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Abstract

A practical framework for generating cross correlated random fields with a specified marginal distribution function, an
autocorrelation function and cross correlation coefficients is presented in the paper. The approach relies on well-known
series expansion methods for simulation of a Gaussian random field. The proposed method requires all cross correlated
fields over the domain to share an identical autocorrelation function and the cross correlation structure between each pair
of simulated fields to be simply defined by a cross correlation coefficient. Such relations result in specific properties of
eigenvectors of covariance matrices of discretized field over the domain. These properties are used to decompose the eigen-
problem, which must normally be solved in computing the series expansion, into two smaller eigenproblems. Such a
decomposition represents a significant reduction of computational effort.

Non-Gaussian components of a multivariate random field are proposed to be simulated via memoryless transformation
of underlying Gaussian random fields for which the Nataf model is employed to modify the correlation structure. In this
method, the autocorrelation structure of each field is fulfilled exactly while the cross correlation is only approximated. The
associated errors can be computed before performing simulations and it is shown that the errors happen only in the cross
correlation between distant points and that they are negligibly small in practical situations.

Some comments on available techniques for simulation of underlying random variables in connection with the accuracy
of basic fields’ statistics at a given sample size are made. For this purpose a simple error assessment procedure is presented.

Simulated random fields can be used both for representation of spatially correlated properties of structure or random
load in the stochastic finite element method (SFEM). An example of this application is related to size effect studies in the
nonlinear fracture mechanics of concrete, and is used to illustrate the method.
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Nomenclature

C cross correlation matrix of random fields
D block correlation matrix with cross correlation on the diagonals
Fuu autocorrelation matrix over N discretization points
F, F 0 full-block correlation matrix, its approximation
cNvar

correction (normalization) factor for eigenvalues measure of captured variability
CHH() autocovariance/correlation function
di correlation lengths
E[] expectation (the mean value)
Corr[] correlation
Var[] variance
H(x), ~HðxÞ original and approximated random field
H(x,h0) realization of the field
I identity matrix
wj(x) orthogonal eigenfunctions of a covariance kernel
N number of discretization points
Nsim number of simulations, realizations (sample size)
Nvar number of random variables number of eigenmodes of autocorrelation function/matrix
NF number of random fields number of eigenmodes of cross correlation matrix
NF,r reduced number of eigenmodes of cross correlation matrix
Nr number of random variables needed for NF random fields number of considered eigenmodes of

matrix F

Nrun number of runs of the set of Nsim simulations
S(h0) correlation matrix of a realization of random vector
fhjðxÞg1j¼1 orthogonal functions
u = {H(x1), . . . ,H(xN)} a vector of nodal field values
uj = {Hj(x1), . . . ,Hj(xN)} a vector of nodal values of the field j

RH(x)u covariance matrix between u and the field values at x 2 X
Ruu covariance matrix of the nodal points
lu mean value of the field over its nodal values u

UC, UD, UF, Uu orthonormal eigenvectors of correlation matrices C, D, F, Fuu

KC, KD, KF, Ku diagonal eigenvalue matrix of correlation matrices C, D, F, Fuu

h random nature
h0 a given outcome
l(x) mean function of expanded random field
ku

j eigenvalues of the covariance kernel

r2 variance of the field, variable
vD block sample matrix (Gaussian)
n vector of independent standard Gaussian random variables
eC error measure introduced by the reduction NF! NF,r

eS matrix norm (error) of S
eF symmetric correlation error matrix
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1. Introduction

The random nature of many features of physical events is widely recognized both in industry and by
researchers. The randomness of a gust wind, random structural features of materials, random fluctuations
in temperature, humidity, and other environmental factors, all make the characterization provided by deter-
ministic models of mechanics less satisfactory with respect to predictive capabilities. However, the entire prob-
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lem of uncertainty and reliability can be addressed in a mathematically precise way and the random charac-
teristics of nature can be addressed by computational models. For example, spatially fluctuating values of
material parameters can be conveniently represented by means of random fields (e.g. strength, modulus of
elasticity, fracture energy, etc.). Except for the narrow class of problems that can be solved analytically, the
solution to the variety of complex engineering problems involving uncertainty regarding mechanical properties
and/or the excitations they are subjected to must be found by means of simulation. The only currently avail-
able universal method for accurate solution of such stochastic mechanics problems is the Monte Carlo tech-
nique. Additionally, sensitivity and reliability analyses can be performed with minimal effort. The fast
development of computer hardware enables scientists and engineers to carry out simulation-based analyses,
partially also thanks to parallel implementation of problems on multiple computers.

One of the most important stages of the Monte Carlo type simulation technique as applied to systems with
random properties (or systems subjected to random excitations) is the generation of sample realizations of
these random properties. The generated sample functions must accurately describe the probabilistic character-
istics of the corresponding stochastic processes or fields. Moreover, since the analyzed problems are usually
computationally intensive (e.g. large scale nonlinear finite element computations), an analyst must select a sim-
ulation technique giving stable solutions with a small number of samples.

Although one of the most popular methods for simulation of random fields is the spectral representation

method (SR) e.g. [46,48,47], the present paper is focused on methods involving orthogonal series expansion
of correlation functions/matrices. This method is strongly related to the Karhunen–Loéve expansion (KLE)
method. In the author’s opinion, there are only a few papers focused on simulation techniques based on modal
decomposition of autocorrelation functions. Of course, each autocorrelation function is associated with its
spectral density function through the Wiener–Khintchine relationship. The equivalence between the SR and
KLE for weakly stationary processes has recently been pointed by Grigoriu [21] who compared the Karh-
unen–Loéve, spectral and sampling representations for simulating various types of stochastic processes,
including non-Gaussian processes.

Simulation of non-Gaussian processes is mostly based on memoryless transforms of the standard Gaussian
processes. These processes are known as translation processes [17–19]. The central problem is to determine the
corresponding Gaussian covariance matrix (or equivalently, the Gaussian power spectral density function) that
yields the target non-Gaussian covariance matrix after the memoryless transformation. Yamazaki and Shin-
ozuka [61] proposed an iterative algorithm for generating samples of non-Gaussian random fields with pre-
scribed spectral density and prescribed marginal distribution function based on iterative updating of the
power spectral density. Their algorithm was shown to have certain difficulties matching the marginal probability
distributions in the case when the distributions were highly skewed and Deodatis and Micaletti [11] presented
two modifications to it. Grigoriu [20] presented another model based on the spectral representation theorem
for weakly stationary processes, that can match the second-moment properties and several higher order
moments of any non-Gaussian process, and consists of a superposition of harmonics with uncorrelated but
dependent random amplitudes. Recently, Sakamoto and Ghanem [44] and Puig et al. [42] utilized Hermite poly-
nomial chaos method. In their method, the non-Gaussian processes are simulated by expanding the non-Gauss-
ian distribution using Hermite polynomials with the standard Gaussian variable as argument. The correlation
structure is decomposed according to the KLE of the underlying Gaussian process. The accuracy of this repre-
sentation was studied by Field and Grigoriu [15] who pointed out some limitations of the approach. Grigoriu
[21] criticize the algorithm for its computational intensity and questionable accuracy. For simulation of non-
Gaussian weakly stationary stochastic processes with band-limited spectra, the sampling representation is
recommended instead. Phoon et al. [40] recently proposed simulation of non-Gaussian processes via Karh-
unen–Loéve expansion with uncorrelated non-Gaussian coefficients of zero mean and unit variance. The key
feature of their technique is that the distribution of the random coefficients (random variables) is updated iter-
atively. To achieve uncorrelatedness of the these random variables a slight modification of former correlation
control algorithm was proposed so that the target distributions and covariance functions are matched.

In the present paper (which is an extended and translated version of the paper by Vořechovský [52]) two
well-known methods are chosen for representation of a Gaussian random field, and based on these methods
a simple extension to the simulation of the target type of multivariate stochastic fields is shown. The two meth-
ods represent a stochastic field in terms of a linear combination of deterministic functions/vectors ujðxÞ, and a
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finite set of uncorrelated standard Gaussian random variables vj(h), where h stands for the random nature.
Both methods enable continuous representation of a field. After a brief review of these two methods in the
context of univariate random fields (Section 2) we proceed to cross correlated Gaussian vector random fields
(Section 3) and the proposed method. Section 4 shows how the presented approach can be extended for sim-
ulation of non-Gaussian vector random fields via transformations of an underlying Gaussian random field. In
Section 5 a numerical example is presented to document the computational savings and small degree of error
arising when simulating non-Gaussian fields. Section 6 proposes a simple error assessment procedure. Several
alternatives of the Monte Carlo simulation methods at the level of random variable simulation are compared
with respect to the accuracy of the simulated field’s samples. Possible utilization of simulated fields is presented
in Section 7, namely the modeling of material parameters aiming at capturing the statistical part of size effect
on the strength of quasibrittle structures is sketched in words.

2. Series expansion methods for the simulation of a random field

In most applications, it is necessary to represent a continuous-parameter random field in terms of a vector
of random variables. For example, the discrete nature of the finite element formulation also requires the ran-
dom fields to be discretized – this process is known as discretization of a random field. For the sake of com-
pleteness, a brief list of several methods for discretization of random fields proposed in the past can be
mentioned. These include the point discretization methods:

• the midpoint method e.g. [13],
• the shape function method e.g. [28,29],
• the integration point method e.g. [31,4],
• the optimal linear estimation method (OLE) [26],

and a group of average discretization methods, e.g.:

• the spatial average method (SA) e.g. [51,13,31],
• the weighted integral method e.g. [8,9,12].

