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ABSTRACT
This article proposes a sampling technique that delivers robust designs, that is, point sets selected from
a design domain in the shape of a unit hypercube. The designs are guaranteed to provide a statistically
uniform point distribution, meaning that every location has the same probability of being selected. More-
over, the designs are sample uniform, meaning that each individual design has its points spread evenly
throughout the domain. The sample uniformity (often measured via a discrepancy criterion) is achieved using
distance-based criteria (φp or Maximin), that is, criteria normally used in space-filling designs. We show that
the standard intersite metrics employed in distance-based criteria (Maximin and φp (phi)) do not deliver
statistically uniform designs. Similarly, designs optimized via centered L2 discrepancy or support points are
also not statistically uniform. When these designs (after optimization based on intersite distances) are used
for Monte Carlo type of integration, their statistical nonuniformity is a serious problem as it may lead to
a systematic bias. This article proposes using a periodic metric to guarantee the statistical uniformity of the
family of distance-based designs. The presented designs used as benchmarks in the article are only taken
from the class of Latin hypercube designs, which forces univariate projections to be uniform and improves
accuracy in Monte Carlo integration of some functions. Supplementary materials for this article are available
online.
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1. Introduction

We consider numerical methods for the analysis of a com-
puter program via experimentation (evaluations of the com-
puter code). The computer model is denoted as g and it com-
putes output quantities, y, based on the vector of the input
variables, x. Each realization of input vector x is a point in
a design domain, U, which is considered to be a unit hypercube,
U ≡ [0,1]s. We assume that any transformations necessary to
achieve the change from different domains and density func-
tions toU have already been carried out. The computer program
is repeatable, that is, it returns exactly the same output for the
same input. However, we assume that the computer model is an
implementation of a complex deterministic function for which
even a single evaluation at given point requires substantial com-
putational effort.

There are various goals in computer experiments, such as
finding a simple approximation of g, called the metamodel or
surrogate model ĝ, that is sufficiently accurate over the region
A ⊂ U. Another task is the estimation of the size of the error
ĝ(x)− g(x) for a given point x ∈ A. Sometimes the target is to
perform the sensitivity analysis of y with respect to changes in
x, or to find which xv are the most important for each response
in y, or to visualize the function g and find its extremes, or to
uncover bugs in the implementation of g. We mainly focus our
attention on estimating the s-dimensional integral of function
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g over the whole design domain U: I(g) = ∫
[0,1]s g(x)dx via

an average computed over n points selected from U: Î(g,D) =
1
n
∑n

i=1 g(xi). The set of integration points, {xi ∈U}, i = 1, . . . ,n,
is called the design or sampling plan. It is denoted by D and is
a rectangular matrix of n points with s coordinates. Since the
evaluation of g is very expensive, n must be as low as possible.
The selection of the design becomes an important step in the
estimation of the integral because it can strongly influence the
quality of the estimate. The quality of the estimate may be
measured by the absolute difference between the exact value and
the estimate

ε(g,D) = |I(g)− Î(g,D)|. (1)

In this article, the ultimate goal is to find an optimality
criterion for the selection of designs that favors robust designs
with uniform coverage of the design domain. The designs
may be used especially for the integration of black-box
functions where little is known prior to experiments. The
Koksma–Hlawka inequality (Hlawka 1961), Niederreiter (1992,
Theorem 2.11) is perhaps the most well-known and popular
multidimensional quadrature error bound (see also Koksma
1942/1943; Fang, Lin, et al. 2000; Fang and Ma 2001). The
inequality imposes an upper bound on the absolute error as
a product of two independent terms

ε(g,D) ≤ V(g)D�(D), (2)
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where V(g) is the total variation of the function g in the sense of
Hardy and Krause and D�(D) is the star discrepancy of design
D, which does not depend on function g. For fixed g(·) this
bound is minimized when D has minimum discrepancy. We
remark, however, that the inequality does not mean that a design
with minimum discrepancy has minimum error ε(g,D). It does
suggest that designs with a low discrepancy may be robust to
the choice of g(·) because they have this property regardless
of the value of g(·). Thus, the class of designs that minimize
discrepancy has received considerable attention in the liter-
ature under the name uniform designs. The star discrepancy
measures the maximum deviation between the empirical dis-
tribution function associated with the design D ∈ U and the
uniform distribution over U. It is possible to generalize the
star discrepancy by defining an Lp-star discrepancy (Hicker-
nell 1998a), and related generalizations are also known for the
bound in Equation (2). In the various algorithms that search
for uniform designs, discrepancy is subject to minimization.
There are various measures of discrepancy, depending on the
definition (see, e.g., Hickernell 1998a, 1998b). These defini-
tions also have corresponding formulas for their calculation, for
example, modified L2 discrepancy (Fang and Wang 1993), wrap-
around L2 discrepancy (Hickernell 1998b; Fang and Ma 2001),
and centered L2 discrepancy (Hickernell 1998b; Fang, Lin, et al.
2000) (see also Santner, Williams, and Notz 2003; Fang, Liu, et al.
2018).

An important class of designs for multidimensional integra-
tion is that of quasi Monte Carlo (QMC) and random QMC
(RQMC) sequences, which were born in the 1950s and 1960s
and are sometimes named low-discrepancy sequences or digital
nets/sequences; see, for example, a review by Dick, Kuo, and
Sloan (2013). Examples of QMC designs include the sequences
by Halton (1960), Sobol’ (1967, 1976), Niederreiter (1987, 1988,
1992), Faure (1981), the generalization of the Faure sequences by
Tezuka (1995), and others. QMC methods are called “number-
theoretic methods” (Fang and Wang 1993; Fang, Wang, and
Bentler 1994) by some authors (e.g., “good lattice points,”
etc.). Special types of digital higher order nets are known as
“higher order polynomial lattice point sets” (Baldeaux et al.
2011). QMC sequences became well known for their ability
to decrease the estimation variance of integrals in comparison
with crude Monte Carlo integration, as well as for the faster
convergence of the integral estimate (Owen 1999; L’Ecuyer and
Lemieux 2005). The use of low-discrepancy sequences makes
QMC designs a cheap alternative to algorithmic discrepancy
minimization (Niederreiter 1992, chaps. 3 and 4). QMC
sequences achieve optimal error rates for star discrepancy
(Dick and Pillichshammer 2010). QMC methods may be
thought of as de-randomized Monte Carlo samples. It has
become apparent that QMC can be rerandomized (RQMC) to
obtain sample-based error estimates. Various rerandomization
methods have been developed (e.g., “random shift modulo
one” by Cranley and Patterson (1976), “scramblings” by Owen
(1995; 1998), and others). The random scrambling of QMC
sequences eliminates their inherent bias while retaining their
low-discrepancy properties. These randomizations are also
known to have better projection properties of some digital nets
(e.g., Sobol') to the first few dimensions (L’Ecuyer and Lemieux
2005), see below. Surveys of RQMC appear in Owen (1999) and

L’Ecuyer and Lemieux (2005). For smooth integrands, higher
order scrambled digital nets have been shown to achieve optimal
mean square error rates (Dick 2011).

