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Zdeněk P. Bažant1,∗,†,‡, Sze-Dai Pang1,§ , Miroslav Vořechovský2,¶
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SUMMARY

The paper presents a model that extends the stochastic finite element method to the modelling of transitional
energetic–statistical size effect in unnotched quasibrittle structures of positive geometry (i.e. failing at the
start of macro-crack growth), and to the low probability tail of structural strength distribution, important
for safe design. For small structures, the model captures the energetic (deterministic) part of size effect
and, for large structures, it converges to Weibull statistical size effect required by the weakest-link model
of extreme value statistics. Prediction of the tail of extremely low probability such as one in a million,
which needs to be known for safe design, is made feasible by the fact that the form of the cumulative
distribution function (cdf) of a quasibrittle structure of any size has been established analytically in
previous work. Thus, it is not necessary to turn to sophisticated methods such as importance sampling
and it suffices to calibrate only the mean and variance of this cdf. Two kinds of stratified sampling of
strength in a finite element code are studied. One is the Latin hypercube sampling of the strength of
each element considered as an independent random variable, and the other is the Latin square design in
which the strength of each element is sampled from one overall cdf of random material strength. The
former is found to give a closer estimate of variance, while the latter gives a cdf with smaller scatter
and a better mean for the same number of simulations. For large structures, the number of simulations
required to obtain the mean size effect is greatly reduced by adopting the previously proposed method
of random property blocks. Each block is assumed to have a homogeneous random material strength,
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the mean and variance of which are scaled down according to the block size using the weakest-link
model for a finite number of links. To check whether the theoretical cdf is followed at least up to
tail beginning at the failure probability of about 0.01, a hybrid of stratified sampling and Monte Carlo
simulations in the lowest probability stratum is used. With the present method, the probability distribution of
strength of quasibrittle structures of positive geometry can be easily estimated for any structure size.
Copyright q 2007 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Highly developed though the stochastic finite element method (SFEM) has become [1–3], its
extension to extreme value statistics remains a challenge. Engineering structures such as aircraft,
bridges or ships must be designed for extremely low failure probability Pf—typically less than 1 in
a million per lifetime [4–6], which is necessary to make the structural failures very rare compared
to other generally accepted hazards that people face.

In the range of such extremely low probabilities, the difference between the exponentially
decaying Gaussian (normal) distribution and the Weibull distribution, which has a tail decaying as
a power law, is enormous; see the plots of the cumulative distribution function (cdf) in Figure 1
showing that, for the same mean and the same typical coefficient of variation (CoV), the point of
Pf = 10−6 is for Weibull distribution about twice as far from the mean than it is for the Gaussian
distribution, even though the difference between the central parts of these distributions is small and
hardly detectable from experimental histograms. Thus, replacing the Gaussian cdf by the Weibull
cdf requires approximate doubling of the understrength part of safety factor (resistance factor),
which must be applied to results of the deterministic finite element computations. Obviously, the
errors of these computations are dwarfed by the uncertainty in the resistance part of safety factor.

To compute the tolerable loads of such extremely low Pf, effective SFEMs for extreme value
statistics have been developed; they include the ‘importance sampling’ [5, 7, 8], ‘subset simulation’
[9, 10], ‘line sampling’ [11], von Neumann’s ‘splitting’, ‘Russian roulette’ [11], etc. However,
despite the development of these powerful methods, their practical application faces a serious
obstacle: the results depend strongly on the far-out tail of the probability density function (pdf) of
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Figure 1. Large difference between points of failure probability 10−6 for Gaussian and Weibull distributions
with mean 1 and CoV= 5.2% in (a) linear scale and (b) log scale.
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the input, but the pdf is typically verified only for the core, and when this pdf is simply extended into
the tail, the extension is often incorrect [12]. If this problem is ignored, the importance sampling
or any other type of SFEM for extreme value statistics is reduced to a mere mathematical exercise
of no practical relevance.

This study deals with the broad class of brittle and quasibrittle structures failing at fracture
initiation from a smooth surface. These are structures with neither notches nor large pre-existing
cracks, having the so-called positive geometry, which is the geometry for which the maximum
equilibrium load is attained right at the initiation of macroscopic fracture propagation (and is
characterized by positiveness of the partial derivative of the energy release rate with respect to the
crack length when the load is held constant [13–15]). The entire cdf of large structures of this
kind is totally dominated by the far-left tail, Pf<0.0001, of the strength of a representative volume
element (RVE) of the material, while the rest of the cdf of a RVE is irrelevant. Calculation of the
load of failure probability Pf ≈ 10−6 requires the cdf tail of RVE strength to be known all the way
to Pf ≈ 10−6.

To determine the far-left tail directly, i.e. through a histogram, one would need to test about 109

identical specimens or carry out an equal number of extreme-value stochastic micromechanical
simulations. Either way is practically impossible, and so a physically based theory is necessary.
Such a theory, governing the type of distribution, has recently been developed on the basis of the
probability of interatomic bond ruptures [16–19].

From this theory, the type of distribution is known for the case of quasibrittle structures of
positive geometry failing at macro-crack initiation. So, to calibrate this distribution, one needs to
obtain by computer simulations only the mean and the variance. This is a far simpler task than
computer simulation of the far-left tail. By virtue of this fact, we can limit ourselves in this study
to employing only simple statistical sampling techniques. Combining them with the crack band
model, such techniques also suffice to capture the deterministic (or energetic) part of size effect
which occurs when the RVE is not negligibly small compared to structural dimensions. This part
is caused by the stress redistribution engendered by a fracture process zone (FPZ) of finite size
(which is equal to the characteristic material length l).

Similar objectives are addressed in a different way in a parallel study [20], in which the SFEM
with crack band model and random property blocks [21] is used to compute the mean and variance
of strength of structures of any size and geometry, but the cdf extension into the tail must be
specified, rather than being predicted by the theory. The computational burden is, in that study,
reduced by scaling the strength of multi-element blocks.

2. EFFECTS OF RANDOM STRENGTH AND SIZE IN BRITTLE AND
QUASIBRITTLE STRUCTURES

Quasibrittle structures consist of quasibrittle materials, which are materials having a brittle (non-
ductile) matrix and containing inhomogeneities (grains, aggregates) that are not negligible compared
to structural dimensions and cause the FPZ (and the RVE of material) to be also non-negligible.
Quasibrittleness is a relative concept—all these materials become perfectly brittle on a sufficiently
large scale. They include many common materials such as concretes and mortars (an archetypical
paradigm, studied the earliest), rocks, masonry, sea ice, dry snow slabs, wood, paper, carton, particle
board, stiff clays, silts, grouted soils, coal, refractories, as well many ‘high-tech’ materials such as
fibre composites, fibre-reinforced concretes, rigid foams, toughened ceramics and nanocomposites,
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or bio-materials such as bone, cartilage, dentine and sea shells. All perfectly brittle materials become
quasibrittle on a sufficiently small scale, e.g. the components of MEMS and NEMS, as well as
thin metallic films, and nanotubes. The most important difference of quasibrittle behaviour from
perfectly brittle behaviour is that the Weibull statistical size effect is accompanied, and at small
sizes overshadowed, by the energetic size effect, engendered by stress redistribution due to large
FPZ [13, 14].