The methods always involve a finite number of random variables having a straightforward interpretation:
point values or local averages of the original random field H(x,h). For a given outcome h0, H(x,h0) is a real-
ization of the field. On the other hand, for a given x0 from X, H(x0,h) is a random variable. The following Eq.
(1) can be viewed as the expansion of each realization of the approximated field Ĥðx; h0Þ 2L2ðXÞ over the
basis of all functions ujðxÞ ðj ¼ 1 . . . N varÞ; vjðh0Þ being the coordinates. The discretization methods aim at
expanding any realization of the original random field Hðx; h0Þ 2L2ðXÞ over a complete set of deterministic
functions, where x 2 X is a continuous parameter, and X is an open set of Rdim describing the system geometry.
By means of these random variables vj(h), the approximated random field ~HðxÞ can be expressed as a finite
summation (series expansion):
Ĥðx; hÞ ¼
XNvar

j¼1

vjðhÞujðxÞ ð1Þ
where the deterministic functions ujðxÞ for different discretization methods are well-arranged in the recent re-
port by Sudret and Der Kiureghian [49].

Autocovariance structure of a random field: As the randomness of the spatial variability in multidimensional
nature is generally anisotropic, the autocorrelation function of the spatial variability is supposed to be a func-
tion of a non-Euclidean norm of two points x,y 2 X:kx,yk = {kx1,y1k, . . . ,kxdim,ydimk}. If the covariance
function depends on distance alone, the function is said to be isotropic. The following commonly used expo-
nential form of an autocorrelation function is used as an example (for unit variance r2 of the field):
CHH ðx; yÞ ¼
Ydim

i¼1

exp � kxi; yik
di

� �powi
� �

ð2Þ
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in which di,(i = 1, . . . ,dim) are positive parameters called correlation lengths. With increasing d a stronger sta-
tistical correlation of a parameter in space is imposed, and vice versa. The power pow = 2 leads to the well-
known bell-shaped (or Gaussian) autocorrelation function. The combination of identical correlation lengths
and pows and use of Euclidean norm imply an isotropic autocorrelation structure. The product structure of
autocorrelation (Eq. (2)) is called ‘‘fully separable correlation’’ (a product of correlations in separated dimen-
sions). Typical examples of usage can be found in geology or in space–time contexts, where time is separated.

When the ratio of the measure (size) of X to the correlation length d of random field, r = jXj/d, is very small
(asymptotically approaching zero), the realizations of random fields are constant functions over X (correlation
coefficients among random variables used for series expansion approach unity). The stochastic field is equiv-
alent to one random variable and can be represented by it. In the opposite direction, when the ratio r is very
large (approaching infinity) then the random field fluctuates almost without spatial correlation. This case is
then equivalent to the case of large number of statistically independent random variables. In between the ratio
r is ‘‘reasonable’’ (0� r�1) and the series expansion methods are random functions which can be suitably
simulated by series expansion methods (expansion using a finite number of random variables – coefficients).

Suppose that the spatial variability of a random parameter is described by the Gaussian random field H(x),
where x is the vector coordinate which determines the position in X. Bellow, for the sake of simplicity, we will
focus on Karhunen–Loève expansion and an equivalent (approximate) series expansion method (EOLE).
These methods are well known in the simulation of univariate random fields and will provide a good basis
for illustration of the proposed methodology for the simulation of multivariate random fields.
2.1. Karhunen–Loève expansion (KLE)

The Karhunen–Loève expansion of a stochastic field H(x,h) is based on the spectral expansion of its autoco-
variance function CHH(x,y). This method is also known as the proper orthogonal decomposition. The autoco-
variance function being symmetric, bounded and positive definite, by definition, has all its eigenfunctions wj(x)
mutually orthogonal, and they form a complete set spanning the space to which H(x,h) belongs (L2ðXÞ). The
expansion of H(x,h) with this deterministic set utilizes orthogonal random coefficients (uncorrelated random
variables with zero mean and unit variance) nj(h) in the following form:
Hðx; hÞ ¼
X1
j¼1

ffiffiffiffi
kj

p
njðhÞwjðxÞ ð3Þ
where {kj,wj(x)} are the eigenvalues with eigenfunctions of the covariance kernel, a solution of the eigenvalue
problem (Fredholm integral equation of the second kind, homogeneous):
Z

X
CHH ðx; yÞwjðyÞdXy � kjwjðxÞ ¼ 0 ð4Þ
The analytical solution of the real, positive and numerable spectrum of eigenvalues and associated eigen-
functions is known only for several covariance kernels; however, a numerical solution is available, see e.g. the
book by Ghanem and Spanos [16]. We remark that an efficient approximate solution of the eigenproblem can
be obtained using the Fast Multipole Method (FMM) first introduced by Rokhlin [43]. FMM is a fast solver
of integral equations (see [34] for a review) Application of generalized FMM to KLE approximation has
recently been published by Schwab and Todor [45]. Another efficient way of solving the related Fredholm inte-
gral equation is the wavelet-Galerkin approach proposed by Phoon et al. [41].

The domain of an eigenvalue problem may not be the domain X at which the random field is targeted. To
limit variance error at the boundaries, a larger domain may be defined [49].

If the expanded random field H(Æ) is Gaussian, then the random variables nj form an orthonormal Gaussian
vector. Karhunen–Loève expansion [30] is mean-square convergent irrespective of the probabilistic structure
of the field being expanded (provided it has a finite variance).

The expansion of any realization of the original random field is done over a complete set of deterministic
functions. Practically, the approximation of a field is performed by truncating the series after a finite number
of terms (Eq. (5)). It can be shown that the eigenvalues kj of the covariance kernel decay monotonically with
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the increasing value of its index with the rate related to the rate of decay of the Fourier transform of the auto-
correlation function of the expanded field/process. Due to the fact that eigenvalues do not accumulate around
a nonzero value, it is possible to order them in a descending series converging to zero. Truncating the ordered
series (Eq. (3)) after the Nvar-th term gives the approximation of the expanded field:
Ĥðx; hÞ ¼ Ĥ Nvar ¼
XNvar

j¼1

ffiffiffiffi
kj

p
njðhÞwjðxÞ ð5Þ
The series of approximations Ĥ Nvar converge in the mean square to the original process H. This implies that,
for sufficiently large Nvar, the second-moment properties of H(x) can be approximated by the second-moment
properties of its parametric representation ĤNvar . The number Nvar to be chosen strongly depends on the
desired accuracy and on the autocovariance function of the stochastic field. The mean square error integrated
over X resulting from a truncation is minimized, e.g. [63]. It is worth pointing that KLE is the most efficient
expansion of random processes in terms of the truncated expansion series (i.e. number of random variables
Nvar). The closer a process is to white noise, the more terms are required with a given level of underestimation
of variability (which always occurs). An appropriate measure of captured variability is the ratio
cNvar ¼

PNvar

j¼1 kj=
P1

j¼1kj, which can be used for as a correction of each eigenvalue ðcNvarkj; j ¼ 1 . . . N varÞ in order
to reduce (shift) the variance error along the expanded field over X (standardized Karhunen–Loève expan-
sion). Both the variance over X and the covariance profile (distance vs. covariance) estimated for a random
field simulated by KLE with adjusted eigenvalues (standardized) are closer to the target values than without
the standardization. The partial sum of the j largest eigenvalues divided by the total sum (portion of normal-
ized variability) can be continuously plotted vs. k (number of random variables planned for representation, see
Fig. 2). The reduction of a number of random variables resulting from such a truncation has a significant
impact on the computational cost of the simulation of a random field. It will be shown later that this reduction
will be amplified in the proposed simulation of cross correlated stochastic fields.

KLE is one of the basic methods representing series expansion methods with orthogonal functions; several
other methods are in fact approximations of KLE. For example, in the orthogonal series expansion method
(OSE) proposed by Zhang and Ellingwood [63], the eigenvalue problem (Eq. (4)) is solved numerically by
selecting ab initio a complete set of orthogonal functions hj(x). If correlated Gaussian random variables are
transformed into uncorrelated variables (random coefficients of functions) using spectral decomposition of
the correlation matrix, it can be shown that OSE is an approximation of KLE. The OSE method using a com-
plete set of orthogonal functions fhjðxÞg1j¼1 is strictly equivalent to KLE in the case that the eigenfunctions
wj(x) of CHH are approximated using the same set fhjðxÞg1j¼1.

2.2. Expansion optimal linear estimation (EOLE)

Another representation with a slightly different flavor aims at finding the optimal representation of a sto-
chastic field as a linear combination of a subset of its values that has been sampled over a countable domain
from its index space (optimal grid of nodes). This representation was proposed by Li and Der Kiureghian [26].
It is an extension of the OLE method proposed by the same authors (it uses a spectral representation of the
nodal values), and which is sometimes referred to as the Kriging method, see e.g. Vanmarcke [50]. In fact, the
difference is that the Kriging method is usually based on observed nodal values of the field. In the OLE
method the field is represented by a linear function of discrete (nodal) field values u = {H(x1), . . . ,H(xN)} –
a special case of regression on linear functionals [14]. Minimization of the variance error between the target
random field and an approximated field Var½HðxÞ � ~HðxÞ� under the condition of equal mean values of both
ðE½HðxÞ � ~HðxÞ� ¼ 0Þ results in [26]:
Ĥðx; hÞ ¼ RT
HðxÞuR

�1
uu ðu� luÞ; x 2 X ð6Þ
where RH(x)u is a covariance matrix between the field values u and an arbitrary point x 2 X, Ruu is the covari-
ance matrix of the field values u and lu denotes the mean value of the field over its nodal values u. Among all
linear representations of H(x) in terms of discrete random variables u that match the mean function, OLE rep-
resentation is optimal in the sense that it minimizes the variance error at any given point. This is particularly
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desirable for the Gaussian distribution, which is completely defined through the mean value and the variance.
Using a spectral representation of the nodal variables (vector u) the OLE method results in the EOLE method
[26]:
Ĥðx; hÞ ¼
XNvar

j¼1

njðhÞffiffiffiffiffi
ku

j

q ½Uu
j �

TRHðxÞu ð7Þ
where Nvar 6 N represents the truncation in the discrete spectral representation of the field (random vector):
HuðhÞ ¼
XN

j¼1

njðhÞ
ffiffiffiffiffi
ku

j

q
½Uu

j �
T ð8Þ
where ku
j and Uu

j are the solutions of the eigenvalue problem: RuuU
u
j ¼ ku

j U
u
j .