In computer experiments, it is generally accepted that
design points should be spread evenly throughout the entire
design domain to provide information about all portions of
the experimental region. These are called space-filling designs
(see, e.g., Joseph 2016). Many criteria for space-fillingness are
based on distances among points, for example, the Maximin
and miniMax criteria (Johnson, Moore, and Ylvisaker 1990;
Tan 2013; He 2017a; Mak and Joseph 2018a), the Audze–
Eglajs criterion (Audze and Eglājs 1977), and the generalized
φp criterion (Morris and Mitchell 1995). Space-filling designs
may be obtained by exploiting the analogy with sphere
packing problems (He 2017b). Recently, Mak and Joseph
(2018b) suggested the use of a kind of space-filling design for
Monte Carlo integration. Their “support points” are generated
using the minimization of the energy distance between two
distributions.

Designs optimized for model prediction should be non-
collapsible: if only a subset of input variables is relevant
for predicting the response, then the prediction error is
related to the uniformity of the projected designs. Another
frequent requirement placed on designs is for them to display
orthogonality: this ensures that all specified parameters may
be estimated independently of any others (estimation of
main effects), and that interactions can also be estimated in
a straightforward manner. There are numerous design types
focused on orthogonality, such as various factorial designs,
“orthogonal arrays,” “mutually orthogonal Latin squares,” etc.
Some authors simply tend to decrease statistical correlations
among vectors of samples of individual variables in designs
(Morris and Mitchell 1995; Vořechovský and Novák 2009). As
shown by Owen (1992), the bilinear part of the integrand is
more accurately estimated if the sample correlations among
input variables are negligible.

One way of obtaining a design with excellent projective
properties is to select a design from the class of Latin hypercube
designs (LHDs), a type of design suggested by Conover (1975). It
has been shown that LHDs are especially suitable for evaluating
the expectation of functions in computer experiments. There are
a number of research articles concerning sampling efficiency
for LHS and related sampling schemes (McKay, Conover, and
Beckman 1979; Stein 1987; Tang 1993; Owen 1994; Shields and
Zhang 2016). LHS never increases variance, in comparison to
crude Monte Carlo sampling, but may decrease it. The combi-
nation of the standard φp criterion with LHS was suggested by
Morris and Mitchell (1995). Their goal was to find designs which
offer a compromise between the entropy/maximin criterion and
the display of good projective properties in each dimension (as
guaranteed by LHS). The combination of LHS with the standard
Maximin criterion has gained considerable popularity (Liefven-
dahl and Stocki 2006; van Dam et al. 2007; Joseph and Hung
2008; van Dam, Rennen, and Husslage 2009; Grosso, Jamali, and
Locatelli 2009; Rennen et al. 2010; Dette and Pepelyshev 2010;
Husslage et al. 2011; Janssen 2013).

In this article, we propose a sampling technique that delivers
designs suitable for Monte Carlo integration. The designs are
statistically uniform, meaning that each location in U has the
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same probability of being selected. The standard intersite met-
rics used in distance-based criteria do not guarantee statistically
uniform designs, which renders designs achieved using such
criteria inapplicable for Monte Carlo integration. This article
proposes a periodic metric for distance-based criteria which
guarantees the statistical uniformity of the obtained designs.
Furthermore, to reduce the variance of the numerical integra-
tion and also to maximize the amount of information about
the analyzed function, we have developed designs with good
sample uniformity, that is, each single point layout D is uniform.
Sample uniformity is often measured via a discrepancy criterion;
here it is achieved by using a distance-based criterion (φp or
Maximin) that is normally used in space-filling designs. The
authors conjecture that an improvement in space-fillingness
also leads to a decrease in discrepancy. To achieve uniform
projections and also an additional improvement in integration
accuracy, we have limited the designs investigated to the class of
LHDs.

2. Maximin and φp Criteria With Intersite and Periodic
Metrics

Johnson, Moore, and Ylvisaker (1990) developed the idea of
miniMax and Maximin designs for function estimation (e.g.,
using Kriging). A miniMax distance design is a set of points
that minimizes the maximum distance from any point in U

to its nearest design point. It requires evaluating the supre-
mum over an infinite set, which is computationally expensive
to approximate. We focus on the Maximin criterion and its
generalization to the φp criterion. The points in a design might
be considered to be spread out when no two points in the
design are “too” close together. One measure of the closeness
of the points in set D is the smallest distance between any
two points in D: minxi,xj∈D d(xi,xj). A design that maximizes
this measure is said to be a Maximin distance design (Johnson,
Moore, and Ylvisaker 1990), abbreviated as Mm and denoted
as DMm. We now redefine this criterion by taking its inverse to
obtain a minimization problem while the minimum distance is
maximized

φ∞(d;D) =
[

min
x1,x2∈D

d
(
xi,xj

)]−1

. (3)

The Maximin criterion can be viewed as a limiting case of a more
general criterion proposed by Morris and Mitchell (1995), the
φp criterion

φp(d;D) = 1(n
2
) ∑

xi,xj∈D

[
d(xi,xj)

]−p, (4)

where p is a positive integer power. For a fixed metric d and
a power p, an n-point design is optimal if it minimizes the
criterion in Equation (4). Taking the power p = 2 and the
Euclidean intersite distance between all pairs of points leads to
the Audze–Eglajs (φ2) criterion (Audze and Eglājs 1977). Joseph
and Hung (2008) use the power p = 15. Some authors advise
using powers as high as p = 50 combined with the �1 metric d
(Jin, Chen, and Sudjianto 2005; Viana, Venter, and Balabanov

2010; Pholdee and Bureerat 2015). The φp family of distance-
based criteria has become very popular and is frequently used
in research and in industry. Such criteria are also implemented
in widely used software packages, both commercial and free
(e.g., the built-in function “lhsdesign” in MATLAB or the
“DiceDesign” package included as a part of R project (R
Core Team 2013)). Note that while DiceDesign offers the
possibility of using a combinatorial optimization algorithm,
the “lhsdesign” function in MATLAB merely selects the
best design from a user-defined number of randomly permuted
LHDs, which results in very poorly optimized designs and thus
the problem with their nonuniformity we focus at in Section 2.1
may not be detected. Also note that Equation (4) is sometimes
used with an additional pth root of the result (a monotone
transformation which does not affect the comparison of criteria
for two designs).