If the geometry is positive, a brittle or quasibrittle structure fails (under load control) as soon as
the first RVE fails. This means that the structure behaves as a series coupling (or chain) of a certain
number of RVEs (or links), i.e. the weakest-link model applies. Rather than considering the actual
number, N , of all RVEs subjected in general to different stresses, it is convenient to introduce the
equivalent number Neq of equally stressed RVEs for which the Pf of the structure is the same. A
structure of positive geometry survives if and only if all the RVEs survive. So, by this classical
argument, the survival probability of the structure, 1 − Pf, is the joint survival probability of all
the RVEs, each of which has survival probability 1− P1; hence, 1− Pf = (1− P1)Neq or [16–19]

Pf = 1 − [1 − P1(�N )]Neq ⇒
Neq→∞ 1 − e−NeqP1(�N ) (1)

Here the last expression is obtained by setting 1 − P1(�N ) = 1 + x/Neq where x =−NeqP1, and
noting that limN→∞(1 + x/N )N = ex ; P1(�N ) is the cdf of the strength of one RVE, which is
a function of stress � in the RVE but may more conveniently be considered as a function of the
nominal strength �N of structure if the ratio �/�N is known; �N is a load parameter which may
be taken to represent the maximum principal stress in the most stressed RVE and, for linear elastic
behaviour, may generally be written as cgFmax/bD2, where Fmax is the maximum load or load
parameter, b the structure width, D the characteristic size, or dimension, of the structure, and cg a
geometry-dependent parameter. Neq is a measure of structure size, proportional to the characteristic
size D, and equals the actual number of RVEs only if all the RVEs are under the same stress. The
relationship of Neq to N depends only on structure geometry and will be discussed later.

The RVE is here defined as the smallest material volume whose failure causes the failure of the
structure (of positive geometry) [16, 17]. Its diameter is typically about three inhomogeneity sizes
(or maximum aggregate sizes in concrete).

Note that the classical definition of RVE used in homogenization theory is applicable only to
elastic and plastic-hardening behaviours but not to strain-softening damage. In that theory, the
RVE is defined as the smallest material volume for which the first few statistical moments of
RVE properties remain approximately constant as the RVE is displaced through the heterogeneous
material. But these moments are irrelevant to the strength of a large structure since that strength
depends only on the far-left tail of the cdf of one RVE (e.g. on the RVE tail for Pf<0.001 if
Neq>1000 [16]).
The fact that, in quasibrittle materials, there exists a non-statistical size effect was experimentally

demonstrated by Walsh [22, 23], though for notched specimens exhibiting a different type of size
effect (type 2 [14]), which is not studied here. Theoretically, this fact was explained in [24, 25], and
was numerically simulated by crack band model [24, 26], non-local models [27, 28], and gradient
damage models [27, 28]. For notchless beams, considered here (type 1 size effect [14]), this fact
was demonstrated by Gustafsson [29] computationally (based on simulations with the cohesive, or
‘fictitious’, crack model [30, 31]), by Uchida et al. [32] experimentally, and by Bažant and Li [33]
theoretically, based on using non-linear fracture mechanics to derive, by asymptotic matching, a
simple (type 1) deterministic size effect law [34]. Statistical generalization of the size effect law
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was developed in [13–15, 25, 34–36]. The combined statistical and deterministic size effects were
also numerically simulated in the works of Breysse [37], Carmeliet [38], Carmeliet and Hens [39],
Frantziskonis [40], Gutiérrez [41] and Vořechovský [42]. The energetic and statistical size effects
were amalgamated in [20, 21, 43, 44].

Up to the 1980s, if any size effect was observed, it was automatically attributed to material
strength randomness as described by the Weibull-type weakest-link statistical theory
[45–54]. The basic hypothesis of this theory is that the structure fails as soon as the material
strength is exhausted at one point in the structure. For quasibrittle materials, however, the classical
Weibull theory is applicable only

(a) if the size of the structure is much larger than the RVE size l0, which is a constant and
roughly matches the width of the FPZ;

(b) if there is neither notch nor pre-existing macro-crack; and
(c) if the structure geometry is positive [15].
If (a) is not true, then the chain in the weakest-link model must be considered as finite

(Equation (1)), which can make a huge difference for the tail (Figure 1). If (b) or (c) is not
true, then the location of the FPZ of an initiating crack is almost fixed, determined mainly by
structure geometry and mechanics rather than strength statistics, and thus points of different ran-
dom strength, which are accessible to the crack tip and constitute the source of statistical size
effect, occupy only a very small region, which makes the statistical size effect negligible. Positive
geometry, which is the only case considered in this study, guarantees that the maximum load
(representing failure if the load is controlled) is reached at the onset of macro-crack propagation,
as soon as the FPZ is fully formed. The effective RVE size l0 is roughly twice or thrice the size
of the largest material inhomogeneities, such as the major aggregate pieces in concrete, and is
roughly 10× smaller than the length of the FPZ of a propagating crack, which is roughly equal to
Irwin’s material characteristic length � = EGF/ f ′2

t (E the Young’s modulus, GF the fracture en-
ergy, and f ′

t the tensile strength of material). The effective width of the FPZ is roughly equal to the
inhomogeneity size.

Unreinforced beams subject to bending or tension, or both, generally have positive geometry.
For an initiating mid-span crack in a three- or four-point-bend beam, this can easily be checked
using the formula for stress intensity factor (e.g. [55]). For a transverse crack initiating under
longitudinal tension at any other point, the positiveness of geometry of beams in flexure may be
checked from the relation dG/da = F2C,aa/2b where G is the energy release rate, F the load, b the
beam width, and C =C(a) the load point compliance as a function of crack length a, the second
derivative of which may be approximately calculated by finite elements as C,aa(a)≈ [C(a+�a)−
2C(a) + C(a − �a)]/�a2 where �a is a chosen small increment of a.

As discovered in the early 1980s, the cause of size effect may also be deterministic—the energy
release accompanying the stress redistribution, which may be caused by

(i) either a large FPZ, which gives the type 1 size effect, which is of exclusive interest here
[33, 36, 56];

(ii) or a large pre-existing crack or notch, which gives the type 2 size effect [13–15, 25, 56–58].
For type 2, material randomness affects only the scatter of nominal strength �N but has no

effect on the mean of �N , i.e. causes no statistical size effect. There also exists a type 3 size effect
[13, 56], which occurs in negative geometry structures with notches or large cracks but is barely
distinguishable experimentally from type 2, and not of interest for the present study.
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Figure 2. The curve of mean size effect for structures failing at macroscopic fracture initiation, and its
probability distributions for various sizes.