In the selection of an optimal grid a factor is the numerical stability of the probabilistic transformation. If
the grid is excessively fine, the grid points are highly correlated and their correlation matrix is nearly singular.
Therefore, the transformation may become numerically unstable. From the standpoint of accuracy, one
should use a fine grid so the field can then be well represented. The selection of grid density depends on
the type of autocorrelation function and length. There are several papers suggesting the number of grid points
per autocorrelation length, an extensive source of information with references is the work by Sudret and Der
Kiureghian [49].

In the context of the EOLE method we would like to emphasize that an optimal grid of nodal points may be
in the one-dimensional case a grid of equidistant points in X. The advantage is that the correlation matrix Ruu

becomes a symmetric Toeplitz matrix – N Æ N symmetric matrix whose (i, j)th element is tij = t(ji � jj), i.e. each
element depends only on the difference ji � jj. In more dimensions, optimal node numbering can make the Ruu

matrix close to the Toeplitz matrix. Numerical problems involving Toeplitz matrices typically have a fast solu-
tion. Having the matrix Ruu assembled as the symmetric and positive Toeplitz matrix, one can use efficient
(specialized) algorithms for spectral decomposition, see e.g. [1,22,7]. In addition to this, the maximum and
minimum eigenvalues can also be accurately estimated at a very low cost. This can significantly reduce the
computational effort for field expansion.
3. Cross correlated Gaussian random fields

It is usual that more than one random property governs the evolution of a system. Consider for instance
Young’s modulus, Poisson’s ratio or strength in mechanical problems, etc. In a probabilistic concept, all these
quantities can be modeled by random fields. There are several papers dealing with the simulation of multivar-
iate random fields using the cross spectral density matrix e.g. [46]. A more recent paper based on spectral rep-
resentation methodology confirms such stochastic processes as being ergodic [10]. A nice review of the
available methods together with a novel hybrid spectral representation and the proper orthogonal decompo-
sition approach for simulation of multivariate Gaussian processes has recently been published by Chen and
Letchford [5].

The present paper aims at the utilization of methods based on modal decomposition of correlation matri-
ces. For this case, the simulation of multivariate processes was described by Yamazaki and Shinozuka [62]
who used the covariance decomposition method with statistical preconditioning. Their method is a simple
extension of the modal decomposition method of the autocovariance matrix that is used in simulation of a
univariate random field. The present paper deals with cases when all fields simulated over a region X share
an identical autocorrelation function over X, and the cross correlation structure between each pair of simu-
lated fields is simply defined by a cross correlation coefficient. Such an assumption enables one to perform
the modal transformation in two ‘‘small’’ steps, not in one ‘‘big’’ step, as proposed by Yamazaki and Shin-
ozuka [62]. The advantage is a significant reduction in the dimension of the eigenvalue problem considering
the fact that the modal decomposition of the given autocorrelation function (KLE) or matrix (EOLE) is done
only once. An illustration of the algorithms of both methods and their comparison with a detailed description
follow.



344 M. Vořechovský / Structural Safety 30 (2008) 337–363
The key idea of the proposed method is that all cross correlated fields are expanded using the same spec-
trum of eigenfunctions/vectors (described in the preceding section for KLE and EOLE methods), but the sets
of random variables used for the expansion of each field are cross correlated. In other words, each field is
expanded using a set of independent random variables, but these sets must be correlated with respect to
the cross correlation matrix among all expanded random fields.

Note that sometimes authors of technical papers utilize cross correlated fields which are independent. How-
ever, this independence is only assumed, and the fields are simply simulated one-by-one without any regard
given to what the relationship between the sets of representing random variables is. Therefore, some undesired
spurious cross correlation can arise among random fields.
3.1. Method for simulation of cross correlated random fields

In this section, we present some definitions needed for the problem formulation, notations and basic facts
used throughout the paper. The most important properties of defined items are stated.

D 1 (Cross correlation matrix of random fields). Let C be a square symmetric positive definite matrix of order
NF with elements Ci,j 2 (�1;1) for i 5 j and Ci,j = 1 for i = j. Matrix C is a cross correlation matrix and defines
the correlation structure among NF random fields.

The cross correlation matrix C has NF real, positive eigenvalues kC
j ; j ¼; 1 . . . ;N F associated with NF ortho-

normal eigenvectors UC
j,j = 1, . . .,NF. After ordering them so that kC

1 P kC
2 P . . . P kC

NF
the eigenvector

matrix reads:
ð9Þ
and
ð10Þ
Each jth eigenvector UC
j is normalized to have an Euclidean length of 1, therefore [UC]TUC = I, in which I is

an identity matrix. The spectral decomposition of correlation matrix C reads: CUC = UCKC. Let us denote
UC ¼ ðUC

I UC
IIÞ and KC ¼ ðKC

I KC
IIÞ, where UC

I ¼ ðUC
1 UC

2 � � �UC
NF ;r
Þ is the (NF · NF,r) matrix and

KC
I ¼ diagðkC

1 ; . . . ; kC
NF ;r
Þ is the (NF,r · NF,r) diagonal matrix. Then, by partitioning the matrices UC and KC

the spectral decomposition can be written as:
C UC
I UC

II

� �
¼ UC

I UC
II

� � KC
I 0

0 KC
II

 !
ð11Þ
Partitioning of the matrices will be used later in the reduction of computational effort for the simulation of
random fields. It can be shown that a large amount of computer memory can be saved at a given level of accu-
racy if one uses UC

I instead of full UC (with associated K 0s). The idea is that the largest eigenvalues and their
corresponding eigenvectors dominate the foregoing transformation, so the second part of the eigenvalues/vec-
tors can be neglected and the approximate spectral representation of matrix bC can be obtained:
bC ¼ UC

I KC
I ½UC

I �
T ð12Þ
As a measure of an error introduced by the reduction NF! NF,r, the following can serve a ratio based on the
portion of the largest eigenvalues considered:
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eC ¼
PNF ;r

j¼1 kC
jPNF

j¼1k
C
j

ð13Þ
It can be shown that for the simulation of cross correlated stochastic fields by the methods described above
one needs to simulate a vector of cross correlated random variables for the expansion. These random variables
have a correlation matrix defined as follows.

D 2 (Block cross correlation matrix D of random variables). Let D be a squared symmetric matrix of order
(NFNvar) assembled in this way: matrix D consists of (NF · NF) blocks (squared matrices) Ci,jI, where I is the
unit matrix of order Nvar, and Ci,j are elements of the cross correlation matrix C defined previously
D is a correlation matrix having nonzero elements on sub-diagonals of partial square blocks. The fact that
each square block matrix on the diagonal of D is the (Nvar · Nvar) unit matrix can be simply interpreted: ran-
dom variables needed for the expansion of one random field Hi, i = 1, . . . ,NF are non-correlated (and also
independent since we will work with Gaussian random variables). The off-diagonal square blocks (diagonal
matrices) represent cross correlation between each two sets of random variables used for expansion of the
fields Hi and Hj, i5j; i, j = 1, . . . ,NF. The key property for the proposed method is the spectral property of
the correlation matrix D. Cross correlation matrix D has NFNvar real, positive eigenvalues
kD

j ; j ¼ 1; . . . ; ðNF N varÞ associated with orthogonal eigenvectors. Obviously matrix D has the same eigenvalues
as matrix C, but these are Nvar-multiple. Similarly the eigenvectors of D are associated with the eigenvectors of
C. The space described by UC is enriched so that the dimension is Nvar-times higher, but the components of the
orthogonal eigenvectors UC remain.

After ordering the eigenvalues so that kD
1 P kD

2 P � � �P kD
NF �Nvar

, one can assemble the eigenvectors/eigen-
value matrices using a block-matrix with squared block submatrices:
ð14Þ
and the eigenvalue matrices corresponding to vector blocks ðUD
1 ; . . . ;UD

NF
Þ:
ð15Þ
where I is the unit matrix of order Nvar. The spectral decomposition of correlation matrix D reads: DUD = UDKD .

Let us denote UD ¼ ðUD
I UD

IIÞ and KD ¼ ðKD
I KD

IIÞ; UD
I ¼ ðUD

1 . . . UD
NF ;r
Þ and KD

I ¼ diagðkC
1 I; . . . ; kC

NF ;r
IÞ. Then by

partitioning the matrices UD and KD the spectral decomposition can be written as:
D UD
I UD

II

� �
¼ UD

I UD
II

� � KD
I 0

0 KD
II

 !
ð16Þ
Matrices C and D are positive definite. Similarly to Eq. (12) the second part of the eigenvalues/vectors can be

neglected and the approximate spectral representation of (cross) correlation matrix bD can be obtained as:
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bD ¼ UD
I KD

I ½UD
I �

T ð17Þ
where the matrix UD
I contains only the respective eigenvectors to the NF,r eigenvalues.