The φp class of criteria (including Maximin and Audze–
Eglajs) are dependent on a distance measure or a metric. Let
d(·, ·) be a metric on [0,1]s. We focus on the Euclidean distance
d
(
xi,xj

) = Lij between points i and j. It is the length of the line
segment connecting them and can be expressed as a function of
their Cartesian coordinates

d
(
xi,xj

) = Lij

√√√√ s∑
v=1

(
�ij,v

)2, where �ij,v = |xi,v −xj,v| (5)

is the difference in their positions projected onto axis v. Such
an intersite metric d is the standard way of measuring distances
used in combination with distance-based criteria. Note that
some authors (Johnson, Moore, and Ylvisaker 1990; Morris
and Mitchell 1995; Ye, Li, and Sudjianto 2000; van Dam et al.
2007; van Dam, Rennen, and Husslage 2009; Viana, Venter, and
Balabanov 2010) also propose using other metrics such as the �1
(rectangular or Manhattan) or �∞ (Chebyshev) distance.

Maximin designs are sometimes deemed uniform; see, for
example, page 594 of the recent handbook Dean et al. (2015).
This actually is not true, as designs with a lower φp criterion
obviously tend to push the design points toward the boundaries
of the hypercube. Indeed, Santner, Williams, and Notz (2003)
noticed in their Example 5.4 that a combination of Euclidean
distance with the Maximin criterion yields designs that “con-
centrate points on or near the boundary of U.” Furthermore,
they suggest that one should “remedy this by restricting the
class of available designs to only include, say, LHDs.” Indeed,
He (2017b) stated that most Maximin designs are unsuitable for
integration purposes as the average of the outputs is a biased
estimator for the mean response. However, in the same article
it is also stated that maximin LHDs are suitable for integration
purposes. However, we demonstrate in Section 2.1 that even
LHDs optimized with the φp and Mm (φ∞) criteria do not cover
domains uniformly, so restricting the designs to LHDs does not
provide a remedy to the problem. The problem is related to the
boundaries of the design domain.

2.1. Statistical Nonuniformity of φpLHDs, CD2LHDs, and
support points

In this section, we first demonstrate that designs optimized
with the φp and Mm (φ∞) criterion do not cover domains
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uniformly, even when used with LHDs. We also show that
the “centered L2 discrepancy” (CD2) criterion also leads to
statistically nonuniform samples. Finally, the same behav-
ior is demonstrated for support points (Mak and Joseph
2018b).

Statistical uniformity means that the probability that the
ith experimental point will be located inside a chosen subset
of the domain must be equal to VS/VD, with VS being the
subset volume and VD the volume of the whole domain (for
hypercube domain VD = 1s = 1). For the purpose of testing
statistical uniformity, the whole unit volume of the hypercube
is divided into bins of equal volume. In the article, we directly
employ ns LH-bins, which use the regular grid of coordinates
along each dimension. In a statistically uniform design the
probability that each of these bins will be filled must be
identical. To perform a numerical test, Nrun designs (sampling
plans) have been simulated and optimized independently. After
generating the Nrun designs, the total number of sampled
points is nNrun. The average number of points inside one bin
should be f̄ = nNrun/ns = Nrun/ns−1 for a statistically uniform
design. For each bin, we now count the actual frequency of
occurrence of the points inside that bin, fa. Finally, we define
a variable f (a normalized frequency) that can be calculated for

each bin

f = fa
1
f̄

= fa
ns−1

Nrun
. (6)

A statistically uniform design criterion should yield f → 1 as
Nrun → ∞ for all of the bins.

The results of the numerical study are shown in Figure 1
for various numbers of points, n, and dimensions, s, in two-
dimensional images. The number of repetitive optimized
designs used, Nrun = 104, is high enough to reveal unwanted
patterns. The gray shading represents the f value for individual
LH bins. The first dimension (variable) is associated with the
horizontal axis, the second variable with the vertical axis,
and the third variable (if present) is expressed by repetitive
two-dimensional images (slices) produced for different values
of the third coordinate. Similarly, the fourth dimension (if
present) is shown by repetitive views of three-dimensional
plots made for different values of the fourth coordinate. The
figures clearly show the statistical nonuniformity of the point
density in the design domain for the original φ∞LHDs. In
two-dimensional space, the corners are not sampled at all,
but there is an area of highly probable points close to them
followed again by an improbable region. A similar behavior is

Figure 1. Relative frequencies f calculated for φ∞LHDs (intersite metric) using Nrun = 104 designs. Top row: s = 2 dimensions. Bottom row: slices through a hypercube
in s = 3, 4 dimensions.
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observed in three-dimensional and four-dimensional hyper-
cubes, where the corners of the domain are always sampled
poorly.

Figure 2 shows the maps (histograms) for two-dimensional
φpLHDs, where the exponents used in the optimization were
varied: p = {2,4,8,16}. Exponent p = 2 represents the Audze
and Eglājs (1977) criterion and the highest exponent behaves
in almost the same way as the Mm criterion; compare the map
with Figure 1 top middle. Figure 2 documents that the increase

in p partly improves the statistical uniformity of LHDs but strong
bias is still present even for large exponents.

The proof of a preference to remove samples from corner
regions in φpLHDs is a simple extension to the proof made by
Eliáš and Vořechovský (2016) for p = 2.

Similar behavior was detected in the case of CD2LHDs; see
the examples in Figure 3. Additionally, Figure 3 also presents the
relative frequencies for the support points recently proposed by
Mak and Joseph (2018b). The support points can be generated

Figure 2. The role of power p in standard φpLHDs (intersite metric). The relative frequencies f were calculated from Nrun = 104 designs with s = 2 variables and n = 36
points.

Figure 3. Relative frequencies f calculated for CD2LHs (top row) and for support points (bottom row) with n = {9; 36} points in s = 2 and 3 dimensions.
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Figure 4. The Euclidean intersite distance, Lij , between points i and j in a two-
dimensional domain (light gray), and the distances between point i and periodic
images of point j, which are denoted by j. The shortest (periodic) distance is Lij . The
periodic domain in two-dimensional is homeomorphic to the surface of a torus in
three-dimensional (see Figure 5 right).

using the function sp() in the R package “support” (Mak
2017). The histograms are processed using points generated
from uniform distribution, but the results obtained with another
distributions (transformed to uniform via the corresponding
cumulative distribution function) produce similar results. sup-
port points are obtained via the minimization of the energy
distance or “E-distance” between two distributions (Székely and
Rizzo 2004, 2013). The “E-distance” uses the Euclidean (inter-
site) norm between points (all the intersite distances among the
design points themselves and also their intersite distances to an
underlying set of points in the domain), which is the reason
why support points suffer from the same kind of statistical
nonuniformity as the other distance-based criteria discussed in
this section.

2.2. The Periodic Metric for Distance-Based Designs

We propose a very simple and computationally cheap rem-
edy that provides statistically uniform designs while keeping
the concept of the φp, Mm and other distance-based criteria
unchanged. The proposal concerns modification of the metric.
It is inspired by the modification of the Audze–Eglajs criterion
recently proposed by the authors in Eliáš and Vořechovský
(2016). In the present article, the idea is generalized to the
whole family of distance-based φp criteria. The remedy is based
on periodic repetition of the design domain, U, together with
the experimental points contained, D, along all directions; see
Figure 4 for an illustration for s = 2. The distance Li,j between
a pair of points i and the nearest image of point j is measured in
a periodically extended space. This is sometimes referred to as
the minimum-image convention.