The energetic (or deterministic) size effect is automatically exhibited by the cohesive crack
model or the crack band model, as well as the non-local models, and also by the lattice or random
particle models of concrete microstructure [13, 15]. For stochastic finite element simulations, we
choose the crack band model, which is the simplest and by far the most widely used in practice.
Its basic idea [26] is that softening damage localizes into a band of single-element width, and that
the post-peak softening stress–strain relation must be appropriately scaled down when a different
crack band width is imposed by choosing element size different from the RVE size l0, in order
to ensure that the energy dissipated per unit length (in two dimensions), or per unit area (in three
dimensions), of the crack band would remain constant and equal to the fracture energy GF of the
material. If the band width h (or element size) equals the RVE size (or the FPZ width), and if the
average strain across the band is multiplied by h, the resulting softening curve coincides with the
softening stress-separation curve of the cohesive crack model.

The energetic size effect of type 1 dominates only for small enough cross-section sizes (not much
larger than the RVE size l0), while the statistical size effect dominates for very large sizes, far larger
than the FPZ. So the type 1 size effect represents a gradual transition from energetic to statistical
size effect as the structure size D increases (Figure 2). One way to capture this transition is the non-
local generalization of Weibull theory [20, 21, 43, 44, 58]. That theory makes possible stochastic
finite element simulations of the mean as well as the variance of the deterministic-statistical size
effect in structures of arbitrary geometry.

3. REVIEW OF WEIBULL THEORY AND ITS LIMITATIONS

The Weibull-type weakest-link model is applicable if the FPZ is so small that, compared to
structure size D, it can be treated as a point. For geometrically similar structures of various sizes,
the dimensionless stress distribution S(n) just before failure is then a function of only the relative
coordinate vector n= x/D of material points, and is independent of D (x is the actual coordinate
vector). The structure may be considered as an assembly of small material elements of volume
V0 and size l0 = V 1/n

0 , where n is the number of dimensions in which fracture is scaled. In the
classical Weibull theory, V0 is arbitrary (i.e. independent of RVE size) but small enough so that the
stress be approximately uniform within V0. Volume V0 is conveniently taken equal to the volumes
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of small specimens on which the strength distribution has been tested. The size of these small
material elements to which the material statistical properties are referred is thus a matter of choice
in the classical Weibull theory.

Denote Pk as the failure probability of the kth elementary volume (k = 1, 2, . . . , N ) and Pf
the failure probability of the structure. If the failure of one elementary volume causes the whole
structure to fail, then the probability of survival of the structure is the joint probability of survival
of all of these elementary volumes, i.e.

1 − Pf = (1 − P1)(1 − P2) . . . (1 − PN ) (2)

which is a generalization of Equation (1) to unequally stressed RVEs. To obtain a continuum
approximation, it is convenient to take logarithms and note that, for large N , all Pk must be small,
i.e. ln(1 − Pk) ≈−Pk . So,

ln(1 − Pf) =
N∑

k=1
ln(1 − Pk) ≈ −

N∑
k=1

Pk (3)

The crucial idea of Weibull [45, 46], deduced from tens of thousands of experiments, was that
the left tail of the cdf of strength of any material element, denoted as �(�), should be a power
law, i.e.

Pk =�(�k) = 〈�(xk)/�0〉m (4)

where 〈x〉 is the Macauley bracket, defined as max(x, 0), �0 and m are material constants called the
scale parameter and Weibull modulus (or shape parameter), and �(xk) is the maximum principal
stress at point xk . Recently it has been shown [16–19] that the power-law left tail, having a
zero threshold, is not merely a hypothesis but a necessary consequence of Maxwell–Boltzmann
distribution of atomic energies and stress dependence of activation energy barriers, and that Weibull
modulus m represents the typical number of dominant cracks in the RVE required to make it fail
(about 10–50).

Let Equation (4) be substituted into (3). Then, assuming N to be very large, one can replace
the discrete sum by an integral over structure volume V . This leads to the following well-known
Weibull probability integral:

− ln(1 − Pf) =∑
k

〈
�(xk)
�0

〉m
≈

∫
V
c[�(x)] dV (x) (5)

where c[�(x)]= 〈�(x)/�0〉m/ ln0 is the spatial concentration of failure probability. Because, in
geometrically similar structures of different sizes D, the elastic stress fields as functions of dimen-
sionless coordinates n= x/D are identical, one may set �(x)= �N S(n) where �N is the nominal
stress and S(n) the dimensionless stress distribution, which is independent of D. Substituting this
and dV (x)= DndV (n) into (5) (where n is the number of spatial dimensions in which the structure
is scaled, n = 1, 2 or 3), we get, after rearrangements, − ln(1 − Pf) = (�N/�0)mNeq or

Pf(�N ) = 1 − e−Neq(�N /�0)m (6)
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Neq =
(
D

l0

)n

� (7)

� =
∫
V
Sm(n) dV (n) (8)

where � is a geometry parameter characterizing the effect of the dimensionless stress field
depending on structure geometry. As already stated, Neq can be interpreted as the equivalent
number of equally stressed material elements of a size for which the material statistical properties
have been measured, i.e. equivalent to the number of identical links in a chain (since Weibull’s
theory is a continuum theory valid for large Neq, or D 
 l0, these material elements do not have
to coincide with the RVE and can have any convenient size). Note that Equation (7) is exact
only asymptotically, provided that Neq is large enough (for small Neq, or small D/ l0, one must
expect deviations from Equation (7), and that is where finite element analysis will be needed).
Equation (6) is the Weibull cdf, from which

�N = S0 N−1/m
eq =C0 (l0/D)n/m (9)

where S0 = �0[− ln(1−Pf)]1/m and C0 =C1�−1/m . This equation, in which C0 and S0 are indepen-
dent of D, gives the scaling of nominal strength for a fixed failure probability Pf (e.g. for Pf = 0.5,
the median �N ). The mean nominal strength is calculated as �N = ∫ 1

0 �N dPf =
∫ ∞
0 �N pf(�N ) d�N

where pf(�N ) = dPf/d�N (pdf of strength), and substitution of Equation (6) leads to the well-known
Weibull scaling law

�N = �0�(1 + 1/m)N−1/m
eq = �0�

−1/m�(1 + 1/m)(l0/D)n/m (10)

The standard deviation �N is calculated as �N
2 = ∫ ∞

0 �N
2 pf(�N ) d�N − �̄2N , and substitution

of Equation (6) yields for the CoV of �N the well-known expression

�N =
√

�(1 + 2/m)

�2(1 + 1/m)
− 1 (11)

A point to note is that Weibull modulus m is, in Weibull theory, strictly a material property,
and thus cannot depend on the size and shape of structure. Because Equation (11) is independent
of structure size and shape, �N is a material property, too. To check whether the Weibull theory
is applicable, the value of m obtained by fitting Equation (9) to size effect experiments must be
the same for very different structure sizes and shapes, and must, for each size and shape, satisfy
Equation (11) where �N characterizes the scatter of strength tests. In most previous studies,
though, due to limited scope of experiments, the aforementioned checks were not made and m
was determined from only one type of test.