The reduction of the eigenvectors/eigenvalues used in Eq. (17) is ‘‘quantized’’, because each eigenvector
submatrix UD

j , j = 1, . . . ,NF consists of Nvar orthogonal eigenvectors. The same applies to eigenvalue matrix
KD. The utilization of each next eigenvector of the ‘‘source’’ correlation matrix C results in the increase of Nvar

eigenvectors of matrix D in Eq. (17). An error introduced by reduction of the number of eigenmodes consid-
ered is analogous to that in Eq. (13):
eD ¼
PNr

j¼1k
D
jPNvar �NF

j¼1 kD
j

¼
PNF ;r

j¼1 ðN vark
C
j ÞPNF

j¼1ðN vark
C
j Þ
¼
PNF ;r

j¼1 kC
jPNF

j¼1k
C
j

¼ eC ð18Þ
in which Nr = NvarNF,r is the reduced number of eigenmodes considered; it will be shown later that Nr is also
the number of random variables that must be simulated to represent a vector random field. It might be impor-
tant to know how the correlation matrix of all NF fields, each discretized into the same set of N points
(x1, . . . ,xN), looks:

D 3 (Full-block correlation matrix F). Let F be a squared symmetric matrix of order NFN assembled as
follows. Matrix F consists of NF · NF blocks (squared matrices) Fi;j

uu which are correlation matrices of order N.
Each submatrix Fi;j

uu is symmetric:
ð19Þ
and the general entry F i;j
k;l ¼ F i;j

l;k ¼ Corr½HiðxkÞ;HjðxlÞ� has the meaning of correlation between two field’s (i, j)
nodal values at points xk, xl (k, l = 1, . . . ,N). Matrix F can be obtained using the autocorrelation matrix
Fuu ¼ Fi;i

uu and using the cross correlation matrix C among random fields (vectors) H1; . . . ;HNF simply by mul-
tiplying the autocorrelation by the cross correlation: F i;j

k;l ¼ Ci;jF k;l. Matrix F can be written using the squared
(N · N) blocks Fi;j

uu ¼ Ci;jFuu as:
ð20Þ
This illustrates the simple cross correlation relationships between the vector fields Hi,Hj (single correlation
coefficients Ci,j).

Matrix F is the target cross correlation matrix of discretized random fields (random vectors) H1; . . . ;HNF ,
each discretized into the same set of points xi (i = 1, . . . ,N).

It is not difficult to show that if the correlation matrix F consists of blocks (autocorrelation matrices Fuu,
each multiplied by a cross correlation coefficient Ci,j), the eigenvector matrix denoted Uu can be assembled as a
block-matrix with block submatrices UF

1 ; . . . ;UF
NF

:
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ð21Þ
and
ð22Þ
where Ku is the (reduced) eigenvalue matrix of F of order Nvar and kC
i (i = 1, . . . ,NF) are the eigenvalues of

cross correlation matrix C. Note that the eigenvalues kF are not sorted automatically even if the eigenvalues
of both Ku and KC are sorted. The partitioning of UF and KF in the case that only the reduced number of
eigenmodes NF,r of matrix C are available is obvious.

D 4 (Block sample matrix vD). Let vD be a (NvarNF)-dimensional jointly normally distributed random vector
with correlation matrix D. The vector consists of NF blocks. Each block (sub-vector) vD

j , j = 1, . . . ,NF

represents a Gaussian random vector with Nvar standard Gaussian independent (and therefore also non-
correlated) random variables (marginals) while the vectors vD

i , vD
j are cross correlated.

For a given number of realizations Nsim the vector vD is represented by an (NvarNF) · Nsim random matrix.
Each of the Nsim columns is one realization of a Gaussian random vector. The random vector vD is partitioned
into NF vectors each with the dimension Nvar:
vD ¼ ½vD
1 �

T ½vD
2 �

T ½vD
3 �

T � � � ½vD
NF
�T

h iT
Simulation of the matrix vD is the most important step in the method. The matrix D is targeted in simulation
of vD as the correlation matrix. The key idea of the method is the utilization of spectral decomposition of cor-
relation matrix D as this decomposition is very easy to perform (Eq. 14). Therefore, the orthogonal transfor-
mation of correlation matrix will be used. The utilization of the equivalence with prescribed correlation matrix
C among fields has a significant computational impact: instead of solving the Nvar · NF eigenvalue problem of
D, one needs to solve the NF eigenvalue problem of prescribed correlation matrix C. In cases when the number
of random variables utilized in the expansion of one random field is large (thousands), the reduction is signif-
icant. By partitioning the matrix vD into Nvar-dimensional blocks, one obtains an independent standard
Gaussian random vector for the simulation of each of the NF random fields.

Having Eq. (14) for the correlation matrix defined in Eq. (2) at hand the simulation of the Block sample
matrix vD is straightforward (orthogonal transformation of the correlation matrix):
vD ¼ UDðKDÞ1=2
n ð23Þ
where n = {ni, i = 1, . . . ,NF · Nvar} forms a vector of independent standard Gaussian random variables.
Employing Eq. (17) for approximate spectral representation, the approximate Block sample matrix v̂D can
be simulated similarly:
v̂D ¼ UD
I ðK

D
I Þ

1=2
nr ð24Þ
where nr = {nj, j = 1, . . . ,NF,r · Nvar} again forms a vector of independent standard Gaussian random vari-
ables. Matrices KD and KD

I play the role of (diagonal) covariance matrices.
Because the random variables in vectors vD and v̂D are zero-mean Gaussian random variables, the error

between vD and v̂D is defined completely by the difference between the exact correlation matrix D and the
approximate correlation matrix bD. The reduction error can be measured by the ratio eD (Eq. (18)).
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A correlation matrix C of order NF has the trace: trðCÞ ¼
PNF

j¼1k
C
j ¼ N F . Similarly for a correlation matrix

D of order NFNvar the trace is trðDÞ ¼
PNF Nvar

j¼1 kD
j ¼ NF N var. These properties are important for the error esti-

mation in Eqs. (13), (18) and for the standardization of eigenvalues (see Section 2.1).
Of course, the (sparse) matrices UD and KD do not need to be assembled and stored in computer memory.

They can be used in the form of an algorithm, and only the eigen-matrices UC and KC must be solved (or at
least their dominating parts UC

I and KC
I ).

3.2. Simulation of random variables

The most important aspect of the presented linear transformations is that the spatial random fluctuations
have been decomposed into a set of deterministic functions in the spatial variables and random coefficients
that are independent of these variables. If the random fields Hi(x,h) are Gaussian, then Gaussian random vari-
ables {nj} form an orthonormal Gaussian vector. Once having the deterministic part solved the accuracy of
fields depends solely on the quality of random variables. For the purpose of simulation of random vector n

(nr) plenty of techniques can be used.
In cases when computationally demanding SFEM analysis employs random fields, a suitable type of simu-

lation technique should be applied in order to keep the number of required simulations at an acceptable level (at
a given accuracy). One of the alternatives is the Latin Hypercube Sampling (LHS) technique [32,24]. This strat-
ified sampling technique (usually used for simulation of random variables only) has also been recommended for
simulation of random variables employed in random fields by many authors [62,36,39]. A more recent compar-
ison of efficiency between the employment of LHS and the Crude Monte Carlo technique for simulation of ran-
dom fields can be found in [57]. There are two steps in LHS: stratified sampling and handling of the correlation
structure of samples. A good improvement to sampling is given in a technical note by Huntington and Lyrintzis
[23], who recommend the representative values to be the probabilistic means of each strata:
nk ¼ N sim

Z bk

bk�1

ngðnÞdn; bk ¼ G�1 k
N sim

� �
; ð25Þ
not the median nk = G�1((k � 0.5)/Nsim) as is the current practice (k = 1, . . . ,Nsim, nk is the kth sample value,
g(Æ)[G(Æ)] is the probability [cumulative] density function of the sampled random variable, each sample value
represents the probability 1/Nsim of its strata). There is also an improvement to the correlation structure con-
trol published in papers by Vořechovský and Novák [56,58,60]. It will be shown later that such an improve-
ment has a remarkable effect on the accuracy of the autocorrelation properties of simulated random fields.

3.3. Summary of the method

The proposed procedure for the simulation of random fields can be itemized as follows:

(1) The spectral analysis of the autocorrelation structure of expanded field(s). This step is known from the
simulation of univariate random fields and is performed once only. At this step the number of random
variables needed for expansion of each field Nvar is determined and the decision about the truncation of
eigenvalues is made. For both discretization methods presented in the paper (KLE and EOLE), eigen-
modes are recommended to be sought for an enlarged region X! X̂ in order to reduce the variance error
at the boundaries. Also, the standardization of Nvar largest eigenvalues should be performed with regard
to the number Nvar of eigenmodes chosen (see Section 2.1).
(a) KLE: Decomposition of the autocovariance function (Eq. (4)): eigenvalues and eigenfunctions on X̂.

The number of eigenfunctions is Nvar.
(b) EOLE: The choice of density of a grid over X̂ depending on the autocorrelation function type and

correlation lengths must be made. Based on the discretization, the autocorrelation matrix Fuu is
assembled and its Nvar largest eigenvalues and the corresponding eigenvectors are determined.

(2) Eigenvalues must be computed with corresponding orthogonal eigenvectors ðUC
I KC

I Þ of the target cross
correlation matrix C among random fields. The choice of number of eigenmodes NF,r 6 NF is made.



M. Vořechovský / Structural Safety 30 (2008) 337–363 349
(3) Simulation of Gaussian random vector nr of Nr = NF,rNvar independent standard Gaussian variables nj.
For a given number of simulations Nsim a random vector becomes an Nr · Nsim random matrix, where
Nsim is a sample size for each random variable. The LHS technique is recommended for the simulation of
the random vector (see Section 3.2).

(4) The simulation of cross correlated random vector vD by matrix multiplication (Eq. (23)) or (Eq. (24)).
Matrices from Eqs. (14) and (15) of the matrix D (an enlarged matrix from step 2) and a random matrix
from step (3) are utilized.

(5) In this step, the simulation of all (standardized Gaussian) random fields i = 1,2, . . . ,NF takes place
depending on the method from step (1):
(a) KLE: Composition of target random functions based on Eq. (5). Each random field i is expanded

using the ith block vD
i of random vector vD ðv̂DÞ and the Nvar eigenmodes from step (1a):
bH iðxÞ ¼
XNvar

j¼1

ffiffiffiffi
kj

p
vD

i;jwjðxÞ ð26Þ
(b) EOLE: Similarly, the fields are expanded according to multiplication in Eq. (7):
Ĥ iðxÞ ¼
XNvar

j¼1

vD
i;jffiffiffiffiffi
ku

j

q ½Uu
j �

TRHðxÞu ð27Þ
(6) The last step is the transformation of standardized Gaussian random field values i = 1,2, . . . ,NF with
respect to target mean values li and standard deviations ri via Ĥ iðxÞri þ li.