In the periodic space, we now redefine the Euclidean distance
between points xi and xj, formerly Lij, to be the length of the
line segment connecting point xi with the closest image of point
xj. This is achieved by considering the shortest 1D periodic
projections along each individual coordinate, �ij,v. The new
periodic distance metric yields

d
(
xi,xj

) = Lij =
√√√√ s∑

v=1

(
�ij,v

)2, where

�ij,v = min
(
�ij,v, 1−�ij,v

)
(7)

Figure 5. Illustration of space folding and the periodic interpoint distance d. Top:
s = 1. Bottom: s = 2 (the toroidal boundary conditions are meant for illustration
only; the metric defined in Equation (7) does not measure geodetic distance on
a curved surface).

with �ij,v defined in Equation (5). One can easily show that such
a function fulfills the conditions imposed on metrics: it provides
a mapping U×U → [0,∞) which fulfills the conditions of (i)
nonnegativity, (ii) the identity of indiscernibles, (iii) symmetry,
and (iv) triangle inequality. Technically, this improvement is
very easy to implement in computer programs and the addi-
tional amount of computer time necessary to perform the com-
parison and selection of the minima is negligible.

To distinguish between the original Mm (φ∞) formulation
(Johnson, Moore, and Ylvisaker 1990) and the proposed one
based on periodic space, we call the new formulation the “peri-
odic Maximin (pMm) criterion” and denote it by φ∞(D). Simi-
larly, the proposed “periodic φp criterion” is denoted by φp(D).
The definitions read simply

φ∞(D) = φ∞
(

d;D
)

and φp(D) = φp
(

d;D
)

, (8)

where the only difference from Equations (3) and (4) is in the
metric used.

Taking only the shortest distance d(xi,xj) in Equation (8)
results in the simplification of the infinite periodic extension of
the design domain. This simplification is applied in many fields,
for example, molecular dynamics. The difference in the design
patterns when using the φp criterion and when considering
all the lengths in the periodic system (Figure 4) decreases as
the exponent p increases. The analysis performed in Eliáš and
Vořechovský (2016) for an exponent as low as p = 2 shows
only an insignificant difference. It is, however, worse for a small
number of points and a large number of dimensions, that is,
in situations where the minimum periodic distance is compa-
rable to other (longer) distances between images of the same
points. As the exponent approaches ∞ and Maximin designs are
obtained, the difference vanishes; the φ∞ criterion actually con-
siders the full periodic space. Moreover, according to a recent
article (Sadílek and Vořechovský 2018) the exponent p should
be dependent on the dimension of the problem, s: the influence
of long distances is sufficiently suppressed in favor of short
distances when the exponent exceeds the critical value, which
is the domain dimension. Therefore, p > s and we recommend
taking the exponent p = s+1.

We claim that the periodic metric, d, used in Equation (8)
provides statistically uniform designs. The histograms studied
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Figure 6. Examples of optimal LHDs with n = 36 points in s = 2 dimensions. Left:
φp criterion with intersite distance. Right: φp with periodic distance.

in Section 2.1 for the intersite metric (φp and Mm designs)
become perfectly even for the periodic metric (φp and pMm
designs). The source of statistical uniformity actually lies in the
invariance of φ∞ and φp with respect to translation. If all the
points in a periodic space are shifted by an arbitrary vector, the
periodic Euclidean distances d remain unchanged, and thus also
the values of criteria based on them are not altered. Therefore,
when generating the experimental points repetitively with an
unbiased generator, even if there is a tendency to form a pat-
tern, the pattern is always randomly shifted. Since this shift is
unbiased, there is an equal probability of a point appearing in
any location. As a result, statistical uniformity is guaranteed.

To compare LHDs optimized with respect to φp (standard
intersite) and the proposed φp (periodic distances), Figure 6
provides examples for 36 points in two dimensions. The nonuni-
formity of point coverage (visible here via the empty corners
emphasized by green circles) in the case of the standard intersite
distance (left) is remedied in the case of periodic distances
(right). The exponents p for which these designs represent opti-
mal LHDs are listed above the scatterplots. Each single design
with intersite metric will have empty corners as demonstrated
statistically in Figure 2. The periodic repetition of the design
helps with revealing the statistical (non)uniformity in the vicin-
ity of boundaries. Using this visualization technique for indi-
vidual designs also reveals empty corners for φ∞LHDs that can
be downloaded from the “space-filling designs” database by van
Dam et al. (2017).

The proposed φp-optimal designs are not only statistically
uniform, they also retain the original desirable space-filling
property of the distance-based family of criteria, which is that
the points in each individual optimized design tend to be evenly
spread over U (sample uniformity); see, for example, Figure 6
right.

Figure 7 shows individual LHDs obtained with the proposed
periodic criterion, φp, in the case of 14 points in two dimensions.
The plots on the left and in the middle show two designs selected
from the same pattern, that is, designs that feature an identical
set of periodic interpoint distances. However, the layout in the
middle is a rotated, reflected and shifted version of the left-hand
one and therefore looks like a different design when plotted
individually.

To document the role of the exponent, p, the φ∞LHD
(pMmLHD) design on the right-hand side of Figure 7 is plotted.
One can clearly see that a design minimizing φ∞ may lead
to somewhat less sample uniformity within a single layout
compared to φp as it only focuses on the extreme (minimum)
distance. The rest of the points may find various locations

Figure 7. Examples of optimal φpLHDs with 14 points in two dimensions (periodic),
with various exponents (p = ∞ implies the φ∞ criterion).

providing they spread over a distance greater than or equal
to Lmin. Indeed, all three designs in Figure 7 have exactly the
same minimum periodic distance between the closest pairs of
points: Lmin ≈ 0.2259. The vast majority of φ∞LHDs feature the
minimum distance many more times than φp with a high (yet
finite) exponent, p. This makes φ∞ designs look “more random”
or “less spread-out” than when a φp criterion is used with a finite
exponent, p (compare the degree of contrast of Figure 1 middle
top with Figure 2 right), which may not be desirable in some
applications.

2.3. Optimization of LHDs

In this section, we describe how we construct optimal or near-
optimal LHDs. The design, D, sometimes called the “sampling
plan,” is a matrix of size n × s. When combining sampling
strategies with fixed n coordinates for each separate variable (as
in the case of our LHDs with centers of n equidistant intervals),
the only way to optimize the sample with respect to a particular
criterion (correlation, Audze–Eglajs, φp, Mm, etc.) is to change
the mutual ordering of these coordinates. This is achieved via
combinatorial optimization used in conjunction with the opti-
mization criteria.