In some engineering studies, in which more extensive tests were carried out, it was proposed
that m and �N were variable, depending on structure size and shape. However, from the preceding
derivation it is clear that m and � must be constant. If they appear to be variable, the only
correct conclusion is that the Weibull theory is inadequate and that some other phenomenon
must have intervened in the tests—for instance a composite Weibull–Gaussian cdf or the energetic
(deterministic) size effect (although the non-energetic deterministic ‘wall effect’ is also a possibility
for very small sizes).
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In failure of quasibrittle structures (except the brittle limit of very large ones), the Weibull size
effect is typically combined with the energetic size effect, arising from the finite size of FPZ (or
of RVE).

The Weibull distribution, with its relationship to power-law tail and power-law scaling, was
mathematically derived (11 years before Weibull) by Fisher and Tippett [59], based on a self-
similarity hypothesis of extreme value distributions, known as the stability postulate of extreme
value statistics, formulated by Fréchet in 1927; see [17, 59]. This original derivation, however,
is not totally unrelated to Bažant and Pang’s derivation from Maxwell–Boltzmann distribution
because the derivation of that distribution, too, implies a certain self-similarity of the distribution
of atomic energies.

In the stability postulate, one considers a chain of � identical links with random uncorrelated
strength to be subdivided into N sub-chains of n links whose cdf is �(�) (� = Nn). It is postulated
that the cdf of the chain, which is (according to the joint probability theorem) �N (�), must have
a stable form, which means it must be self-similar, having similar �(�) as the sub-chains. The
self-similarity of �(�) is expressed as a form invariance for linear transformations, and so the
stability postulate takes the form of the following functional equation:

�N (�) = �(aN� + bN ) (12)

for function �(�), where aN , bN are the coefficients of linear transformation depending on N .
It is easy to check that Equation (6) satisfies this equation, but much harder to prove that the

Weibull distribution is one of only three distributions that satisfy this equation, the others being
the Gumbel and Fréchet distributions (this proof is due to Fisher and Tippett [59]). The last two
distributions extend to −∞ and thus are inapplicable to tensile strength (note that the possibility
of negative strength values is not an argument against a Gaussian distribution of strength, since, by
virtue of the central limit theorem, the Gaussian can apply only to the central, positive, range of
strength, but is not justified for a distribution intended for describing the tail). This leaves theWeibull
distribution as the only possible asymptotic distribution of the strength of a chain with N → ∞.

Since it was shown that the cdf of strength of a RVE of a quasibrittle material must have a
power-law tail �m extending only up to Pf ≈ 0.001, with the rest of cdf being necessarily Gaussian,
the entire cdf becomes Weibull only for structures so large that Neq is greater than approximately
5000 [16, 17], which is in the brittle limit (among concrete and fibre composite structures, only
very large ones, such as a dam, large ship hull or rudder of large aircraft, are large enough).

For smaller sizes, the cdf of structure strength may be approximated as Gaussian with a Weibull
tail grafted at a point. As the structure size increases from one RVE to thousands, the grafting point
of the composite cdf moves gradually to higher Pf, reaching eventually Pf>99% (see the Appendix).
During this transition, Equations (10) and (11) do not apply and more complex expressions are
needed for the mean and the CoV (which is no longer constant but depends on Neq) [17].

To fit the experimental strength histograms of quasibrittle materials such as concrete, coarse-
grained ceramics and fiber composites, it has been considered necessary to introduce into Weibull
distribution a finite threshold �u , generalizing Equation (4) as P1 = 〈[�(xk) − �u]/�0〉m where
�u is the strength threshold. However, it has been shown [16, 17] that a non-zero threshold is an
incorrect way to improve the fit of these histograms, and is in fact inadmissible in principle, since
it would conflict with Maxwell–Boltzmann distribution, a generally accepted pillar of statistical
thermodynamics. It would contradict the fact that the frequency of interatomic bond ruptures is
non-zero at any stress (as known from the transition state theory of chemical reactions). A much
better fit of these histograms can be obtained on the basis of Equation (1) for finite Neq [16, 17].
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4. CRACK BAND MODEL WITH LATIN HYPERCUBE SAMPLING (LHS) OF ELEMENT
STRENGTHS AS RANDOM VARIABLES

Now it should be noted that the quasibrittleness and the positiveness of structure geometry offer
an enormous advantage for applying SFEM. If the cdf of strength of one RVE is known, then the
type of cdf for any structure size and any geometry is also known, as given by Equation (1). So
it suffices to determine by SFEM only the mean and the CoV, from which the entire distribution
follows according to Equation (1). This is a far easier task than pursuing the importance sampling
or other numerical methods for extreme value statistics. We can therefore employ simple sampling
techniques which are adequate only for predicting the mean and variance. What is further important
is that these simple techniques can be easily combined with the crack band model for capturing
the deterministic part of size effect.

The simplest and in practice by far the most widely used model for simulating fracture non-
locality and energetic size effect is the crack band model [26, 60]. Statistical sampling can be
easily combined with this model. To determine the statistical properties of structural response,
it suffices to generate a number of sets of random samples of input parameters, associate the
generated realizations with model parameters (such as local strength), compute by finite elements
the structural strength for each set, and finally evaluate the statistics of response from the simulation
results.

In Monte Carlo simulation, the input parameters are generated randomly from the given proba-
bility distribution of each parameter. While the Monte Carlo approach is fundamental, it is not the
most efficient. This study uses the stratified sampling—a well-known efficient technique in which
the range (0, 1) of the cdf of each input parameter is subdivided into a number of strata of equal
probability (i.e. equal width), from which the random samples are then drawn.

A particularly efficient and simple approach to stratified sampling, with superior stability and
accuracy of estimation of the mean and variance, is the Latin hypercube sampling (LHS) which
minimizes the number of simulations needed to achieve acceptable accuracy as compared to crude
Monte Carlo sampling [61, 62]. LHS has been effectively applied to concrete creep [63–66], and
recently also to the statistical size effect in concrete [67, 68]. The salient features of LHS are that

(i) the number of simulations, Nsim, equals the number of strata for each input variable X ;
(ii) each stratum has the same probability, equal to 1/Nsim (Figure 3); and
(iii) each stratum, numbered k, of each random variable X is sampled by one and only one

value of xk (k = 1, . . . , Nsim). The xk-value may be defined so that the corresponding
cdf F(xk) would lie in the middle of each stratum (Figure 3), i.e. xk = F−1(P̄k) where
P̄k = (k − 0.5)/Nsim.