In case of the EOLE method the target correlation matrix of the vector field discretized in the optimal grid
is exactly the full-block correlation matrix F.

If statistically independent random fields are required, the cross correlation matrix C is the identity matrix.
Both the eigenvalue and the eigenvector matrix are also the identity matrices. Therefore steps (2) and (4) can
be skipped, nr ¼ v̂D, NF,r = NF.

In the opposite direction, any covariance matrix A of order N: A = {Ai,j 2 R : Ai,j = c; i, j = 1, . . . ,N} has
the first eigenvalue kA

1 ¼ cN and ðkA
i ¼ 0; i ¼ 2; . . . ;NÞ. The normalized eigenvector of the first mode is

UA
1 ¼ ðN�1=2;N�1=2; . . . ;N�1=2ÞT. This means that only the first eigenvalue is meaningful, and hence the prob-

lem reduces to: (i) if C = A, just one random field in the case of cross correlated random fields, (ii) just one
random variable for each field if the autocorrelation matrix Fuu = A (in the case of an optimal grid in the
EOLE method for one random field expansion). The latter case is equivalent to the case of infinite correlation
length in the autocovariance kernel in KLE.

Yamazaki and Shinozuka [62] proposed the universal simulation of discretized multivariate stochastic fields
by one orthogonal transformation of (block) covariance matrix F. The modal matrix of matrix F is then used
for the transformation of random vector n composed of N · NF independent Gaussian random variables. The
main difference from the method proposed here is that they need to solve an eigenvalue problem of matrix F

that has a large order (N · NF) while in this paper the problem is decomposed into two separate modal solu-
tions, namely (i) the autocovariance structure (order N in EOLE; a reduced number of Nvar eigenmodes must
be solved) and (ii) the cross correlation matrix of order NF (NF,r modes). A simple illustration with a compar-
ison of the approaches is given in Fig. 1. The figure illustrates (a) the expansion of a univariate random field
using the random vector n and the eigenvalue matrix K with associated eigenfunctions [eigenvectors] in KLE
[EOLE], (b) the simulation procedure employing one ‘‘huge’’ orthogonal transformation of the correlation
matrix F [62]:
H ¼ UFðKFÞ1=2
n ð28Þ
This procedure is general. In our case the correlation matrix F can be assembled using the products of the
cross correlation matrix C and autocorrelation matrix Fuu. We have shown that the eigenvector and eigenvalue
matrices of C and Fuu solved separately can be used to compute the required matrices UF and KF (see Eqs. (21),
(22)) and therefore computational effort can be saved. It will be shown later that such a technique yields



Fig. 1. (a) Simulation of a univariate random field using Nvar eigenmodes; (b) illustration of the method due to Yamazaki and Shinozuka
[62]; (c) proposed method for simulation of cross correlated fields in two steps when components share the same distribution; (d) proposed
method for components with different distributions, where eigenanalysis of each field is performed separately.
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identically good results as the proposed scheme depicted in the third part (c) of the figure: decomposition into
(i) the preparation of a vector of cross correlated random variables vD and (ii) the expansion of each random
field Hi using a subset vD

i and always the same orthogonal base as in (a). The advantage of the proposed pro-
cedure (c) is that the simulation of each random field can be done separately using either a KLE or EOLE base
while the cross correlated random variables vD are prepared in advance. Incorporation into an existing algo-
rithm for simulation of univariate fields is therefore simple and transparent.

4. Transformation to non-Gaussian random fields

In most applications, the Gaussian random field H is often used to model uncertainties with spatial vari-
ability because of convenience and a lack of alternative models. However, the Gaussian model is not applica-
ble in many situations. For example, it cannot be used to model Young’s modulus or the strength of a
material, which is always positive.

Let us denote the marginal cumulative [probability] distribution function (cdf) of each component eH i of the
non-Gaussian vector random field eH by Gi [gi]. In the discretized version, one can assemble the target corre-
lation matrix eF of all random fields by computing the entries eF i;j

k;l as a product of the autocorrelation coeffi-
cient eF i;j

uu (depending only on the positions of each pair of points, Eq. (2)) and the target cross correlation eCi;j.
It would be convenient to find an underlying Gaussian random field H (with some cross correlation matrix C
studied earlier) that can be easily transformed into the target field eH while keeping the target cross correlation
matrix between these components denoted by eC. The univariate nonlinear transformation of the Gaussian
variables [called the translation process by Grigoriu [19]] is the mapping hi(Æ):
eH iðxkÞ ¼ hi½HiðxkÞ� ¼ G�1

i fU½HiðxkÞ�g; i ¼ 1; . . . ;NF ; k ¼ 1; . . . ;N ð29Þ

where U(Æ) is the standard cumulative Gaussian probability function. A good reason for transforming the vari-
ables from the standard Gaussian space into the original non-Gaussian space is that the former is often re-
quired in advanced reliability and sensitivity analyses.

The Nataf [33] model has been proposed by Liu and Der Kiureghian [27] for transforming non-Gaussian
multivariate distribution into standardized Gaussian distribution. We will show how the Nataf model can be
used within the presented framework for effective simulation of cross correlated Gaussian random fields in
order to model non-Gaussian fields with prescribed marginal distributions Gi, the autocorrelation function
from Eq. (2) and cross correlated via C. For application of the Nataf model, the correlation coefficient eqi;j

of each pair (i, j) of non-Gaussian variables must be adjusted to form the correlation coefficient qi,j of a pair
of Gaussian variables. The adjustment has been shown [27] to be a unique solution of the following twofold
integral Eq. (12) in [27]:
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~qi;j ¼
Z 1

�1

Z 1

�1

eH i � li

ri

 ! eH j � lj

rj

 !
uðH i;H j; qi;jÞdH i dH j ð30Þ
where the values of the original variables eH i; eH j (with the means li, lj and standard deviations ri, rj) are
expressed in terms of the standard Gaussian variables in the spirit of Eq. (29) via eH i ¼ G�1

i ½UðH iÞ�. Function
uðH i;Hj; qi;jÞ is the standard bivariate Gaussian density.

Due to the uniqueness of the solution, the relationship in Eq. (30) can be expressed as a correction to the
original correlation [27]:
qi;j ¼ jeqi;j ð31Þ
In general, the correction factor j (satisfying j P 1) is a function of both marginal distributions and their
correlation: j ¼ jðGi;Gj; eqi;jÞ. For some pairs of distributions j becomes just a constant or a function of only
some of the three types of information. Other important properties are that (i) qi,j = 0 for eqi;j ¼ 0, (ii)
jeqi;jj 6 jqi;jj and that (iii) eqi;j is a strictly increasing function of qi,j.

In application of the Nataf model, we seek the corresponding correlation matrix F of a Gaussian random
vector field H. The correct method is to solve the correction factor for each entry F i;j

k;l ¼ ji;j
kl
eF i;j

k;l depending on
Gi, Gj and eF i;j

k;l. Unfortunately, the full-block correlation matrix F does not follow the simple pattern from Eq.
(20) any more. In particular, the diagonal blocks are not identical anymore, because the distributions Gi may
differ in general, and the off-diagonal blocks are not a simple multiple of the diagonal block (for the same rea-
sons). Even if the distributions Gi were identical, the corrections j would prevent each off-diagonal block from
being a simple multiple of the diagonal block, because in general Ci,js are not zeros (and also generally are not
all the same).

We remark also that not every combination of the autocorrelation structure with the non-Gaussian mar-
ginal distribution can be admissible for the mapping via underlying Gaussian random field. There are two pos-
sible incompatibilities. The first one arises when the autocorrelation functions of the non-Gaussian fields do
not have a corresponding admissible correlations in the Gaussian space (this happens often in cases of high
negative correlations combined with strongly non-Gaussian marginals). The second incompatibility arises
when the autocorrelation function (or matrix) in the Gaussian space becomes non-positive definite and, there-
fore, not admissible. The second problem can sometimes be remedied by ignoring negative eigenvalues and
corresponding eigenmodes.

From the preceding paragraphs, it becomes clear that the presented approach for simulation of Gaussian
vector random fields can not generally be employed for simulation of vector random fields with arbitrary mar-
ginals. However, it is known that for the majority of commonly used continuous distributions the correction
factors j are only slightly greater than one [27]. Therefore, the difference between correlation matrices F and eF
is usually very small. The difference actually depends on the ‘‘non-Gaussianity’’ of the distributions Gi. The
closer the component distributions Gi are to the elliptical distributions (Gaussian inclusive), the closer these
two matrices are. In the following paragraphs we will try to find an approximation F 0 of the correct Nataf
full correlation matrix F in order to be able to profit from the presented framework for Gaussian fields.