To minimize the desired criterion, one can search among all
(n!)s−1 possible mutual orderings of these fixed coordinates (or
(n!)s−1 /(s−1)! configurations if we consider designs equivalent
if they differ by a permutation of coordinates). An exhaustive
search thus quickly becomes prohibitive with respect to time
even for moderate values of n and s. We use an exchange algo-
rithm based on simulated annealing optimization (Vořechovský
and Novák 2009) to search for a good solution. The performance
of the optimization is governed by a cooling schedule, that is, a set
of parameters determining the initial and final temperature, the
number of temperature steps over time, the number of swaps
at a given temperature, etc. This “shuffling” algorithm does not
guarantee that the best possible arrangement (the minimum
of the criterion) will be found. Details regarding this heuristic
optimization algorithm can be found in Vořechovský and Novák
(2009).

Another option would be based on the “latinization” of points
that are obtained by exploiting the physical analogy between
a design and a set of free points with repulsive forces that
are derived from the potential represented by the optimiza-
tion criterion. Such a dissipative dynamical system is used in
Vořechovský, Mašek, and Eliáš (2017), Mašek and Vořechovský
(2018), and Vořechovský, Mašek, and Eliáš (2019), together with
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a formulation of the equations of motion, their computer imple-
mentation using GPU and a study of the designs’ performance
in numerical integration.

3. Uniform Designs Obtained via Direct Discrepancy
Minimization

This article focuses mainly on the performance of the proposed
designs in multidimensional integration. It is well known that
the integration accuracy of designs is closely related to their
extreme discrepancy (Niederreiter 1992). It is thus important
to compare the proposed designs not only to standard QMC
and RQMC sequences, but to also to LHDs obtained by direct
discrepancy minimization. Hickernell (1998a; 1998b) proposed
a family of generalized L2 discrepancies, and from among
them the centered L2-discrepancy (CD2) and wrap-around L2-
discrepancy (WD2) have been widely used in theoretical studies
and practical applications. From here on, we focus on CD2 and
WD2.

Perhaps the most widely used is the centered L2 discrepancy
(Hickernell 1998b)

[CD2(D)]2 =13
12

s
− 2

n

n∑
i=1

s∏
v=1

[
1+ 1

2

∣∣∣∣xi,v − 1
2

∣∣∣∣− 1
2

(
xi,v − 1

2

)2
]

+ 1
n2

n∑
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n∑
i=j

s∏
v=1

[
1+ 1

2

∣∣∣∣xi,v − 1
2

∣∣∣∣+ 1
2

∣∣∣∣xj,v − 1
2

∣∣∣∣
− 1

2
∣∣xi,v −xj,v

∣∣].
(9)

The expected values and variances of [CD2]2 for simple ran-
dom sampling and LHDs are given in Fang, Ma, and Winker
(2000). CD2 is a rotation and reflection-invariant discrepancy
(replacing coordinate xi,v by 1 − xi,v leaves the centered dis-
crepancy unchanged). Instead of anchoring the discrepancy to
the origin (as many discrepancies do), it refers to the center of
the hypercube. It is invariant under permuting variables and/or
simulations (points), and it measures projection uniformity. We
claim that finite samples optimized via CD2 discrepancy do not
enjoy the property of statistical uniformity, and we document
this behavior on frequency maps in Section 2.1.

Another of the various discrepancies, the wrap-around
L2 discrepancy (WD2 for short), proposed by Hickernell
(1998b), has nice properties. WD2 is invariant when reordering
simulations and relabeling coordinates (rotation-invariant), and
it is also reflection-invariant. It does not involve the corner
or center points, so the discrepancy is truly “unanchored.”
In the context of the present article, the important property
is that WD2 is invariant under coordinate shift. That is why
the studied WD2LHDs are statistically uniform. In this way,
it enjoys the same property as the proposed combination of
the distance-based φp criterion enhanced by the shift-invariant
metric. Hickernell (1998b) also pointed out that the wrap-
around discrepancy satisfies the Koksma–Hlawka inequality
([WD2]2 may serve as a measure of the upper bound of the
squared error of the estimator Î(g,D)), see Fang and Ma (2001).

The analytical expression of WD2 can be written as

[WD2(D)]2 =−
(

4
3

)s
+ 1

n2

n∑
i=1

n∑
j=1

s∏
v=1

[
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2

−�ij,v
(
1−�ij,v

)]
,

(10)
where �ij,v = |xi,v −xj,v| is the intersite distance projection. The
expected values and variances of [WD2]2 for simple random
sampling and LHDs are given in Fang and Ma (2001); these val-
ues can be used to provide information about the performance
of the estimator Î(g,D). WD2-optimal designs have perfectly
uniform projections on each single dimension (they are inher-
ently LHDs).

The proposed φp designs are deemed to have a high degree of
sample uniformity even though discrepancy is not directly sub-
ject to minimization; only the distance-based periodic criterion
is. Figures 6 and 7, which were obtained for φpLHDs, visually
support our conjecture that a decrease in the φp criterion also
decreases discrepancy. Figure 8 compares the actual [CD2]2 and
[WD2]2 values and also the proposed φp and φ∞ criteria for
various designs. The designs under comparison are:

• LHDs with random ordering,
• QMC and RQMC sequences,
• CD2-LHDs and WD2-LHDs, both obtained via combinatorial

optimization,
• theproposedφ∞LHDsandφpLHDs(with exponent p = s+1),

both obtained via combinatorial optimization.
• support points.

In this article, the QMC and RQMC sequences are taken from
the R package “fOptions” (Wuertz, Setz, and Chalabi 2017;
R Core Team 2013). Note that the same sequences can also
be obtained with the “randtoolbox” package in R (Dutang
and Savický 2019). For the QMC sequences we have selected
Sobol', as it exhibited the best overall performance among all
of the QMCs studied within this article. The group of RQMC
sequences is represented by scrambled Sobol' sequences; the
scrambling option is set to three in the “runif.sobol” func-
tion of the “fOptions” package (or the “sobol” function
of the “randtoolbox” package), meaning that two types of
scrambling are applied to the Sobol' sequence: Owen scrambling
(Owen 1995, 1998, 1999) and also the Faure–Tezuka (Tezuka
and Faure 2003) type of scrambling; see also Hong and Hicker-
nell (2003).

It can be seen that the best designs in each criterion are
always those that were subject to optimization with respect
to that criterion. This is untrue only for large sample sizes
when the combinatorial algorithm loses its ability to find the
global minimum, or at least a good local one. Also, in s = 10
dimensions the algorithm could not outperform φpLHDs when
searching for φ∞LHDs (see also the discussion in Section 2).
Generally, optimizing in s = 10 dimensions seems to be a hard
task for a heuristic algorithm.

The best overall performance is exhibited by the proposed
φpLHDs. They naturally have the best φp criterion values,
but they also show very low discrepancies. The opposite is
not true: QMC, RQMC, and discrepancy-optimized designs
are low-discrepancy designs but their space-filling ability
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Figure 8. Mutual comparison of various criteria values for designs optimized via various criteria in dimensions s = 2, 3, 5, and 10 (from top to bottom). In the two left
columns: discrepancies (CD2 and WD2). In the two right columns: distance-based criteria (φ∞ and φp). The scatterbands correspond to the 5th and 95th percentiles.