A slightly better convergence of LHS is obtained by sampling each stratum at the cen-
troid of the corresponding segment of the pdf [69, e.g.] f (x)= dF(x)/dx , which is given by
xk = Nsim

∫ xRk
xLk

x f (x) dx , where xLk = F−1[(k − 1)/Nsim] and xRk = F−1(k/Nsim) are the left and
right boundaries of the kth segment. As proven by McKay et al. [61], the convergence of the first
and second statistical moments of response is then optimal, under certain typical conditions.

Each material property in each finite element represents one random variable (note that asso-
ciating a random variable with each integration point of each finite element would be incorrect,
and would prevent using the random block method introduced later, because the integration points
within one element cannot be made to behave according to the weakest-link model; the structure
geometry can be positive with respect to damage extension into the adjacent element, but not
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Figure 3. Stratified sampling by mid-values of the strata.

into the adjacent integration point). For nel finite elements, each with nmp material properties
(such as the material strength and fracture energy), there will thus be � = nelnmp input variables.
Accordingly, the cdf of each of these variables must be divided into Nsim equal strata. Correlations
among the random variable can be captured by modifications of the standard LHS. The algorithm
to do that was shown by McKay et al. [61], Iman and Conover [70]. An efficient and robust
algorithm using the stochastic optimization method, called simulated annealing, was proposed by
Vořechovský and Novák [68].

Efficient LHS technique strategies were implemented in statistical, sensitivity and reliability
software FREET [71]. This software has been combined with the commercial finite element code
ATENA, which was developed at Červenka consulting in Prague, based on the crack band model,
and has been used for various stochastic finite element simulations (see [71], for a summary of
possible applications). This commercial software has been used here with pure Weibull statistics,
Equation (6), although the finite chain statistics, Equation (1), can be implemented in it easily.
Although, in view of the latest results [17], the pure Weibull scaling used in the FREET software
at the time of these computations (instead of Equation (1) with a grafted Gaussian–Weibull cdf)
is not very realistic for normal concrete specimens and structures, it is simple and serves the
aim of this study, which is merely to demonstrate the computational method rather than predict
failure of real structures. The autocorrelation of the random strength field must be captured. The
simplest, though crude, approach to do that is to subdivide the structure into elements having
the size of autocorrelation length, la. Clear though the necessity of a finite autocorrelation is, to
ensure objective simulation, the proper value of la remains clouded and quantitative information
on autocorrelations other than those imposed by the RVE size is unavailable. Therefore, it will be
assumed in this study that la = l0 =RVE size. This assumption is not implausible since non-local
spatial averaging over a material element of RVE size, on which the statistical material properties
are defined, automatically introduces autocorrelation with autocorrelation length l0.

Finite elements of the RVE size are manageable for small structures, but lead to excessive number
of elements for very large structures. As proposed by Bažant and Novák [72], this difficulty can
be overcome (for structures of positive geometry) by introducing random property blocks (RPB)
whose mean strength and CoV are scaled according to the RPB size using the appropriate scaling
law. The advantage is that the number of RPBs (initially, in 2003, called ‘random macro-elements’)
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can be kept fixed as the structure size is increased in proportion to D. This greatly enhances the
efficiency of stochastic computations for very large structures [20, 67, 72, 73]. The mean strength
scaling according to Equation (10) would, of course, be realistic only for the large-size brittle
limits of quasibrittle structures, which would occur if the equivalent number Neq of RVEs at the
lower limit of the scaling range would exceed about 1000 [16, 17] (and, of course, assuming the
weakest-link model to apply, which is the case if the structural geometry is positive).

The RVE for damage and failure analysis is typically about two to three material inhomogeneities
in size. It is understood as the smallest material volume whose failure causes the whole structure
to fail (which is not in the classical sense of statistical homogenization). As already pointed out,
the cdf of strength of one RVE must be Gaussian (or normal) except for a far-left tail grafted
at Pf = 0.0001–0.01, which must be of Weibull (or power law) type with a zero threshold (for
the precise experimental determination of RVE size and grafting probability Pf, see [16, 17]).
Consequently, Equation (10) based on Weibull scaling (or the stability postulate of extreme value
statistics) is realistic only within the range of random blocks larger than about 1000–10 000 RVEs.
Thus, in reality, it practically never applies to concrete structures (unlike ceramics with fine enough
grains). So the realistic scaling of mean strength and CoV must be obtained from the integrals
for the mean and variance based on the cdf given by Equation (1), where P1(�) is a Gaussian
distribution onto which a power-law tail is grafted at Pf ≈ 0.0001–0.01.

To demonstrate the RPB approach, the experiments carried out by Koide et al. [74, 75] have been
simulated. Unfortunately, these simulations have been carried out before a parallel study [16, 17]
showed that the specimens tested were not large enough to allow application of the classical
Weibull theory, in which the RVE size is assumed to be negligible. Thus, the simulations that are
now going to be presented are mere numerical demonstrations of the proposed numerical approach,
and cannot actually provide optimal representation of Koide’s data. But because the size range
of Koide’s data (as well as any other data in the literature) was far too small and the histograms
limited, relatively little will be lost from the practical viewpoint, and the fitting exercise is not
going to be altogether hypothetical. These data, unfortunately, are insufficient to clearly distinguish
between optimum fits by the Weibull theory and by the weakest-link model based on Equation (1)
for a finite chain of RVEs having a mostly Gaussian cdf with remote power-law tail.

Because the beam span in Koide’s tests was scaled while keeping the beam depth constant, the
microcracking boundary layer at maximum load, which causes stress redistribution and thus the
energetic part of size effect, should have had a nearly constant thickness. Consequently, according
to the beam theory with plane cross-sections, the stress redistribution in the uniform moment
segment of the beam would expected to be the same, and thus the size effect to be purely statistical
in nature. A previous study [43, 67], though, revealed discrepancies with the Weibull statistical
theory, which means the energetic size effect due to two-dimensional stress redistributions, as well
as finite chain statistics of Equation (1), must have played some role in these tests. Although the
energetic size effect is not the focus of this paper, it is automatically captured by using the crack
band model.

