compared to the nonlocal length, the damage
process will depend on interactions of zones in which
the damaged material softens locally. The zones with a
high local strength adjacent to the weaker zones act as
‘barriers’ for further spreading-out of damage, see e.g.
F 5 in Fig. 9. Generally, the size of the damaged zone
depends probably strongly (and nearly linearly) on the
deterministic length and only weakly on the autocor-
relation length of local strength field in our continuum
model. If the autocorrelation length is smaller than the
damage zone size in the deterministic case, it probably
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slightly decreases the damaged zone size in the proba-
bilistic case. Both lengths can be understood to rely on
the same physical background—microstructural prop-
erties below the continuum level. However, a random
spatial strength variability can also occur at the macro-
scopic level due to variable manufacturing process of
concrete, etc.

The interplay of three independent material/struc-
tural lengths as sketched in this paper is very compli-
cated. It would be nearly impossible to determine all
these parameters from the available experimental data
even if the model featuring the three effects was per-
fectly correct.

In Fig. 6 of (Vořechovský 2007), the estimated distri-
bution function of nominal strength for all tested sizes
as we obtained them from the full stochastic finite ele-
ment analysis with are plotted. The discussion there
explains that models of large specimens suffer from
an insufficient discretization of the random field with
respect to the autocorrelation length, see also F 5 in
Fig. 9. This is a clear limitation of the random field
approach. We sketch the size regions for different com-
putational techniques used for the modeling of random
strength above the plots in Fig. 14.

The resulting nominal strengths for all sizes obtained
by nonlinear stochastic FEM are plotted and compared
to experiments in Fig. 14. The figure is devoted mostly
to microplane modeling because at this graph the
NLCEM modeling yields comparable results (even if
there were differences in the stress–strain curves and
crack patterns and randomization of ft and K1 are not
directly comparable). We see that starting from size C
the dependence of mean nominal strength on size is pre-
dominantly statistical, and we were not able to model it
by deterministic model alone. We also included mean
nominal strengths for sizes D, E, F and G obtained by
Weibull integral.

The asymptotic slope of statistical size effect sug-
gested by the trend of the means of the Weibull solu-
tion (−n/m = −2/7.91) is not in a good agreement
with the scatter of measured nominal strengths for sizes
greater than A. If we ignore the smallest size A where
the variability of strength data is questionable, C is the
size with most of replications (seven). Therefore, the
standard deviation obtained from experiments is most
significant for size C. The very last column in Table 1
presents the effective Weibull moduli computed from
experimentally obtained averages and sample standard
deviations. Mostly these m values are greater than that

of C meaning that the estimated scatter is less, which
corresponds to the fact that there were less realizations
(four or five only). The reason for A yielding much
greater variability (and thus smaller effective m) must
be explained by several other effects. Numerical sim-
ulations with a lattice model performed by van Vliet
(2000) revealed that if a large grain is present in the sur-
face layer of the specimen, the peak load can decrease
considerably. Such a mechanism certainly contributes
to the increased statistical scatter of nominal strengths
in specimen type A. Even though the number of realiza-
tions for size A was ten, the information on scatter does
not seem to be relevant. A better choice in this study
would be m ≈ 14 suggested mainly by the slope of
the size effect curve for the two largest specimen sizes
E, F. Note that the steeper slope at medium sizes C, D
can be attributed to a combination of both deterministic
and statistical effects.

The tendency of bundles of diagrams computed with
NLCEM (Fig. 12) corresponds better with the experi-
mental curves: the greater the size the steeper the post-
peak slope. This was not true for the microplane
models, see Fig. 4 of (Vořechovský 2007). With regard
to the above mentioned comparison to randomization
with a constant �ch (NLCEM) versus constant GF (mi-
croplane), the comparison with experimental curves
suggests that keeping the GF constant is somewhat
closer to reality than keeping a constant �ch.

We have also performed a study with NLCEM model
in which we divided the fracture energy GF by 16, thus
shifting the deterministic transition to smaller speci-
mens. In this way, the deterministic behavior previ-
ously obtained for size E becomes behavior of size A.
The stress–strain diagrams then correspond much bet-
ter with those published by van Vliet (2000), van Vliet
and van Mier (2000a). The resulting deterministic size
effect curve is just the same curve as before shifted
to the left (recall Eq. 3). The average curve obtained
with random strength field with the same autocorrela-
tion length then unsticks to join the Weibull integral
solution. Based on various parametric studies, it seems
that a very good fit of the experimental results (stress–
strain diagrams, the mean size effect curve shape and
scatter at all sizes but A) would be obtained if
GF = 200/16 N/m, the mean material strength µ0 =
1.5 × 3.2 = 4.8 MPa and m ≈ 14, a realistic value
of strength scatter for concrete. The horizontal deter-
ministic asymptotes would appear higher in Fig. 14,
the asymptotic slope of statistical part would be milder
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and strength scatter would be less than using the pres-
ent values. Transitions would happen at smaller sizes
than now.