(measured via φp and φ∞) is quite poor. The φ∞ criterion
reveals clusters of points that are in WD2LHDs, CD2LHDs,
and QMC and RQMC sequences.

Finally, we should remark that the designs obtained with the
proposed φp criterion possess a high degree of orthogonality
(low correlations between variables).

4. Numerical Examples

In this section, we compare the integration errors for four
groups of designs: (i) CD2LHDs and WD2LHDs, (ii) QMC and
RQMC sequences, (iii) support points, and finally (iv) the pro-
posed φpLHDs and φ∞LHDs. We have purposely omitted stud-
ies featuring φpLHDs, as they were not developed for numerical
integration, provide statistically nonuniform designs and are
only rarely recommended for this purpose in the literature.
A special class of φpLHDs, namely φ2LHDs (Audze–Eglajs),
were studied in (Eliáš and Vořechovský 2016).

The error, denoted as ε(g,D), which is the absolute difference
between the exact solution and its numerical estimate, depends
on the problem at hand and is a function of a particular design,
D. We have selected three functions (products of Gaussian and
uniform variables, and an indicator function) and shall analyze
the errors in a subspace of smooth functions by exploiting
Chebyshev polynomials.

Since the designs are not unique for most of the techniques
under comparison, we consider Nrun realizations of the designs
and thus also obtain Nrun values of ε(g,D). Therefore, the error
can be treated as a random variable (we use a pseudo-random
number generator when preparing the designs) and we report
the median surrounded by a colored band between the 5th and
95th percentiles of ε(g,D) to assess the variability of the error.
In an ideal situation, the error is zero with zero variance. The
dependence of the error on the sample size is reported in double
logarithmic scale to reveal power laws.

There is only one design obtained with QMC and RQMC
sequences for a particular sample size and domain dimension.
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Figure 9. Convergence of integration errors for three simple analytical functions. The inset for s = 2 dimensions shows the evolution of the failure region boundary
(Gaussian s-ball) for sample sizes n = 16, 32, 64, 128, 256, 512, 1024, and 2048.

4.1. Determination of Failure Probability Using Gaussian
s-Ball

The first example is motivated by the estimation of the failure
probability of an engineering system. We consider a computa-
tional model that signals failure via an indicator function, If (x).
This function returns one for failure and zero otherwise. The
probability of failure is then given as pf = ∫

U If (x)dx. Monte
Carlo estimation of this integral can be obtained as an average
of the indicator function: p̂f = 1

n
∑n

i=1 If (xi). This estimator is
unbiased if all points selected from U have the same probability
of being selected.

We define the model in terms of the jointly Gaussian ran-
dom vector y with standard and independent marginals, yv.
The probability density function of vector y reads: ϕ(y) =

1
(2π)s/2 exp

(− 1
2 yTy

)
. Failure is assumed to occur when the com-

bination of input parameters is too high. In our case, it occurs
when the distance of a point y from the origin is greater than
a predefined value r, that is, r2 < ρ2 = yTy. The failure region is
therefore outside the s-ball Sr ∈R

s and the probability of failure
reads pf (r, s) = 1 − ∫

Sr
ϕ(y)dy. This integral can be simplified

using the hyper-spherical coordinate system with the radial
coordinate ρ

pf (r, s) = 1−
∫ r

0 exp
(−ρ2/2

)
ρs−1 dρ∫ ∞

0 exp
(−ρ2/2

)
ρs−1 dρ

= 1− 2(1− s
2 )



( s

2
) ∫ r

0
exp

(−ρ2/2
)
ρs−1 dρ. (11)

The Gaussian variables, yv, can be transformed into coordi-
nates, xv, in the unit hypercube via a component-wise trans-
formation involving the standard Gaussian cumulative distri-
bution function: xv = �(yv), v = 1, . . . , s. We purposely vary
the selected radius r depending on the number of integration
points, n, so that the probability of failure pf = 8.5/n (on
average only 8.5 points should fall into the failure domain).
This is a tough test which measures whether the sampling
scheme has the correct proportion of points close to the bound-
aries of U for any sample size n. The test reveals insufficient
coverage of corners by points in the cases of both CD2LHDs
and Gaussian support points as their pf estimates are severely
inaccurate.

The failure probability estimation error is defined as εf =
|p̂f (D)−pf |. The left column in Figure 9 shows the evolution of
error in various dimensions. CD2LHDs strongly deviate from pf
as they do not have statistically uniform coverage ofU (in s = 10
dimensions they often estimate p̂f = 0 and therefore the error
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is equal to pf ). The lowest average errors for this function are
obtained with the proposed φ∞LHDs and φpLHDs, and also
with WD2LHDs, that is, the techniques that have, on average,
the correct proportion of points in the corner regions. QMC
and RQMC sequences provide, on average, the same rate of
convergence, but the trend is not as smooth as with φpLHDs.
Scrambling applied to Sobol' sequences improved the accuracy
considerably.

4.2. Product of Independent Variables

In the second example, we wish to estimate the standard
deviation of a product of independent random variables. Two
alternatives are studied. In the first alternative we study variables
yv, again following the standard Gaussian joint probability
density

gG(y) =
s∏

v=1
yv =

s∏
v=1

�−1(xv) (12)

and we again use component-wise mapping: yv = �−1(xv); xv
are independent uniform variables with uniform density in U.
The exact solution σG = 1, see Eliáš and Vořechovský (2016).
The estimation reads

σ̂G(D) =
√√√√ 1

n−1

n∑
i=1

(
gG(yi)− μ̂G

)2, (13)

where μ̂G(D) = 1
n
∑n

i=1 gG(yi). The integration error is defined
as εG = |σ̂G(D) − σG|. Function gG(y) is smooth with many
symmetries and is easily integrable, but it is particularly sensitive
to the regions in the vicinity of the corners of U, where the
product of Gaussian variables tends to infinity. For example,
the placement of just one point into a corner of the hypercube
(xi,v equals either 0.5/n or 1 − 0.5/n) results in an extremely
high or low result for the estimated product. That is why the
standard and CD2LHDs (and also φpLHDs, φ∞LHDs and
Gaussian support points) provide strongly underestimated
values of σ̂G: these criteria suppress the corner regions
completely (see Section 2.1). Figure 9 middle shows again that
the lowest errors are obtained with the proposed φ∞LHDs
and φpLHDs. WD2LHDs provide comparable medians but
the variance of the estimator tends to be slightly higher. The
convergence plots of QMC and RQMC sequences are quite
serrated, but for selected sample sizes very accurate estimates are
obtained.