The six-step procedure from Section 3.3 must be slightly reviewed (see Fig. 1d). The corresponding steps of
the two series expansion methods KLE and EOLE follow:

(1) Given the common autocorrelation function in the original (non-Gaussian) space, a Nataf correction
function jiðeqÞ ¼ jðGi;Gi; eqÞ must be found for each field i = 1, . . . ,NF over the whole range of autocor-
relation coefficients eq. The set of functions ji transform the original correlations into the Gaussian
space. Then, the spectral analysis of the autocorrelation structure for each underlying Gaussian field
and the choice of the common number of eigenmodes Nvar is made.
(a) KLE: Decomposition of the autocovariance function multiplied by jiðeqÞ resulting in eigenvalues and

eigenfunctions over the domain X̂.
(b) EOLE: Based on the discretization (grid of points) the autocorrelation matrices Fi

uu are assembled
and the corresponding sets of Nvar largest eigenvalues and the corresponding eigenvectors (Uu

i and
Ku

i matrices) are determined.
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Note that if all marginals are identical, all autocorrelation functions (matrices) match. By identical mar-

ginals we mean that all components must share the same type of distribution and these distributions
must have identical shape parameters. For example, two Weibull distributions with an identical coeffi-
cient of variation have the same shape parameter m (usually called the Weibull modulus). In most cases,
the Nataf’s correction will be only slightly greater than one over the whole range of possible autocorre-
lations and thus the eigenvalues and eigenfunctions [vectors] will be very similar for each Gaussian field.
Therefore, one can solve one field only and use iterations to refine the eigenmodes for the other fields.
(2) Find a corrected cross correlation matrix C given the target matrix eC and marginals G1; . . . ;GNF using
the Nataf model. Each off-diagonal entry is obtained as Ci;j ¼ ji;j eCi;j, (i,j = 1, . . . ,NF). Then, eigenvalues
must be computed with corresponding orthogonal eigenpairs ðUC

I ;K
C
I Þ of the target cross correlation

matrix C among random fields. The choice of number of eigenmodes NF,r 6 NF is made.
(3) Simulation of Gaussian random vector n of Nr = NF,rNvar independent standard Gaussian variables nj

(see step 3 in Section 3.3 for details).
(4) Simulation of cross correlated random vector vD (see step 4 in Section 3.3 for details).
(5) Simulation of all underlying Gaussian fields i = 1, . . . ,NF one-by-one using the correct portion of vD and

eigenmodes from step 1 (see Fig. 1d for illustration). Depending on the method, the fields are composed
in analogy with step 5 in Section 3.3.

(6) Translate the underlying Gaussian random fields into non-Gaussian via Eq. (29).

In the procedure, we have made a certain simplification of the consistent approach described above, so it is
important to assess the error of the approximation. Assume that the distribution of the underlying Gaussian
random field is simulated correctly. Then the non-Gaussian field obtained by the memoryless transformation
has no error in the marginal distributions. The only error can arise is in the correlation structure of the fields.
Obviously, every field alone has a correct autocorrelation structure, because it is expanded using independent
Gaussian variables via orthogonal transformation of correct correlation matrices. Let us now take a look at
the cross correlations obtained with the suggested approach.

In the EOLE method, the simulation of the nodal point values of all fields (step 5) can be written simply as:
H ¼ UEðKEÞ1=2
vD ð32Þ
where UE and KE are the eigenvector and eigenvalue matrices of a (block-diagonal) correlation matrix E that
is constructed as follows. Matrix E consists of diagonal blocks Fi;i

uu; all off-diagonal blocks are zero matrices.
Therefore, the eigenvalue [eigenvector] KE½UE� matrices have the matrices Ku

i ½Uu
i � on the diagonal blocks and

zeros elsewhere. By substituting Eq. (23) into Eq. (32) we obtain the fields in terms of transformation of inde-
pendent variables n:
H ¼ UEðKEÞ1=2UDðKDÞ1=2|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
WF

n ¼ WFn ð33Þ
Therefore, the resulting full (block) correlation matrix can be computed as F 0 = WF[WF]T:
F0 ¼ UE � ðKEÞ1=2UD � ðKDÞ1=2 � ½UE � ðKEÞ1=2UD � ðKDÞ1=2�T

¼ UE � ðKEÞ1=2 UD � ðKDÞ1=2 � ðKDÞ1=2½UD�T�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
D

ðKEÞ1=2½UE�T ¼ UEðKEÞ1=2 �D � ðKEÞ1=2½UE�T ð34Þ
By this construction, the F 0 matrix can be written in square blocks (each of order N):
ð35Þ
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Of course, the matrix is symmetric as a whole, but the blocks are not symmetric in general. Using Eq. (34),
each block i,j can be written as
F0i;j ¼ Ci;j Uu
i ðK

u
i Þ

1=2|fflfflfflfflfflffl{zfflfflfflfflfflffl}
Wu

i

ðKu
j Þ

1=2½Uu
j �

T|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
½Wu

j �
T

ð36Þ
The F 0 matrix (consisting of blocks F0i;j ¼ Ci;jWu
i ½W

u
j �

T) represents a good approximation of F in most cases (see
Section 5.1 for a numerical example with an estimation of error). The diagonal blocks are equal to the auto-
correlation of each field F0i;i ¼ Fi

uu. The off-diagonal blocks F 0i,j, in a certain sense, inherit a combination of the
autocorrelations of the ith and jth random field (a product of the eigenmodes of both). Note that if a pair of
fields i, j follow an identical autocorrelation structure, the corresponding cross correlation block is just a Ci,j

multiple of it (compare to Eq. (20)).
The F 0 can be computed and compared to F before performing any simulations. If the difference (cross cor-

relation errors) is not acceptable for the analyst and he wants to return to the consistent procedure employing
the correct Nataf transformation for F in the orthogonal transformation via Eq. (28), we recommend to use
Eq. (33) to find a very good approximation of the eigenmodes of F needed in Eq. (28). The eigenmodes can be
refined iteratively.
5. A numerical example

An example of an application is a model of the random spatially varying material properties of concrete
structure. In the first version of this, we assume that the random fields are Gaussian (extension to non-Gauss-
ian fields follows). Such an example may have direct application in stochastic nonlinear modeling of random
resistance in quasibrittle structures, i.e. structures manifesting a combined deterministic-statistical size effect
on strength see e.g. [3]. The suggested method is compared to the more general framework where the multi-
plicative properties of correlation matrices are not used. A simple error assessment of simulated samples fol-
lows in Section 6 and is used to demonstrate the accuracy of the technique.

For the model a simply supported four-point bending beam has been chosen. The beam is modeled in
two dimensions; the effect of beam width is ignored. Three parameters of the nonlinear constitutive law of
concrete are considered random, namely the local tensile strength ft, local E-modulus and local fracture
energy GF. These parameters are firstly modeled by a three-variate stationary isotropic standard Gaussian
random field with a common Gaussian autocorrelation function (Eq. (2), pow = dim = 2) and a simple
cross correlation matrix of order NF = 3. Transformation to a non-Gaussian distribution is studied in
the following subsection.

The region of interest represented by the beam is a rectangle 0.4 times 0.1 m. The autocorrelation length
di = 0.05 m, i = 1,2. To avoid possible disturbances at boundaries, we artificially enlarge the discretization
region with one autocorrelation along all sides, so X is a rectangle 0.5 by 0.2 m.

The discretization method chosen is the EOLE method. The optimal grid is represented by N = 1000
points, a regular lattice of 50 points (x-direction) by 20 points (y-direction). Following the scheme in Section
3.3, the square symmetric and positive definite autocorrelation matrix Fuu of order N is assembled and the N

real positive eigenvalues are computed. The package EISPACK has been used for this purpose and the total
time spent on computation was on average 7.8 seconds. It is only necessary to compute 114 eigenmodes with
the largest eigenvalues at a given acceptable variability of 99 %. The value of error measure eFu based on a
portion of the largest eigenvalues considered is plotted in Fig. 2a. Instead of N = 1000 we consider Nvar = 114
eigenmodes only. The resulting eigenvalue and eigenvector matrices of order Nvar are denoted Ku and Uu

respectively.
The second step in the proposed procedure is the computation of eigenvectors of a given cross correlation

matrix C. In our case the matrix represents the three material properties and the correlations have been chosen
as follows:



Fig. 2. Reduction of number of eigenmodes of correlation matrices based on their contribution to the trace of eigenvalue matrix.
Eigenvalues are sorted such that ki P kj for i < j.
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ð37Þ
The eigenvectors and corresponding eigenvalues are:
ð38Þ
In this case, no reduction according to Eq. (13) of the number of eigenmodes taken into account can be done
without a significant loss of accuracy (see Fig. 2b) and therefore NF,r = NF = 3.

Eqs. (21), (22) could now be used to determine the eigenmodes of F and to avoid solving the full eigen-
value problem needed in the method of Yamazaki and Shinozuka [62]. In terms of accuracy, there is no
difference between the two methods from Fig. 1b and c is used. The only difference is that the computation
of eigenvectors and eigenvalues (UF and KF) would take much more computer time and memory if the
information about them (Eqs. (21), (22)) were not used. In our numerical example the solution of the eigen-
modes of matrix F takes approximately 230 s which is 30 times more compared to the case when two sep-
arate eigenproblems are solved (C and Fuu). In general, the savings achieved by the proposed method
depend on whether the simulated random fields share an identical autocorrelation structure (of the under-
lying Gaussian field) or not. In the discrete case (EOLE), the proposed method requires to solve once an
eigenproblem of dimension NF plus one (or maximum NF times similar) separate eigenproblem(s) of size
N. This will always be faster then solving the eigenproblem of size N · NF. In terms of the memory require-
ments for the eigenvectors, the proposed method needs to save N 2 þ N 2

F numbers (or maximum
NF � N 2 þ N 2

F numbers in the case of NF different marginals) while the full approach requires to save
N 2 � N 2

F numbers. This is a noticeable difference.
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The next step is the simulation of random vector nr of Nr = NF,r · Nvar independent Gaussian variables.
The result of this step is an Nr · Nsim random matrix. Therefore we must simulate
Nvar · NF = 114 · 3 = 342 independent random variables each represented by Nsim realizations. For this
purpose we used two alternatives, namely crude Monte Carlo sampling (MC) and Latin Hypercube Sam-
pling (LHS).

For the simulation of cross correlated random vector vD (step 4) by matrix multiplication (Eq. (23) or
Eq. (24)) the eigenvector and eigenvalue matrices UD and KD are needed. They are obtained simply by
Eqs. (14) and (15) where the matrix from step (2) and a random matrix from step (3) are utilized. In
our case UD reads:
UD ¼

0:599 0 � � � 0

0 0:599 � � � 0

..

. ..
. . .

. ..
.

