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ARTICLE INFO ABSTRACT

A method is proposed for the construction of uniformly distributed point sets within a design domain using an
analogy to a dynamical system of interacting particles. The possibility of viewing various distance-based op-
timality criteria as formulas representing the potential energy of a system of charged particles is discussed. The
potential energy is employed in deriving the equations of motion of the particles. The particles are either at-
tracted or repelled and dissipative dynamical systems can be simulated to achieve optimal and near-optimal
arrangements of points. The design domain is set up as an Ny,,-dimensional unit hypercube, with N, being the
number of variables (factors). The number of points is equal to the number of simulations (levels). The peri-
odicity assumption of the design domain is shown to be an elegant way to obtain statistically uniform coverage of
the design domain.

The ¢, criterion, which is a generalization of the Maximin criterion, is selected in order to demonstrate its
analogy with an N-body system. This criterion guarantees that the points are spread uniformly within the design
domain. The solution to such an N-body system is presented. The obtained designs are shown to outperform the
existing optimal designs in various types of applications: multidimensional numerical integration, statistical
exploration of computer models, reliability analyses of engineering systems, and screenings or exploratory de-
signs for the global optimization/minimization of functions.
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1. Introduction

The problem of selecting “uniformly distributed points” in a rec-
tangular domain is an old one that finds applications in many fields of
science, mathematics and physics, engineering, biology, etc. [65]. The
growing demand for the replacement of physical experiments by si-
mulations based on sophisticated mathematical models consecutively
generates a strong demand for the development of point sets with
somewhat uniformly distributed points within the design domain. One
of the possible applications of these sets is the estimation of multi-
dimensional integrals using the Monte Carlo method. In such an ana-
lysis of transformations of random variables/vectors featured in sta-
tistical, sensitivity and reliability analyses of engineering systems, a set
of points which are uniformly distributed with respect to probabilities is
needed. Another application of uniformly distributed points is in the
field of the optimization [62] (maximization or minimization of func-
tions) or screenings [66] of computer models of physical experiments.
Also, uniform designs obtained using methods from the field of Design
of Experiments (DoE) for computer models are now being routinely
used to build response surfaces or meta-models (surrogate models) that
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may be capable of replacing complex computational models, which are
expensive to evaluate [37], see e.g. least squares-based polynomial
chaos (PC) expansion [5,33] or least-squares support vector regression
[73].

There are many types of design (i.e. a set of points selected from
a design domain) that can be thought of as uniform in some sense. For
example, space-filling designs [30], which can be loosely interpreted as
designs that are representative of a design region, are widely used in
computer experiments. Designs with good space-filling properties are
mainly constructed when designing one-stage computer experiments.

When seeking a design suitable for building a response surface using
Kriging [8], distance-based criteria have been found to be optimal [29]
(e.g. the Maximin criterion [29], its relaxation to the ¢, criterion [44]
and its special case, the Audze-Eglajs criterion [2], and the miniMax
criterion [29] and its relaxed variant [61]).

The objective of observing the design domain “everywhere” is
achieved by designs that minimize the “distance” between the dis-
tribution of observation sites and the uniform distribution. The notion
of discrepancy captures this intuitive objective well (see [48, Chapter 2])
and discrepancy in a way expresses the sample non-uniformity.
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Moreover, the Koksma-Hlawka inequality [32] says that decreasing the
“discrepancy measure” of a design decreases the bound on the error of
the integral estimated with a discrete sample set. Conceptually, the
discrepancy of a sample design is an appropriate norm of the difference
between the number of points per sub-volume and a uniform smearing
of points. Various versions can be considered to evaluate discrepancy;
they have received an analytical expression and can therefore be
minimized, as with e.g. Modified L, discrepancy [14], Wrap-Around L,
discrepancy [25] or Centered L, discrepancy [16,25], and other ver-
sions [74] (see also Santner et al. [65] for a review). As noted in [34],
these general measures of discrepancy are unsatisfactory as soon as the
number of dimensions exceeds a few units because they are too hard to
compute.

The search for multivariate quadrature rules of minimal size with
a specified polynomial accuracy has been the topic of many years of
research. When dealing with multidimensional integration, Quasi
Monte Carlo sequences (QMC), which are sometimes named low-dis-
crepancy sequences or digital nets, have become popular alternatives and
can be considered standard methods within this field. The use of low-
discrepancy sequences provides a cheap alternative to algorithmic dis-
crepancy minimization [48, Chapters. 3 & 4]. They have become, to-
gether with their randomized versions, the standard and benchmark for
numerical integration.