A question may arise about the behavior of the integration
error when the variables are simply independent standard uni-
formly distributed random variables xv. In this second alterna-
tive, variables yv become directly equal to xv, that is, without the
additional inverse Gaussian transformation. The equation for
the model, Equation (12), simply reads gU(x) = ∏s

v=1 xv. The
exact mean value μU = 2−s and the exact standard deviation
σU = √

(4s −3s)/(12s). The standard deviation is estimated as
σ̂U using Equation (13), in which the correct model gU(x) is
used and the estimation of the mean value reads μ̂U(D) =
1
n
∑n

i=1 gU(xi).
The right column in Figure 9 shows errors defined as

εU = |σ̂U(D) − σU|. In this case, CD2LHDs seem to provide

excellent results, along with support points, QMC and RQMC
sequences. QMC and RQMC sequences generally perform
well for smooth integrands (Dick, Kuo, and Sloan 2013). The
integrand employing gU(x) is not sensitive to errors in the
“corners” of domain U. Therefore, CD2LHDs also perform very
well.

Recalling our desire to achieve design robustness, we shall
drop the CD2LHDs and support points from the next numerical
example with the argument that the designs are fundamen-
tally wrong due to their statistical nonuniformity. The following
numerical study is performed only with statistically uniform
sampling techniques.

4.3. Integration of the Subspace Formed by Chebyshev
Polynomials

After employing three simple functions, we now measure the
performance of integration schemes on a class of smooth
functions using Chebyshev polynomials. Chebyshev poly-
nomials of the first kind form a sequence of functions and
when they are mapped onto our interval of interest, 〈0, 1〉,
the first two polynomials read: T0(x) = 1 and T1(x) = 2x − 1.
Higher terms can be constructed using the recurrence relation:
Tk(x) = 2T1(x)Tk−1(x) − Tk−2(x). These polynomials form
a sequence of orthogonal functions on 〈0, 1〉. Any arbitrary
function, f (x), can be written as an infinite linear combination
of Tks and also approximated by a function, g(x), that is written
as a finite sum exploiting Chebyshev polynomials as

f (x) =
∞∑

k=0
akTk(x) ≈ g(x) =

K∑
k=0

akTk(x), (14)

where K is the truncation threshold.
The extension of this concept into an s-dimensional unit

hypercube is straightforward. Our basis functions are now s-
dimensional products of unidimensional polynomials of arbi-
trary order

f (x)≈g(x)≡
K∑

k1=0

K∑
k2=0

. . .

K∑
ks=0

ak1,k1,...,ks Tk1(x1)Tk2(x2) . . .Tks(xs)

=
K∑
k

akTk(x). (15)

We keep the truncation thresholds K identical for all dimen-
sions. The last expression is a symbolic simplification of the
previous one where the indexing vector k runs over all s-
dimensional vectors with integer elements in the range 〈0,K〉.

Studying the integration of an arbitrary function, If =∫
U f (x)dx will now be limited to a subspace of functions g,

denoted as G(Rs), that can be represented by the truncated
series with a finite level K

Ig =
∫

[0,1]s

g(x)dx =
K∑
k

ak

1∫
0

1∫
0

. . .

1∫
0

Tk(x)dx1 dx2 . . . dxs.

(16)

A particular function from the subset G(Rs). is determined by
a selection of vector of coefficients ak.
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Figure 10. Integration errors for modes of Chebyshev polynomials with increasing mode number. The dimensions are (from the top): s = 2, 3, and 5. The horizontal axis
shows the maximum mode index in vector k. The medians are surrounded by the 5th and 95th percentiles.

The integral in Equation (16) is estimated using a finite
sample of points by an average using the truncated Chebyshev
polynomial representation

Îg(D) =
K∑
k

ak

(
1
n

n∑
i=1

Tk(xi)

)
. (17)

For a given vector k, the absolute error of such a numerical
integration reads

εk =
∣∣∣∣∣∣

1∫
0

1∫
0

. . .

1∫
0

Tk(x)dx1 dx2 . . . dxs − 1
n

n∑
i=1

Tk(xi)

∣∣∣∣∣∣ . (18)

The total error due to the numerical integration of a particular
function g(x) becomes a linear combination of errors for each
vector k: ε = ∑K

k akεk. The error is dependent (i) on the vector
of coefficients ak (the selection of a particular function from
G(Rs)) and, (ii) on the ability to integrate individual Chebyshev
polynomials Tk(x). Any design that integrates these functions
well can also effectively integrates any g function from G(Rs).
The exact integrals of Tk needed in Equation (18) are simply
multiplications of exact integrals of unidimensional polynomi-
als Tn. These have the analytical expression

1∫
0

Tk(x)dx =
{

0 for odd k,
1

1−k2 for even k.
(19)

The unidimensional Chebyshev polynomials Tk are wavy
functions with k roots. The number of integration points that
attempts to integrate such a function with reasonable confidence

should definitely not be lower than k. The same concept can be
applied in a multidimensional space where, assuming an orthog-
onal grid of points, there are s√n points in each dimension.
Therefore, an s-dimensional design with n points cannot be
expected to exhibit a good performance with Chebyshev terms
where k contains modes higher than � s√n. Also, the perfor-
mance of a design should not depend on the order of modes
as we would like to see the same performance for any arbitrary
permutation of k. For that reason, we will always integrate all
permutations of k and report the statistical data. Therefore,
only sorted vectors k will be used, that is, k = {1, 1, 2} actually
represents all three different permutations {1, 1, 2}, {2, 1, 1},
and {1, 2, 1}. We can also order all the sorted k that have no
items greater than � s√n in the following way: ka ≤ kb ⇔ ∀v:
ka

v ≤ kb
v .

Figure 10 shows the integration errors εk for the individual
mode vectors k. Randomly permuted LHDs (gray lines) exhibit
the highest median errors and also display the widest bands
between the 5th and 95th percentiles. The scrambled Sobol'
sequences (RQMC) exhibit excellent performance for the first
modes when the functions are simple, but as the polynomi-
als become very wavy, they show quite serrated profiles with
occasionally large 95th percentile errors. LHDs obtained by
direct WD2 discrepancy minimization seem to perform bet-
ter in two-dimensional but are outperformed by RQMC in
higher dimensions. The best overall performance is achieved
with the proposed φpLHDs: with the exception of the very
smooth functions (the first modes), they provide very robust
results (low errors with low variability). In five dimensions their
average efficiency seems to decrease. This is caused by the fact
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Figure 11. Evolution of integration error with n for different Chebyshev polynomials in various dimensions.

that for s = 5, the number of combinations of low modes is
so high that the whole spectrum shown is in a regime where
the advantage of perfectly equispaced integration points is still
not fully utilized. The number of points, n, would have to be
much higher to study higher modes in five dimensions. But
still, the φpLHDs have the lowest 95th percentiles even in five
dimensions.

Another way of looking at the results is to fix a particular vec-
tor, k, from Figure 10, and plot the evolution of the integration
error as a function of sample size, n. These results are plotted
in Figure 11 for twelve randomly selected vectors k in different
dimensions. The same lines and colors are used.