0 0 � � � 0:599

0BBBB@
1CCCCA

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{UD
1

� � �

0:616 0 � � � 0

0 0:616 � � � 0

..

. ..
. . .

. ..
.

0 0 � � � 0:616

0BBBB@
1CCCCA

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{UD
NF

0:671 0 � � � 0

0 0:671 � � � 0

..

. ..
. . .

. ..
.

0 0 � � � 0:671

0BBBB@
1CCCCA . .

. ..
.

0:437 0 � � � 0

0 0:437 � � � 0

..

. ..
. . .

. ..
.

0 0 � � � 0:437

0BBBB@
1CCCCA � � � . .

.

0BBBBBBBBBBBBBBBBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCCCCCCCCCCCCCCCA

ð39Þ
The last step is the simulation of all random fields i = 1,2, . . . ,NF by the EOLE method introduced in Eq. (7)
for each random field, i.e. by using Eq. (27). Since we do not need the continuous representation of fields the
EOLE interpolation can be skipped and we can obtain the discrete grid values of each ith field in the spirit of
Karhunen–Loève expansion simply by the orthogonal transformation:
bHi ¼

XNvar

j¼1

ffiffiffiffiffi
ku

j

q
vD

i;j½Uu
j �

T ð40Þ
One randomly chosen realization of the three fields is plotted in Fig. 3a,b and c. In the same figure it can be
seen how the cross correlation of fields influences the shape similarity of corresponding realizations. Fig. 3d
illustrates the typical plot of the mean and variance profiles of the field over the target domain X. Such a plot
serves as visual check for the accuracy of simulations of fields and is commented on in the following Section 6.

5.1. Transformation to a non-Gaussian random field

As mentioned earlier, the Gaussian model may not always be applicable. Let us now show the impact of
non-Gaussianity for the errors introduced by the present method. Let us now consider the tensile strength
ft and fracture energy Gf Weibull distributed, and the modulus of elasticity E lognormal distributed with
the mean values and standard deviations given in parentheses: Gft � W ð4; 1Þ, GGf � W ð100; 15Þ and
GE � L(40, 4) (cov = 25%, 15% and 10%). The target cross correlation matrix eC is identical to that in Eq.
(37). The corresponding correlations between the three variables in the Gaussian space according to the Nataf
model read:
ð41Þ
As can be seen, the correlations are only slightly increased in the Gaussian space. Also the eigenvalues
KC = diag(2.051,0.820, 0.130) and the eigenvectors:



Fig. 3. (a)–(c) Random realization of simulated three-variate Gaussian random field, illustration of the meaning of correlation coefficients
F i;j

k;l. (d) Profile of the estimated mean value and standard deviation of ft-field (Nsim = 1000).
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ð42Þ
are nearly identical to those in Eqs. (38) and the difference cannot be seen in a common plot (Fig. 2b).
To show the errors due to simplification proposed in this paper, we select only three discretization points

from the domain X. Their autocorrelation matrix is again assembled via Eq. ((2), pow = dim = 2). The points
are selected so that the correlations eFuu (see Eq. (43)) cover most of the range (0;1). The three non-Gaussian
components of the vector random field must have three different autocorrelation matrices of the correspond-
ing Gaussian random fields, which are obtained by inverse solution of Eq. (30) for each entry of eFuu. In the
standard Gaussian space, the three autocorrelation matrices are positive definite and read:
ð43Þ
The full correlation matrix F 0 in the Gaussian space computed via Eqs. (35) and (36) is displayed in the
upper triangle of the following matrix in Eq. (44). We use the symmetry of the matrix to save space and
display the ‘‘correct’’ correlations F obtained by applying the Nataf transformation to all entries in the
lower triangle. By comparing the upper and lower triangles, one can see that they do not match. This
indicates that there are errors due to our simplification. However, the correlation errors in the Gaussian
space are negligibly small in our case. Let us focus on the diagonal blocks. It is a direct implication of the
selected strategy of employing a set of independent variables to represent each field that the autocorrela-
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tion structure of each field is fulfilled exactly (see Fig. 1d). Regarding the off-diagonal blocks of F 0: the
diagonal entries seem to be exact (i.e. equal to those of the F matrix), but in fact they are not. The errors
in these terms are few orders of magnitude smaller than those in the off-diagonal entries, but still, the
diagonal terms are not equal to Ci,j, because the eigenvectors in Eq. (36) are not orthogonal. It might
be interesting to quantify how large the correlation error is. Let us define the mean square qrms correlation
error as the square root of the sum of squared differences between F and F 0 counted in the upper triangle.
In the present example with three fields and three discretization points qrms equals 0.006. The error equals
0.03 for the case when we completely ignore the Nataf’s corrections of eC and autocorrelations eFuu and
simply use the original correlation matrices in the scheme (i.e., F 0 would equal eF). Note that the blocks
of the exact F matrix are symmetric while the blocks of the F 0 are not. Let us also note that the ‘‘correct’’
F matrix is not positive definite and therefore it has some negative eigenvalues. This fact would complicate
the approach from Fig. 1b. The approximate matrix F 0 is positive definite (this matrix would in fact be
estimated using a large simulated sample of the fields).
ð44Þ
The correlation errors also propagate into the original space of non-Gaussian components. The prediction of
these errors is straightforward: all elements of the F 0 matrix must be used in Eq. (30) to transform them intoeF0. By comparing such a matrix to eF one can assess the error of the method without performing any simula-
tion. This can be helpful in making a decision whether to use the proposed approach or whether to employ the
(computationally more demanding) approach from Fig. 1b.
ð45Þ
As mentioned earlier, errors only occur in the off-diagonal blocks. In these blocks, the error in the diagonal
entries is very small. Note that in practical situations, the correlation error due to the method will be overtaken
by the numerical error in the simulation, because the F or F 0 matrices can only result by estimation using a
very large number of simulations. This issue will, alongside others, be discussed next.

6. Error assessment of random field simulation

When any method of random field simulation is used, it is required that the statistical characteristics of
the generated field be as close to the target parameters as possible. However, the degree of accuracy of the
resulting ensemble statistics (such as the mean values, standard deviations, autocorrelation coefficients) is,
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in general, satisfactorily high only when the sample size Nsim is sufficiently large. The statistical fluctuations in
the statistics that arise from generating a finite number of sample functions of the stochastic process or field
involved significantly influence the resulting response statistics of the studied model.

Generally, the mean values, the variances, the autocorrelation and spectral density, the cross correlation
and the cross spectral density (statistics) cannot be generated with absolute accuracy. Basic information about
a random field is captured by its second-moment characteristics, i.e. the estimated mean function and the
covariance function. Therefore, each of these statistics can be considered as a random variable. The assess-
ment can be done numerically by performing Nrun runs of the same simulation process with a different random
setting of the seed of the pseudo-random number generator [37,57]. Naturally the statistics obtained in each
run are different. In our case the accuracy will be influenced by:

• Number of random variables Nvar (= number of eigenmodes of a target autocorrelation structure) used for
representation of each random field.

• Number of eigenmodes of C considered.
• Sampling technique used for uncorrelated Gaussian random variables in connection with fulfillment of the

correlation structure (independence).
• Number of Nsim simulations used (sample size).

Let us first comment on aspects of the simulation of univariate random fields. Several papers exist focusing
on the impact of the truncation of the number of eigenmodes Nvar on the desired statistics of a field for both
KLE and EOLE method e.g. [64]. The number of terms in the expansion of a field always introduces an error
(e.g. underestimation of the variability of a field, the difference of the actual autocorrelation structure from the
target one, etc.). We will however, assume that the accuracy of the deterministic part of the random field sim-
ulation (eigenvalues K with eigen-functions[vectors] w(x)[U]) is given (in the case of non-Gaussian fields, we
ignore the difference between F and F 0). Then let us study the influence of the random part on the statistics of
random fields. The randomness is introduced by a pseudo-random generator (digital simulation on comput-
ers). Therefore, when the seed of the pseudo-random number generator is changed, another random field’s
sample is generated and naturally, other values of all sample statistics are obtained. The influence on the mean
and variance profile of the simulated field and the influence on the correlation structure of a field can be stud-
ied separately.

Mean and variance profile: Generally in the case of the Monte Carlo type simulation of random variables
the statistics converge to target values for Nsim!1 and Nrun!1. It can be shown [57] that if LHS is used
for representation of random variables, the simulated mean values of a field are exact in discretization points,
see the profile in Fig. 3d. The reason for this is that the orthogonal transformation preserves the mean values
of the random variables. Averages of those random variables sampled by LHS match the desired mean values
exactly (see Eq. (25)).

Regarding the variance profile we note firstly that a general feature of LHS is that higher statistical
moments are not represented exactly by samples; the higher the moment the less the estimated moments match
the desired ones. This is documented by the slightly uneven profile of estimated standard deviation in Fig. 3d.
A comparison of two different techniques of sample simulation in the LHS and its influence on the variance
profile of a field is given in [57], and generally it can be said that the improvement of LHS represented by Eq.
(25) results in an improvement of the variance profile in comparison with the standard LHS where samples
represent medians of each strata.

Reduction of spurious correlation: There are two possibilities for the simulation of random variables. First,
the realizations can be simulated at random without any attention paid to the correlations among them. If a
good random number generator is used it can be expected that a spurious correlation among simulated ran-
dom variables converges to zero with increasing Nsim. Second, the realizations can be permuted or trans-
formed into non-correlated form before they are used for random field expansion.

In order to demonstrate the influence of the spurious correlation among representing random variables, the
LHS methodology has been chosen. It is important to emphasize that in the case of LHS the sample values are
not random (using a given algorithm of stratified sampling), only the sample ordering is random. In the context
of LHS, let us mention the original work of Iman and Conover [25], who described their algorithm based on
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the Spearman rank correlation coefficient estimator and on the Cholesky decomposition of the correlation
matrix. They also keep the sample values and vary only the sample ordering for each variable, so that each
random variable is still represented by the same set of values. In our case however, a more efficient technique
for correlation control (to diminish spurious correlations among random variables) has been used [56,58,60];
the method is denoted as ILHS from here on.