Another frequent requirement placed on designs is orthogonality.
The orthogonality of a design ensures that all specified parameters may
be estimated independently of each other (estimation of main effects)
and interactions can also be estimated in a straightforward way. There
are various design types focused on orthogonality, such as various
factorial designs in DoE, “orthogonal arrays” known from combina-
torial designs, “mutually orthogonal latin squares”, etc. Some authors
simply tend to decrease the statistical correlations among the vectors of
samples of individual variables in the design, [44,79,80,82]. Main-
taining pairwise orthogonality helps in achieving accuracy when per-
forming integration via, e.g. the Monte Carlo type of method.

In some analyses it is beneficial when the design is “non-collap-
sible”, i.e. lower-dimensional projections of the design points do not
lead to replications. Noncollapsibility is important for situations when
a design parameter (or input variable) has no influence. In such a case,
two design sites that differ only in that parameter collapse; that is, the
same design site is evaluated twice. This is clearly not desirable because
the sparsity-of-effects principle is common in almost all systems.
Sometimes, the goal of the design is to ensure that projections of the
design are evenly distributed over selected subspaces. By doing this,
one can obtain a small integration error if the chosen subset matches
the leading terms in the ANOVA functional decomposition. Experience
has shown that functions defined over many variables but with a low
“effective dimension” in ANOVA decomposition often arise in practical
applications [36,68].

Noncollapsibility can be achieved by, e.g. by restricting designs to
the class of Latin Hypercube (LH) designs [7]. LH sampling (LHS) is also
considered a variance reduction technique as it often decreases the var-
iance of the estimator in Monte Carlo integration compared to simple
random sampling.

1.1. Motivation and problem description

The ability to select uniformly distributed point sets/layouts from
a design domain that satisfy most of the above-mentioned criteria has
the potential to increase the efficiency of many engineering and sci-
entific computations, as well as to improve the quality of engineering
products and processes. In this paper, it is assumed that the domain
within which either the integration, optimization, sensitivity study or
other types of analyses are to be performed is normalized to a design
domain % = [0, 1]Nvar, i.e. a N,-dimensional unit hypercube. The task is
to select a design (a sampling plan) & C %, which is a table of Ny,
points with N, coordinates. The table consists of distinct input sites
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Z ={w, w, ..,ung,} that are uniformly distributed. The notion of
uniformity, although intuitively acceptable, does not have a single
mathematical definition. In this paper, designs are meant to be uniform
in two different ways, i.e. they should exhibit:

o statistical uniformity, meaning that any location (point) from the
design domain must have the same probability of being selected.
This is absolutely necessary for the Monte Carlo integration of
a function featuring random variables sampled from Z by inverse
transformation of the cumulative distribution function,

e sample uniformity, meaning that each single point layout is spread
uniformly throughout the design domain, i.e. the points must have
a kind of equal spacing among them. Designs that enjoy sample
uniformity are often called uniform designs, i.e. low discrepancy de-
signs [48].

The simultaneous fulfillment of statistical uniformity and sample
uniformity with maximum projection regularity (noncollapsibility) is as-
sumed to be a sufficient condition for an optimal design.

We show that sample uniformity can be effectively achieved by an
appropriate distance-based criterion, such as Maximin, miniMax, ¢, or
Audze-Eglajs. However, statistical uniformity is known to be violated
when using many standard criteria for sample optimization (either
correlation or distance-based) [12,83]. The problem arises from the
presence of the boundaries of the design domain. An elegant remedy
that removes the problem by redefining the metric featured in the
distance-based criteria has recently been suggested and shown by the
authors to be an effective solution [12,83]. The present paper will
employ this metric, which effectively makes the design domain periodic.

It was reported earlier in [21] that using a single criterion for se-
lecting experimental designs for surrogate construction may lead to
small gains in that criterion at the expense of large deteriorations in
other criteria. Constructing designs by combining multiple criteria re-
duces the risk of using a poor design. The authors believe that using the
proposed combination of a proper distance-based criterion and the as-
sumption of the periodicity of the design space leads to robust and
universal designs that perform well with respect to various other opti-
mization criteria.