It seems that the mean size effect as well as the
statistical scatter at the same time could be explained
by a combination of the ‘weak layer’, ‘deterministic-
energetic’, ‘strain gradient’ and ‘statistical’ size effects
together. The very thick curve in Fig. 7 of (Vořecho-
vský 2007) (a curve denoted as 3) is the curve resulting
from the combination of all three effects described here.
With NLCEM modeling here, the curve would be very
similar.

Finally, it can be questioned whether the crack band
width is the correct parameter to represent the determin-
istic scaling length. Similarly the softening adjusted
modulus (driven by adjusted fracture energy GF) of a
material point was designed so that a crack band occu-
pying one band of an element’s width always dissi-
pates the same amount of energy irrespective of the
band width. Unfortunately, we are not able to model a
situation where the deterministic characteristic length
is greater than the statistical one (represented by the
autocorrelation length in our model). This is because
we cannot represent a real crack below the level of res-
olution of FEM discretization.

Moreover, the crack band model is not suitable when
more that one crack appears in parallel, because it was
primarily designed to correctly represent a single crack
passing through a specimen without mesh size depen-
dency. In our simulations it sometimes happened that
at the onset of cracking the crack pattern was diffused,
and the consumed energy was then probably higher
than what was thought to be correct. Fortunately, local-
ization always started soon (in terms of position on the
σ–�u diagram) and the peak force we recorded was not
influenced much. In our constitutive model the crack
returns energy during unloading, and this supports the
hypothesis that the virtual error was not high.

Both the aforementioned issues can probably be
solved by using a better regularization technique to pre-
vent spurious mesh localization; the nonlocal contin-
uum model proposed by Pijaudier-Cabot and Bažant
(1987). In this model the deterministic length is well
defined by the averaging length la (internal length of
the nonlocal continuum) over which a certain variable
is averaged (based on the weight function α) (Jirásek
1998). In our eyes such a model would better represent
the effect of interaction of the two lengths: determinis-
tic la and statistical lr . Another very promising option

seems to be the cohesive segments method (Remmers
et al. 2003) in which the cohesive segments are inserted
into finite elements as discontinuities in the displace-
ment field by exploiting the partition-of-unity property
of the shape functions.

6 Conclusions

We present a combination of nonlinear computational
mechanics tools with a simulation of random fields
of spatially correlated material properties in a single
platform as an approach to the modeling of failure in
quasibrittle materials. The performed numerical sim-
ulations of the random responses of tensile tests with
dog-bone specimens with rotating boundary conditions
performed by van Vliet and van Mier are in good agree-
ment with the published data. Based on the comparison
of trends of nominal strength dependency on structural
size we conclude that the suggested numerical model
featuring three scaling lengths is capable of capturing
the most important mechanisms of failure.

In particular, we have shown that a portion of the
experimentally obtained size effect can be captured
at a deterministic level with the help of deterministic
length represented by crack band width in our models
(the smeared cracking with the crack band models are
compared for a fracture-plastic and microplane mate-
rial models).

Secondly, further strength dependence on size in
large specimens is modeled by an autocorrelated ran-
dom strength field. The important statistical length
scale is introduced in the form of the autocorrelation
length of the field. It is shown that the inhomogeneity
of material properties over the structure in the form of
an autocorrelated random strength field gives rise to
imperfections that trigger fracturing in highly stressed
regions of a structure. We believe that the statistical
description of standard continuum helps to resolve the
ill-posedness of the continuum model after the onset
of localization, it being a fundamental problem. The
asymptotic size effect form caused by local strength
randomness is the classical Weibull power law. By ran-
dom sampling of the local strength field we were also
able to model the random scatter of resulting nomi-
nal strengths. Also, simple scaling rules, anchored in
theoretical dimensional analysis, are suggested.

In the presented model, the complex interplay of
several scaling lengths is captured at a time. Numeri-
cal simulations of localization phenomena demonstrate
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that the introduction of the stochastic distribution of
material properties reveal phenomena that would oth-
erwise remain unnoticed.
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