Let us assume that a given realization n(h0) of a random vector n is an Nvar · Nsim matrix. One can calculate
its correlation matrix S(h0) of order Nvar. For a very low number of simulations the correlation matrix S can-
not be a unit matrix because it cannot be reached by any possible combination of the given sample values. The
precision at this level can be measured using a matrix norm, e.g. eS = maxjSk,lj, k 5 l or
e2

S ¼ ðð
P

k

P
lS

2
k;lÞ � N varÞ=2, where k, l = 1, . . . ,Nvar for both cases [56].

Each random variable nk (k = 1, . . . ,Nvar) needed is represented by Nsim realizations. In the case when no
attention is paid to spurious correlation, all ðN sim!ÞðNvar�1Þ possible correlation matrices S of n(h) are equally
probable. However, the best results are obtained only for those h’s for which the norms eS are small. The same
will hold for the cross correlation fields, with the difference that the number of random variables will increase
from Nvar to Nr = NF,rNvar.

Vořechovský and Novák [57,59] have shown that if LHS methodology is used, the quality of the autocor-
relation structure is solely influenced by the distance of the correlation matrix S(h0) of the simulated random
vector n(h0) from the unit matrix. Moreover, the matrix norm eS has proved itself to be a suitable estimator of
the accuracy of the autocorrelation structure already at the level of the simulation of random vector n(h0).
Here, a study has been made on the influence of such spurious correlation on the quality of the autocorrelation
structure of the first random field (ft). The LHS method has been used for the simulation of random variables,
with two numbers of simulations Nsim = 100 and 1000. In Fig. 4, there is a comparison of the case where no
attention is paid to random spurious correlation (LHS) with the case where spurious correlation is diminished
(ILHS) using methodology (a genetic algorithm) from Vořechovský and Novák [56,58]. In the case of there
being only a very small number of simulations (with respect to the number of random variables Nr used
for representation of a vector random field), S cannot be a unit matrix and therefore the numerically estimated
average autocorrelation function does not match the target one (also the scatterband around the average curve
is large). The explanation is clear; a small number Nsim leads to a large difference between the actual correla-
tion matrix S and the unit matrix. A clear indication of this limitation is the fulfillment of the defined norms of
correlation matrix S which can be used as objective functions in an algorithm for diminishing spurious cor-
relation. It also corresponds to a measure eF introduced in the following paragraphs. As the number Nsim

increases, the simulated autocorrelation structure of a field improves. Simply, if the number of simulations
is higher than the number of random variables needed (Nr) the algorithm for correlation control over LHS is
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able to rearrange rank numbers of samples so that the matrix nr variables really represent a set of uncorrelated
random variables. Note that the alternative with Nsim = 1000 and with the diminished spurious correlation
(ILHS) results in an excellent autocorrelation function with almost no variability. This fact corresponds with
norm eS which was in case (d) very small. It can be seen that the spurious correlation at the level of the sim-
ulation of uncorrelated random numbers negatively influences the resulting autocorrelation function of a field.
If the variables do not enjoy the property of orthogonality, it simply can not be expected that they will form a
precise autocorrelation structure of a field after orthogonal transformation. We conclude that attention should
be paid to both the statistics of a random vector (source random variables) and its correlation structure
(orthogonality).

In the following paragraphs, we will focus on error assessment of the cross correlation structure among
random fields. In order to quantify the error, let the field be discretized into N points (suitably selected grid
u). Then, the full-block correlation matrix F can be simply assembled over the grid. For a given outcome h0

of values ~H uðhÞ its realization F̂ using a point correlation estimator can also be calculated (for Gaussian
fields the Pearson estimator, or generally e.g. Spearman). The quality of the correlation structure of simu-
lated fields can be assessed using the proposed symmetric error matrix eF (Eq. (46)). This matrix contains
error terms ei,j describing the error of both autocorrelation (diagonal terms) and cross correlation (off-diag-
onal terms):
ð46Þ
Each element i,j may be a matrix norm defined as (i) the maximum difference of correlation coefficients be-
tween the target matrix F and an estimated matrix F̂ of a given outcome h0 (largest off-diagonal error):
ei;j ¼ max
16k<l6N

jF i;j
k;l � F̂ i;j

k;lj ð47Þ
which is a conservative measure (row norm), or as (ii) a norm which takes into account deviations of all cor-
relation coefficients:
e2
i;j ¼

2

NðN � 1Þ
XNvar�1

k¼1

XNvar

l¼kþ1

ðF i;j
k;l � bF i;j

k;lÞ
2 ð48Þ
This estimator ei,j is normalized by the total number of entries in the block corresponding to a pair of ith and
jth fields and represents the root mean square error in the correlation for each discretization point (k,l). The
meaning of the terms is illustrated in Fig. 3.

Elements on the diagonal ei,i in the error matrix eF describe the error of the autocorrelation structure of a
field Hi while the off-diagonal elements ei,j describe the cross correlation error across two fields Hi and Hj. The
correlation is estimated using Nsim realizations in N discretization points.

It should be noted that the quality of both estimated autocorrelation and cross correlation (difference
between F and bF) depends on how far the actual correlation matrix bD of random vector vD

r is from the unity
matrix (provided the two sets of eigenmodes are given). Such a conclusion has already been made in the case of
a univariate random field [57,59].

7. Applications in modeling of material properties

The presented example is oriented towards resistance modeling through the random material properties
of quasibrittle materials. A major phenomenon that is observed in quasibrittle materials is the strong
dependence of the peak load on a characteristic dimension of the considered specimen. This phenomenon
is commonly referred to as the size effect. A part of the phenomenon has been successfully explained on a
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purely energetic basis; it is believed that there exists a purely deterministic size effect caused by energy
release associated with stress redistribution prior to failure, see e.g. Bažant and Planas [2]. This part of
the size effect dominates in structures of the type known as quasibrittle and plays an important role in
small specimen sizes. The deterministic part has already been successfully modeled by nonlinear frac-
ture-mechanics FEM-programs e.g. [38]. There is also a statistical part of size effect driven mainly by
extreme value statistics. The statistical (or probabilistic) part of the phenomenon can not be captured
by deterministic computations see e.g. [35]. An application of the proposed simulation framework has
been recently used for numerical simulation of the Malpasset dam failure [3]. In the example, spatial var-
iability of local material parameters is described by random fields. Each random property is described by
its probability density function (PDF) and the rate of fluctuation is governed by the autocorrelation func-
tion/length. The correlation length (representing a material property) remains constant for scaled struc-
tures, which coincides more or less with reality. The numerical example supports a newly formulated
size effect law for crack initiation problems featuring both deterministic and statistical size effects (and
the corresponding scaling lengths) and their interaction. A similar kind of study [53] has been performed
with dog-bone specimens made of concrete and experimentally tested in uniaxial tension. The specimens
were geometrically scaled in two dimensions and the ratio between the largest and smallest size was
1:32. Weibullian random field describing local material strength was used to explain an unusual shape
of the size effect curve (dependence of nominal strength on structural size).

Another application of the proposed scheme has recently been used to model the spatially varying strength
of parallel filament yarns represented by the fiber bundle model [6,54]. Each random field represents the local
random strength of a fiber, but fibers are independent and therefore the corresponding fields have a unit
matrix C. It has been shown that the classical Weibull weakest link model (based on the extreme value theory
of independent identically distributed local strengths) does not yield correct strength predictions for structures
smaller than about one autocorrelation length [54]. The reason for this is that the local material strength must
be autocorrelated in reality over a nonzero length and therefore the assumption of the independency of local
strengths is incorrect. In the same paper an analytical formula for strength is proposed, supported by theoret-
ical considerations for the strengths of very small and very large structures and numerical simulations using
the methodology described in this paper.

An open question is the influence of possible correlations between local material parameters, such as the
local strength ft and fracture energy GF in the case of concrete. Some results in this regard has already been
obtained by Novák et al. [35].

Let us note that both the KLE and EOLE methods offer a random field to be represented in terms of a
continuous function (even though it is based on a discrete grid of values in the case of EOLE). This feature
is very important for the SFEM in cases when the points where the fields are expanded are not known in
advance. This can happen for instance in combination with the adaptivity of FE meshes [55].

8. Conclusions

The main result of this paper is the utilization of the spectral properties (eigen-properties) of defined block
correlation matrices. These can be advantageously utilized for the simulation of multivariate stochastic fields
with a simple cross correlation structure and a common distribution of components. If all fields share the same
distribution shape, the decomposition of the autocovariance structure is done only once for all univariate
fields. For Gaussian vector random fields, the resulting distribution and correlation properties are correct.
For non-Gaussian fields the autocorrelation structure is correct for all fields, but taking full advantage of
the computational simplification brings about small errors in cross correlations. These errors can be predicted
without any simulations. The reduction of computational effort is often significant.

The simulation of random functions in the introduced series expansion methods requires generation of ran-
dom variables; it has been shown how to easily simulate these variables for the representation of cross corre-
lated random fields within the framework of Monte Carlo simulation.

An example in the framework of the SFEM where cross correlated stochastic fields play an interesting
role has been outlined. An error assessment procedure for the mean, variance and correlation structures
has been presented. It has been shown that a correlation error in simulated random variables significantly
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influences both the scatter of the autocorrelation function of expanded random fields and the cross cor-
relation structure.
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[33] Nataf A. Détermination des distributions de probabilités dont les marges sont donnés. CR Acad Sci 1962;225:42–3.



M. Vořechovský / Structural Safety 30 (2008) 337–363 363
[34] Nishimura N. Fast multipole accelerated boundary integral equation methods. Appl Mech Rev 2002;55(4):299–324.
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