The point sets, &, are obtained here by exploiting the analogy be-
tween an N-body system and a distance-based criterion of design op-
timality. A robust dynamical model capable of simulating Nj;,, points
interacting within the periodic space of arbitrary dimension Ny, is
derived and presented. After the kinetic energy of the system dissipates
due to damping, the positions of the particles in a steady-state equili-
brium are treated as experimental points (the design). The performance
of such designs is demonstrated in various contexts and applications
and is compared to other existing strategies.

2. Distance-based criteria

Geometric criteria based on distance either measure only the dis-
tances amongst the points in the design, 2, or may consider the dis-
tances to all points in the domain #. In any case, one has to define
a proper norm (metric) d(x;, x;) providing the “distance” between any
points x;, x; € %.

First, one can consider a design that aims to achieve a high spread
solely amongst its support points & € %. when seeking such a design,
one must attempt to make the smallest distance between the neigh-
boring points in # as large as possible. This is ensured by the Maximin
criterion

v (2) = H_Lind(xi, x) 1<i,j< Ngm
i#]

(€]
A design that maximizes this measure is said to be a Maximin (Mm)
distance design [29], denoted as 2. In an intuitive sense, Zy, de-
signs guarantee that no two points in the design are “too close”, and
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a) Maximin (Mm) analogy b) ¢, criterion analogy
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¢) Minimax (mM) analogy d) generalized Minimax
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Fig. 1. Illustrations of various design criteria and the analogies with N-body systems in [0, 1]% repulsive point sets (a,b) and attractive empty regions (c,d). (a)
Maximin criterion, (Eq. (1)), (b) generalization of the Maximin criterion (¢, and Audze-Eglajs criteria, Egs. (2) and (3)), (c) miniMax criterion, (Eq. (A.1)), (d)

generalization of the miniMax criterion (Eq. (A.2)).

hence that the design points are spread over . The Maximin objective
for the choice of points was first shown to be useful by Niederreiter
[45]. Johnson et al. [29] illustrated the meaning of maximizing Eq. (1)
using an analogy to the problem of spreading franchises (or the max-
imum facility dispersion problem [13]). Every franchise wishes to op-
erate over its largest possible “exclusive territory”, and therefore each
of them can be thought to be active in repelling the other points (fran-
chises), see Fig. la. The Maximin design emphasizes the non-re-
dundancy in the choice of sites within the domain 2 and prefers de-
signs suitable for Kriging as these have a sort of D- optlmahty property
under certain conditions [29,31].

The Maximin criterion can be viewed as a limiting case of a more
general criterion proposed by Morris and Mitchell [44], the ¢, criterion

1

Nﬂlm
[2 [d(x, x)] P]

i#] (2)
where p is a positive integer. For a fixed metric, d, and a power, p,
an Ngn-point design % is optimal if it minimizes the criterion in
Eq. (2). This relaxed version of the Maximin criterion considers all in-
terpoint interactions, as illustrated in Fig. 1b. The ¢, family of distance-
based criteria has become very popular for comparison and selection
between existing designs and is frequently used in research and in in-
dustry. It is also implemented in various software packages (e.g. MA-
TLAB and R).

Note that taking the power p = 2 and the Euclidean intersite dis-
tance between all pairs of points leads to the Audze-Eglajs (¢5) criterion
[2]. Roshan and Hung use the power p = 15 in [31]. Some authors
advise using powers as high as p = 50 combined with the Manhattan
distance [28,59,78]. Taking p = co renders the ¢, criterion equivalent
to the Maximin criterion, Eq. (1). According to a recent paper [40], the
power p should be dependent on the dimension of the problem, Ny,,.
A simple analysis yields that the influence of long distances is suffi-
ciently suppressed in favor of short distances when the power, p, ex-
ceeds the critical value, which is the domain dimension, N,,,. There-
fore, we recommend taking p = Ny, + 1.

Now let us consider designs that attempt to minimize the maximum
distance from all possible points in % to their closest point in 2. This is
achieved by minimizing the miniMax criterion; see the illustration
sketched in Fig. 1 c. This is another class of distance-based criteria
which was introduced in [29], and was also motivated by the need to
select an optimal design for Kriging. The miniMax criterion is described
in more detail in this paper in Appendix A, together with the possibility
of relaxing it (see Fig. 1 d) in the same manner as the Maximin was
relaxed into the ¢, criterion. Appendix A also discusses the possibility of
making an analogy between the relaxed miniMax criterion and an N-
body system of particles.