Koide et al.’s tests [74, 75] were performed on four-point bend beams which all had the same
shear span Ls= 20 cm (distance from load to support) and the same square cross-sections, with sides
b= d = 10 cm. The maximum aggregate size was da = 20 mm and the mean standard cylindrical
compression strength concrete was f ′

c = 30.0MPa. The bending span D (i.e. the distance between
the loads) varied and was 20, 40 and 60 cm in three test series. The nominal strength of these
beams was defined as the largest elastically calculated stress in the beam, �N = 6M/bd2, where
M is the maximum bending moment.
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Figure 4. Simulation of Koide’s test series C: (a) mesh size for the smallest beam; (b) scaling of RPBs
for all sizes; and (c) comparison of mean size effect curve (MSEC).

Figure 4 shows the simulations of size effect in test series C with the RPB approach using the
FREET and ATENA softwares. For each of the three lengths, Koide’s beam is subdivided into six
RPBs (Figure 4(a)); 16 LHS simulations are performed for six random tensile strengths f ′

t and
random fracture energies GF of the material. These random variables, statistically independent (or
correlated), are sampled according to the optimized techniques of [68].

Three alternatives [67] are simulated (Figure 4(b)). They are

• Alt. I with tensile strength as the only random property.
• Alt. II with high statistical correlation between tensile strength and fracture energy.
• Alt. III with the material parameters from Alt. II adjusted to shift the size effect curve upward

in order to match the experimental data.

Comparison of these three alternatives reveals how the material parameters influence the results.
A decrease of Weibull modulus m, as well as a decrease of the autocorrelation length la, makes the
size effect stronger (note in Figure 1(f) the steeper slope of the straight line of mean size effect).
An increase of tensile strength f ′

t , plausibly, shifts this line upwards. A decrease of GF, as well as
correlation between f ′

t and GF (introduced by correlation factor r = 0.99), makes the size effect
stronger (i.e. the straight line steeper) and, at the same time, shifts this line downwards (and thus
closer to chain-like statistical behaviour). Alt. III is able to fit the size effect curve very well, by
virtue of changing the mean f ′

t and GF of the finite elements (which is admissible for Koide’s
tests because f ′

t and GF were not measured).
Although the finite element stress analysis of Koide’s beams was two-dimensional, the parameters

of the RPBs were scaled only in one dimension. The reason is that, because of constant beam
depth, the weakest-link model is represented essentially by the one-dimensional statistical variation
of strength along the bottom layer of highly stressed finite elements.

Despite a good match with such one-dimensional statistical modelling, the material parameters
used in these computations could not be reproduced on a different set of experiments. The likely
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cause of this problem is that the more complex RPB scaling based on Equation (1) should have
been used instead of the simple Weibull scaling, as already discussed. Nevertheless, despite this
problem with comprehensive fitting of Koide et al.’s tests (which are planned to be addressed in
a follow-up study), the foregoing analysis serves as a demonstration of the RPB approach.

5. MODIFIED LHS WITH EACH ELEMENT STRENGTH TAKEN AS A RANDOM SAMPLE
FROM ONE MATERIAL STRENGTH DISTRIBUTION

Another stratified sampling approach for SFEM will now be proposed. It reduces the amount of
computational work by combining stratified sampling with a modified Latin square design (LSD)
[76–79]. In the LSD, the number of simulations is again the same as the number of strata. The
difference from LHS lies in an additional constraint on the number nRV of RVEs: If Nsim�nRV,
the stratum value is not sampled more than once in each row and column of the input table of
random variables (Table I), and if Nsim<nRV, each stratum value must appear for equal number
of times in each row and each column (Table II). The LSD can simply be viewed as a subset of
all possible random configurations in standard LHS, with the advantage of reducing the variance
in the moment estimates before correlations are introduced, by virtue of optimum adjustment of
initial permutations.

Multiple random variables can be obtained by adopting an approach similar to the Graeco-LSD
[78], which is a generalization of LSD to multiple variables using multiple Latin square tables.
Desired correlations between multiple variables may be achieved by certain optimum adjustments
of initially random permutations. But correlations will not be studied here, and f ′

t and GF will be
assumed to be fully correlated by a functional relationship.

In LSD, the variability in the estimates of statistical moments, for a small limited number of
realizations, is effectively suppressed by enforcing equal likelihood of sampling from a strata in
an exhaustive list of all possible combinations (Table I). The variability of the first and second

Table I. Input table for LSD with four RVEs and six simulations.

Simulation Var X1 Var X2 Var X3 Var X4

1 x1,1 x2,2 x3,5 x4,3
2 x1,2 x2,5 x3,4 x4,6
3 x1,6 x2,3 x3,2 x4,1
4 x1,5 x2,6 x3,1 x4,4
5 x1,3 x2,4 x3,6 x4,5
6 x1,4 x2,1 x3,3 x4,2

Table II. Input table for LSD with four RVEs and two simulations.

Simulation Var X1 Var X2 Var X3 Var X4

1 x1,1 x2,2 x3,2 x4,1
2 x1,2 x2,1 x3,1 x4,2
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Figure 5. Comparison of: (a) first statistical moment and (b) CoV for two-element rod structure; (c) first
statistical moment∗ and (d) CoV for eight-element rod structure; and (e) first statistical moment∗ and (f)
CoV for eight-element structure under linearly distributed stresses. (∗LSD curve mirrored about analytical

curve for more obvious comparison.)

moment estimates and their rapid convergence may be demonstrated on a uniformly tensioned one-
dimensional rod which fails at its weakest point. First, a rod subdivided into only two elements
is analysed. All the possible combinations of the sampling intervals are considered to determine
the theoretical means and bounds for the first two statistical moments of the sampling methods.
Again, as a hypothesis of this exercise (though not in agreement with [17]), the element strength
values are sampled from the Weibull distribution. A comparison of the moment estimates for the
two sampling methods for the weakest-link model is shown in Figure 5(a).
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The objective of a good sampling method is to generate close estimates of the statistical behaviour
with low variability while using the least possible number of simulations. The advantage of the
LSD is clear from Figure 5(a) where a close approximation of the first statistical moment (i.e.
the mean) is obtained even when the number of simulations is close to the number of elements.
Figure 5(a) shows a significantly better mean (or first moment) estimate with low variability for
the LSD method, but the estimate of CoV (or second moment) is not better in comparison to the
LHS method.

When the number of elements is large, the means and error bars (showing the mean ± standard
deviation) can be based on a large number of computer runs (300 in Figures 5(b) and (c)). The
two sampling methods are compared with this approach using the example of a rod with eight
elements under uniform uniaxial tensile stress (Figure 5(b)) and a stepwise linearly decreasing
uniaxial stress (Figure 5(c)). The rod is assumed to fail when the strength limit is exhausted in any
one of the elements. In Figure 5(b), both sampling methods are compared for the first statistical
moment and it is seen that the LSD method achieves a smaller variability of the moment estimates.
The benefit of the LSD becomes more evident for the simple structures in Figure 5(c) where
the elements are subjected to different stresses. The LSD method yields an estimate of the first
statistical moment that is significantly closer to the analytical mean.