Special cases occur when all components of vector k are
identical (such as {24,24}). Due to the symmetries present,
permuting variables in the RQMC sequence provides iden-
tical error values as the permutations of coordinates are
identical.

Another special case occurs when the vectors are formed
by all zeros except for one mode (such as k = {0,0,8}). In
these cases, all of the LHDs exhibit no variance as this is essen-
tially the integration of a univariate function using an equidis-
tant grid of points, and therefore all our LHDs integrate it
identically.

The average convergence rate of uniform designs (WD2LHDs)
and RQMC seems to be about the same as the convergence
rate achieved by the proposed φpLHDs. However, for selected
vectors k, the variance obtained with φpLHDs (the band
between the 5th and 95th percentiles) seems to be somewhat
lower for φpLHDs, and also the average trend is smoother.
Finally, when the function happens to be univariate, the φpLHD
scheme fully exploits the perfect projection regularity. Due
to the certain degree of robustness they exhibit, we see the
proposed φpLHDs as being slightly superior to the other types
of design under comparison.

5. Conclusions

The Maximin (φ∞) criterion was originally designed to deliver
samples that possess a certain kind of optimality when building
a metamodel (Kriging). Later, a generalization in the form of
the φp criterion was proposed; it also covered the Audze–Eglajs
criterion. Despite the original goal concerning metamodeling,
some authors in the past were tempted to use these criteria
for other purposes, such as the generation of optimal samples
for Monte Carlo type integration, especially when restricted to
LHDs.
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• The φ∞ and φp criteria (with an intersite metric) favor
a nonuniform probability of point selection within U.
Limiting the designs to LHDs does not fix the problem.
Instead, such designs provide erroneous estimates of
integrals (with almost no variability). The integration errors
become pronounced for higher s and also for low exponents
p in the φp criterion.

• Systematically nonuniform probabilities of point selection
are also obtained when employing support points or the CD2
criterion for direct discrepancy minimization. CD2LHDs
provide erroneous estimates for integrals that are sensitive
especially to points near the corners of the design domain.
WD2 discrepancy seems to be a correct figure of merit for
direct discrepancy minimization when the target is a design
for numerical integration; it yields statistically uniform
designs with low discrepancy.

• The proposed φ∞ and φp criteria (with a periodic metric)
yield designs that are statistically uniform. Consideration of
the periodicity of the design space is a simple remedy that
comes with no additional effort—the standard and peri-
odic versions have the same computational complexity. The
proposed criteria based on a periodic metric are invariant
under translation in any direction, but they are not rotation-
invariant.

• Apart from the required statistical uniformity, the samples
obtained with the proposed φp criterion also possess excel-
lent space-fillingness.

• The simultaneous fulfillment of statistical uniformity and
sample uniformity by φp designs makes them very robust: the
integrals have stable convergence rates with a small degree
of variability for a broad range of integrands. The study
performed on Chebyshev polynomials showed that higher
modes (wavy functions) are integrated using the proposed
φpLHDs more accurately and with smaller error variance
than the other schemes under comparison.

The integration errors obtained with φpLHDs are, on
average, as good as the errors obtained with the studied
scrambled Sobol' sequences. However, the convergence of
average error to zero is smoother for φpLHDs when com-
pared to the sequences.

• φp-optimal designs have excellent discrepancy (almost as
good as that of designs optimized via discrepancy). How-
ever, WD2-optimal designs and low discrepancy (RQMC)
sequences do not reach the same level of distance-based
criteria as φp-optimal designs do.

Additionally, we would like to mention several other points.

Optimal and near-optimal LHDs. The LHDs presented in this
article are constructed using a heuristic combinatorial optimiza-
tion technique that does not guarantee that optimal designs
will be obtained. We have found that for large designs, opti-
mization finds sets with a similar objective function value, but
they correspond to a local minimum. Escaping from these easily
discovered minima in favor of the global minimum is hard. This
slightly impairs the results obtained for the proposed φpLHDs
and φ∞LHDs (in terms of integration errors and also WD2 dis-
crepancy), and also the CD2LHDs and WD2LHDs. Estimations
obtained with designs found in reasonable time provide slightly

higher errors and also higher error variance than the optimal
designs.

Applicability to non-LHDs. The numerical studies presented
in this article were performed with LHDs. However, the pro-
posed periodic distance-based criteria can equally be used to
optimize designs that are not limited to LHDs.

Applicability to other metrics. The article is limited to the
Euclidean distance measure. However, the proposed extension
to periodic space can also be applied to (nonisotropic) metrics
(such as the �1 or �∞ distance) in the very same way.

Subspaces. The proposed φp and φp criteria optimize s-
dimensional periodic distances. Restriction to LHDs addition-
ally guarantees that one-dimensional projections are perfectly
spaced. To guarantee the space-filling properties of designs in
various possible projections into subspaces of dimensions from
2 to s − 1, the criterion would have to be extended to consider
all of these projections. Such a generalization is straightforward
and can be defined in a manner similar to that used by Joseph,
Gul, and Ba (2015) or Mu and Xiong (2016, eqs. (11) and (12)).

Function prediction. Maximin designs were originally pro-
posed for Kriging-type prediction (Johnson, Moore, and
Ylvisaker 1990). This article presents periodic versions of
Maximin and general φp criteria that we propose for use in
Monte Carlo integration. The suitability of the proposed criteria
for function prediction remains an open question.

Sample size extension. Comparison with QMC and RQMC is
not completely fair as they are able to add points one-by-one
(open designs), while in the proposed φpLHDs the sample size n
is known a-priori (closed designs). However, the LHDs obtained
by direct WD2 minimization were also closed designs and there-
fore the findings obtained regarding the effect of discrepancy on
integration error can be compared to those for the φp criterion.

Designs with good space-filling properties are constructed
mainly for one-stage computer experiments; sequential sample
extension can be carried out as well (see, e.g., Kong, Ai, and
Tsui 2016). We remark that using the method proposed in
(Vořechovský 2015), existing LHDs can be extended (by sets
of points that are multiples of the current sample sizes) and
optimized via any criterion. This technique is implemented in
FReET software (Novák, Vořechovský, and Teplý 2014).

φp criterion and integration error. The relationship between
discrepancy and integration error has received considerable
attention in the literature. What remains a challenge is the
theoretical analysis of the relationship between the periodic-
distance-based criteria proposed in the article and (i) the inte-
gration error, and also (ii) the discrepancy measures.

Supplementary Materials

The supplementary materials contain Nrun = 50 realizations of the pro-
posed φpLHDs with the distance exponent p = s + 1 for samples sizes
n = {16,32,64,128,256,512,1024,2048} and dimensions s = {2,3,5,10}.
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The designs were obtained with the combinatorial optimization algorithm
by Vořechovský and Novák (2009).
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