Due to the reasons described in Appendix A, the ¢, criterion has
been selected for exploitation as a template for the energy potential of
an N-body system. For the derivation presented below, the original
definition of the criterion in Eq. (2) is simplified by omitting the root ‘1/

p’, as it is a monotonous transformation that unnecessarily complicates
the derivations and slows down computations. These two simplifica-
tions do not alter the inequalities whcih arise when comparing two
designs. The redefined criterion reads (p remains a positive integer
exponent, and x;, x; € )

Nsim 1

P )

i#j 3

2.1. Periodicity of the design space

The distance-based criteria presented in [29] were motivated by
metamodeling rather than the need to select designs suitable for Monte
Carlo integration. Therefore, they are not guaranteed to be statistically
uniform. This paper uses the periodic metric proposed in [12,83] to
maintain the statistical uniformity of the designs.

First of all, we limit our attention to the Euclidean distance metric.
This metric is arguably much desired for its property of directional
independence, or isotropy. The Euclidean distance between points i
and j in Ny,-dimensional space, L;, can be expressed as a function
of their coordinates

‘ Nvar Nyar

Z(x,v X)) = \/Z(A,,v) @

where A, = Ix;, — x;,| is the difference in their positions projected
onto the axis v.

As argued in [12,83], the natural choice of intersite Euclidean dis-
tance (a distance measured within %) leads to a problem related to the
boundaries of #. To remedy this problem, a periodic extension
of the design space has been proposed [12,83]. It is obtained simply
by replacing A;; , in Eq. (4) with its periodic variant A;,. The obtained
metric, called the periodic length L;;, becomes the actual shortest linear
path between point i and the nearest image of point j [12,83], also
see Fig. 2.

( Nvar

By
Z ) -

We note that using the nearest image of point j with respect to point
i does not cover a true periodic repetition of the design domain. It only
satisfies the minimum image convention. In a complete periodic repeti-
tion, an infinite number of images of point j would interact with point i.
The presented approach is a simplification that has been shown in [12]
to yield identical results to the fully repeated system in cases when the
number of points, N, is sufficient. If not stated otherwise, we take the
periodic metric for the ¢, criterion in Eq. (3): dP(x;, x;) = fy

Eij,v = min(Aij,v, 1-— Aij,v)

3. The analogy to a physical N-body system

With the given distance-based criterion in Eq. (3) and the periodic
metric in Eq. (5), one can proceed with optimizing the design layouts.
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Fig. 2. Illustration of a periodically repeated planar domain. (a) the original two-dimensional design domain with pale-colored distances L; (Eq. (4)). (b) a peri-
odically repeated design domain with eight additional images of each particle. The periodic distances L; (Eq. (5)) are dark-colored. (c) folding of the periodic domain

into a torus.

One possible use of the ¢, criterion is for the comparison and selection
of candidate designs, e.g. in some form of combinatorial or heuristic
optimization of mutual ordering for a fixed set of coordinates [12,82].

This work proposes to interpret the distance-based ¢, criterion as
the amount of potential energy stored within all interactions of a system
of interacting (mutually repelling) particles; see Fig. 1b for an illus-
tration. This physically analogical problem is simulated using a discrete
dynamical system of mutually repelling particles. The coordinates of
the particles of the dynamical system after reaching static equilibrium
(after the minimization of potential and kinetic energy) may then be
directly understood as the coordinates of design points within the unit
hypercube.

We follow with the derivation of equations of motion of the dyna-
mical (N-body) system. The derivation is conducted using Lagrangian
mechanics. The Lagrangian £ of the system can be described as follows

L=E -E (6)

with the kinetic energy of the particle system, Ej, being a simple sum of
the kinetic energies of all particles of equal mass m

1 Nsim Nvar
Ek = 5 m Z Z )’Cfv
i=1 v=1 @
where X; , = ix,-y,, is the velocity of the ith particle in dimension v. Once

dr
damping is introduced in the system, the kinetic energy decays with

time.