Improvement in LHS by enforcing desired correlation or by removing undesirable correlation
has been widely discussed [68–70]. The goal is to create correlation between material parameters
reflecting empirical correlations apparent from experiments. A correlation matrix that samples
the material properties can be established for each element. The approach can be extended to a
larger correlation matrix that simultaneously enforces desired correlation between different material
parameters for the same element, and removes undesirable correlation between different elements
having the same material parameters. The procedure to remove undesirable correlation can lead
to improvements in the statistical response for a small structure with few RVEs. But the gain
can be minor for a large structure in comparison with the errors incurred due to discretization of
the random field and the solid continuum. In large structures, the total number of RVEs can be
enormous and sampling cumbersome. For example, a structure with nel = 1000 finite elements and
with nmp = 3 material parameters will require sampling of the material properties that satisfies a
3000× 3000 matrix of desired correlation.

It has been demonstrated that, compared to the LHS, the LSD gives a better estimate of the
first statistical moment, with smaller variability. Currently, the premise of LSD is zero correlation
between the elements of the same material property, but this premise is valid only as long as the
size of the element is approximately the same as the autocorrelation length la.

Finite element modelling with crack band model is used to compare the LSD method with Koide
et al.’s [74, 75] beams of Series B and C (with the same reservations to practical relevance to these
data as note before). The crack band model with l0 ≈ 2.5da is used to describe tensile fracturing of
concrete and la ≈ l0 is assumed. The tensile strength f ′

t of each element is sampled from the Weibull
pdf with the Weibull modulus of m = 7.6. The post-peak softening stress–strain curve in the crack
band model is assumed to be linear. The fracture energy GF and tensile strength f ′

t are assumed
to be perfectly correlated and GF is estimated from a formula recommended by CEB90 CEB [80]:
GF =GF0( fcm/ fcm0)

0.7 where fcm0 = 10 MPa, fcm is the mean compressive strength, GF0 the
base value of fracture energy which depends on Dagg, and can be read from Table 2.1.3 of [80].

A subdivision of cdf range (0, 1) into 16 equal sampling intervals is used for direct comparison
of the two sampling methods. The peak load is computed with the help of arc-length control
using a commercial finite element software, FEAP, and a user-supplied subroutine for the material
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Figure 6. Comparison of experimental and computational mean size effect curves for Koide et al.’s beam
(experimental and computational scatter bands in black and grey, respectively).

softening model. The mean values and the scatter bands from the simulations of specimens of
each size are plotted on the mean size effect curve (MSEC) in Figure 6. In spite of using an
unrealistic cdf of the material strength, the size effect curve is in satisfactory agreement with the
experimental data and the scatter bands are matched quite well (doubtless because of the limited
scope of Koide’s data, which could be fitted by different theories almost equally well).

6. HYBRID LHS AND MONTE CARLO SAMPLING WITH EXTRA SIMULATIONS
IN LOWEST STRATUM

Figure 7 shows three plots of data points representing the cdf of strength of four-point bend beam
obtained by computer finite element simulations based on LHS, in which the number of strata
of material strength distribution (and thus the number of simulations) was 25, 40 and 100. The
simulated cdf plots are seen to be clustered and stair-like, and this undesirable feature does not
disappear even when 100 strata (and simulations) are used. The simulated left tail seems totally
useless for estimating the low probability tail of cdf, which is the main information needed for
judging structural safety. Each of these three simulated cdf’s is optimally fitted by Weibull cdf
(solid curves) in Figure 7.

Are these smooth fits of the rugged simulated histograms of any use? Do they give realistic
approximate information on the left cdf tail? Despite the clustering and ruggedness of the simulated
cdf plots, the answer is in the affirmative. The simple sampling technique used is perfectly sufficient
for determining the mean and the CoV, and this is enough because the type of distribution is known.
It is given in Equation (1), and in the special case of the present example it is simply the Weibull
distribution.

The distribution according to Equation (1) can, of course, be determined only if Neq is known.
Equations (7) and (8) suffice for determining Neq only if the state just prior to the maximum load
is elastic, which can be true only for perfectly brittle behaviour (the large-size limit of quasibrittle
structure). Otherwise, the stress field influenced by cracking damage before the maximum load
should be used. So Neq must generally be obtained by numerical integration of Equation (8), in
which one must substitute the stress field obtained by non-linear finite element analysis, e.g. with
the crack band model. This is where numerical simulation is irreplaceable.
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Figure 7. Response of four-point bend specimens with: (a) 25 LHS; (b) 40 LHS; (c) 100 LHS; and
(d) 250 LHS+MC hybrid sampling.

To determine the stress field for calculating Neq, the non-linear finite element analysis can be
deterministic. So, is not the stochastic simulation merely an alternative? Not really. Once formulated
and demonstrated, the present simulation approach can be extended to structures that behave like
a generalization of the weakest-link model, for instance, those where correlations among adjacent
RVEs exist, causing deviations from positive structural geometry (correlations among adjacent
RVEs have essentially the effect of creating a large super-RVE, but if all the RVEs in the structure
are correlated then the present approach does not apply and importance sampling or the like
becomes probably necessary).

Although complete numerical verification of the far-left (say, up to Pf = 10−6) would necessitate
techniques such as importance sampling [7], knowledge of the full distribution permits us to verify
only the near tail, up to only about Pf = 1%. This can be done by a simple refinement of the LHS.
It would be ineffective and wasteful to increase the number of strata. Rather, what is necessary is
to conduct many more simulations within the lowest stratum (which is in the spirit of importance
sampling).

One effective way to do that is a hybrid sampling, in which the LHS samples are taken from all
the strata except the lowest stratum and nt Monte Carlo simulations are conducted with the finite
element program within the lowest stratum. The Monte Carlo simulations sample the probability
interval across the lowest stratum according to the cdf of RVE strength of the material (which was
taken, in the present example, as the Weibull cdf for the lowest stratum). The weight ascribed to
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the structural strength obtained from each of these Monte Carlo simulations is (1/nt) × the weight
of each of the upper strata used for LHS. For 25 strata overall, and for nt = 10 random simulations
within the lower stratum, the cdf plot obtained from such combined hybrid LHS—Monte Carlo
sampling method is shown in Figure 7(a).

As can be seen, the clustering and ruggedness of the plot are eliminated and the plot closely
matches the Weibull cdf optimally fitted to the simulated plot, as far as the eye can discern.
Figures 7(b) and (c) also show by the dashed curve the Weibull cdf from Figure 7(a), which was
obtained by least-squares fitting of the cdf plot simulated by pure LHS sampling. Remarkably, the
dashed and solid curves of Weibull cdf are very close. Of course, this is not a verification of the
far-left tail up to Pf = 10−6, but it is an indication that numerical refinement tends to agree with
what is expected theoretically.