Eq. (3) is considered to represent the total potential energy of the
system of Ny, interacting particles. It sums the energy contributions,
Ey, of all ( Noim
potential energies of individual pairs

) pairs of particles and thus can be rewritten as the sum of

Nsim—1  Nsim Nsim—1  Nsim 1
Bp= 2 2 E= 2 2 15=%

i=1  j=i+l i=1  j=i+1 8)

and represents the value of the ¢, criterion to be minimized.

a) Potential energy

b) Repulsive force

EY

Furthermore, it is necessary to calculate the derivatives
of Lagrangian £ with respect to all state variables: the coordinates x;,
and velocities X;, of all particles in each dimension. Obeying Lagrange’s
equations of the second kind

d ( L )_ L

de\ 0%, 0y 9)
one can start with the assumption that, apart from the derivatives with
respect to time, t, the kinetic energy Ey is further differentiable only
with respect to velocities X;,, while the potential energy E, (Eq. (8))

is differentiable only with respect to coordinates x; ,. Therefore, the
left-hand side of Eq. (9) is rather easily obtainable

d( oL d ( J0Ex "
- =7 =mXy
de\ dx;, dr\ dx;, ’ (10)

with ¥;, = %x,-,v being the acceleration of the ith particle in the dimen-
sion v.
The right-hand side of Eq. (9) becomes

5£ _ aEp _ Nﬂm( 1 Aij,v]

- - +p+l T
5 xi,v 5 xi,v LUP LU

Jj#i an

The resulting equation of motion of the ith particle in the vth di-

mension as assembled from Egs. (9)—(11) finally reads

Nsim Z Nsim

iy = — = =— i,
. p+2 ij»
m 5 Ly m 5

J#I J#FI (1 2)

The interaction of two particles i and j, together with the projections of
distances, forces and accelerations, is illustrated in Fig. 3c. The motion
of the dynamical system is therefore described by a system of in-
dependent equations. Awareness of this is of high importance while
considering the possibilities for a solution method and its computer
implementation. It means that the accelerations %;, of each particle

c) Interaction between a pair of particles

var=s Fjis

— var=r

L

Fig. 3. Interaction of a pair of particles. (a) Potential energy. (b) Repulsive force acting on particles. (¢) Components of repulsive force and acceleration.
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i =1, ..,Nyjm, in each dimension v = 1, ..., Ny, can be solved separately
without solving a system of equations. The damping of the motion of
particles also depends solely on the velocity of each particle, see below.
Furthermore, each distance projection A;;, as well as each absolute
distance L; can be computed independently. The above-mentioned
properties lead to the possibility of utilizing a parallel implementation.
The parallel computer implementation of the presented dynamical
system using a GPU has been thoroughly described in [41].

As soon as the new accelerations of each particle in each dimension
are obtained, the equations of motion are numerically integrated using
the semi-implicit Euler method and the new velocities x;, and co-
ordinates x; , of each particle in each dimension at the new time
(t + At) are computed

xi,v(t + At)=->.ci,v (t) + At'-jéi,v (t) (13)

Xip(t + A)=x;,,(t) + At-X;, (t + At) (14

Note that these are equations of motion of a conservative dynamical
system as defined by the energy potential Eq. (6), which does not cover
any form of energy dissipation. In order for a dynamical system to reach
static equilibrium, implementation of energy dissipation is desirable.
Various types of damping are typically combined. To solve the problem
at hand, we add the sum of velocity-dependent damping members to
Eq. (14): Zq g%/, (t), where ¢, are damping coefficients and q are
various powers of the velocity, x;,, of the ith particle in the vth di-
mension. The damping part is not derived from the energy potential
of the particle system but is introduced artificially.

A question may arise about the forces acting on each pair of parti-
cles. By differentiating the energy potential (E; = 1/L}, Fig. 3a) with
respect to the distance, L;, the repulsive force Fj; is obtained:
Fi(Ly) « l/fi}‘-’“; Fig. 3b. The formulation of this force as a scale-in-
dependent power law is very much desired for obtaining self-similar
point patterns. Numerically however, during the dynamical simulation
the mutual repulsive force between two very close particles tends to
infinity (or beyond the numerical range), leading to an ill-posed pro-
blem.