7. CONCLUSIONS

1. The proposed formulation of stochastic finite element method for predicting load capacity of
concrete and other quasibrittle structures failing at macro-crack initiation meets the following
three requirements:

(a) For small structure size, it simulates in an objective manner damage localization with
the energetic (deterministic) part of size effect.

(b) For the large-size limit, it converges to Weibull statistical theory, as required by extreme
value statistics.

(c) In the intermediate size range, it simulates the combined statistical–energetic size
effect.

2. The mean and variance of structural response can be effectively computed by stratified
sampling in the form of either Latin hypercube sampling or Latin square design. The former,
in which the strength of each finite element is considered as one random variable to be
sampled, gives closer estimates for the variance of response when the number of simulations
is small. The latter, in which each element strength is sampled from one overall material
strength distribution, gives a smaller scatter in estimating the variance and a closer estimate
for the mean response.

3. For quasibrittle structures of positive geometry (i.e. those failing at macro-crack initiation),
the statistical model is a chain with a finite number of links, each of which corresponds to
one representative volume element (RVE) of material, which has previously be shown to
have a strength with Gaussian (normal) distribution onto which a Weibull tail is grafted at the
cumulative probability of roughly 0.001. Thanks to this fact, the type of the entire distribution
of structural strength can be obtained analytically for any structure size, depending on the
effective (geometry adjusted) number of RVEs in the structure. This means that a failure
probability such as Pf = 10−6, which must not be exceeded in design, can be determined by
computing merely the mean and variance of this distribution (and thus the need for more
complex methods such as importance sampling is obviated). The mean and variance can
be easily obtained either analytically, from the weakest-link model for a finite chain, or by
simple stochastic simulation techniques such as stratified sampling. The latter is shown to
give good results, which makes it a candidate for future extensions to the case of correlations
among adjacent RVEs.
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4. For large structures failing at macro-crack initiation from one RVE, the simulations confirm
the previous finding that the number of structural simulations required to obtain the mean
size effect can be greatly reduced by introducing ‘random property blocks’ (RPB)—blocks
that are scaled with the structure size, to keep their number constant, and are small enough
for having in each of them a nearly homogeneous field of random material strength. The
mean and variance of each random block strength are scaled according to the block size
using the weakest-link model with a finite number of links.

5. Numerical examples of simple sampling approaches and the use of random block method
are computed, for the sake of simplicity, under the hypothesis that the strength of each RVE
is Weibullian. Although not realistic, this hypothesis suffices for numerical demonstration. It
has advantage that the structural strength is Weibullian for every size, and that the random
block strength can be scaled simply with a constant coefficient of variation and a mean
reduced according to the Weibull power-law size effect. The scaling must generally be based
on the equivalent number of RVEs (corresponding to the number of links in the weakest-link
model) which must be corrected according to the stress field just before collapse, depending
on structure geometry. The RVE cannot be here defined by homogenization theory but must
be understood as the smallest material element whose failure causes the whole structure to
fail (thus typically the RVE size ≈ two to three grains or inhomogeneity sizes ≈ effective
width of the fracture process zone).

6. The cumulative histogram of structural strength values obtained with the stratified sampling
methods is rugged, clustered and stair-like at the left margin. In spite of that, least-squares
fitting of the computed histogram suffices to give the correct mean and variance. Refinement
in which the stratified sampling is combined with extensive Monte Carlo sampling of material
strength in the lowest stratum is shown to make the histogram visually smooth, agreeing with
the theoretically expected cumulative distribution in the central part up to the tail starting at
the probability of the order of 1%.

APPENDIX: DISTRIBUTION OF RVE STRENGTH

In a study subsequent to the present one, reported briefly in [16] and in full detail in [17]
(and summarized in conference papers [18, 19]), the Maxwell–Boltzmann distribution of atomic
energies and the stress dependence of the activation energy barriers was used to show that the core
of distribution P1(�N ) must be Gaussian, while the far-left tail must be Weibullian. This means
that the tail must have the form of a power law of stress with a zero threshold, i.e. P1 = �N

m where
m represents the Weibull modulus (see also [18, 19] for a summary). The transition between the
core and tail is relatively abrupt; in other words, one may consider a Weibullian tail to be grafted
onto the Gaussian core at a certain transitional probability Pf = Pgr.

It has further been shown that, for the cdf of one RVE of a quasibrittle structure, Pgr ≈ 0.001.
Such a tail is normally undetectable from experimental histograms (about 105 tests of identical
specimens would be needed to see it), yet it totally controls the failure probability of a large
structure. If Pgr were much larger, it would imply a RVE to behave as a chain of sub-RVEs,
but then the fracturing would have to localize into just one sub-RVE, and so the assumed RVE
would not be a RVE. Equation (1) indicates [18, 19] that, as Neq or structure size D is in-
creased, the transitional probability Pgr increases and for Neq ≈ 3000 one has Pgr ≈ 0.95, i.e. the
entire cdf is Weibullian for all practical purposes. But if Pgr were much smaller than 0.001, it
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would incorrectly imply that extremely large quasibrittle structures (with Neq 
 3000) have a
Gambel cdf and fail in a ductile manner (note that, in particular, the lognormal distribution
cannot apply to strength, for if it did then the failure load probability would have to be a product,
rather than a sum, of the failure probabilities of all the RVEs along the failure surface, which is
inconceivable).

According to the central limit theorem of probability, a Gaussian cdf is characteristic of ductile
failures. Indeed, for such failures, the strength of all the RVEs along the failure surface is at
maximum load fully mobilized. This means that the load is a (weighted) sum of many independent
random variables, which is known to converge to the Gaussian distribution.

In general, no strength distribution can be other than Gaussian, Weibullian, or a transition
between these two. The threshold of the Weibullian part must be zero, i.e. the tail P1 = (�N −�u)m

with non-zero �u is physically impossible, or else the Maxwell–Boltzmann distribution of atomic
energies would be contradicted [16, 17].
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64. Bažant ZP, Kim J-K, Wittmann FH, Alou F. Statistical extrapolation of shrinkage data—Part II: Bayesian updating.
ACI Materials Journal 1987; 84:83–91.
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68. Vořechovský M, Novák D. Statistical correlation in stratified sampling. In Applications of Statistics and Probability
(Proceedings of Ninth International Conference, ICASP-9, Berkeley, CA, 2003), Der Kiureghian A, Madanat S,
Pestana JM (eds), Rotterdam, 2003; 119–124.

69. Huntington DE, Lyrintzis CS. Improvements to and limitations of latin hypercube sampling. Probabilistic
Engineering Mechanics 1998; 13(4):245–253.

Copyright q 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2007; 71:1297–1320
DOI: 10.1002/nme



1320 Z. P. BAŽANT ET AL.
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