The remedies for such unwanted behavior for the numerical solu-
tion of an N-body system can be found in the field of astrophysics si-
mulations of collisionless bodies, see e.g. [1]. It is often proposed to use
a softening factor, A; this is a term that introduces a cross-over distance
between two power-law asymptotes: Fijﬂ) = 1/(L} + 22)®+D72, Here the
cross-over distance A is selected as A << {char, Where fq,., is the char-
acteristic length (roughly the average distance between neighboring
particles for uniformly spread points, see the definition in Eq. (15)). The
introduction of such a smooth softening causes the force to be bounded
from above by the left asymptote: F{), = 1/4+! for L; = 0 and to
converge to the right asymptote that is the original power law for
L = oo. However, the enforcement of a function other than the derived
power law 1/L7 *1is undesired as it distorts the ratio between repulsive
forces in the resulting steady state. Therefore, the resulting optimized
point patterns do not entirely obey the ¢, criterion.

The most convenient remedy here is to graft a constant function
onto the interaction law for distances below A5 (Acst < fchar)- That way,
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if the pairwise distance is greater than A g, the proposed power-law
interaction is used as is. Once the mutual distance between particles
becomes lower than Ay the repulsive force remains constant
F® =1/257". Unlike the astrophysics systems of moving bodies, the
purpose of the N-body system in this work is to find a steady-state
solution that minimizes the potential energy of the system. The
trajectory that leads to such a solution is considered to be of no interest.
For these static-equilibrium states (point patterns) one can assume that
the shortest pairwise distances within such patterns are about the
length of fear It is therefore crucial to preserve the power law
interaction at least to this threshold. To be on the safe side, let us
require Act = €har/10. Any changes in particle interaction below this
limit will not spoil the desired point patterns but will prevent the
accelerations from approaching infinity.

For the purposes of the actual numerical simulation of the dyna-
mical system, a unitary mass, m = 1, is used for all bodies. Even though
the equations of motion Eq. (12) do not contain any kind of “stiffness
coefficient”, for convenience we propose that all the repulsive forces be
divided by the number of point pairs (interactions), (sti"‘). This nor-
malization of the repulsive forces helps to tame the enumerated forces
when simulating increasingly more saturated systems, especially near
steady-state configurations. During the optimization of the point sam-
ples used in this work, the time step of the numerical integration was
set to 0.005 s.

4. Remarks on the properties of the designs obtained by the
proposed DYN scheme

The designs obtained by the proposed numerical simulation of
a dynamical system in a periodic domain have some specific properties.

« The first remark deals with the difference between the standard
intersite metric and the periodic metric proposed recently by the authors
[12,83]. This concerns not only the proposed DYN method but also
distance-based criteria in general. The standard way of measuring the
distance between two points is naturally to take the distance within the
design domain. Some authors believe that the Maximin or ¢, criterion
“spreads out its points evenly over the design region” [10,11]. We,
however, argue that designs optimized with the ¢, or Mm criterion do
not cover domains uniformly, see e.g. Fig. 4a. This nonuniformity was
also noticed by Santner et al. [65]. However, the same authors suggest
that one should “remedy this by restricting the class of available designs
to only include, say, LHDs”. We argue that using LH-sampling does not
help in the achievement of statistically uniform designs [12,83] (LH-
Mm or more generally, LH-¢, designs), i.e. the attainment of equal
probability for any location in #. Indeed, as shown [12] in the case of
the Audze-Eglajs criterion, LH designs with an intersite distance metric
have nonuniform point occurrence density in . From here on, analyses
will only be performed with the periodic metric.

« The experience with DYN designs is that they tend to form a kind
of regular arrangement with preferential orientation whenever possible.
These regular arrangements can only be formed for selected combina-
tions of point counts and domain dimensions. When the point count is

¢) DYN ¢, periodic d) DYN ¢, periodic + latin.
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Fig. 4. Illustration of the optimization process of Nsm = 24, Ny, = 2 (with part of the surrounding periodically repeated domain). The initial random arrangement is
(b). The intersite ¢, criterion leads to the design (a). The periodic ¢, criterion yields a collapsible pattern (c) which is further “latinized” (d); see below for an

explanation of the latinization process.
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a) 45 vs. 46 points b) Global minimum

Local minimum
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d) Hypercube saturation
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Fig. 5. Properties of DYN designs. (a) Difference between Ny, = 45 (gray circles) and 46 points (circles colored with a kind of “stress”) in 2D. (b) and (c) Global and
local minimum configurations for N, = 560 points in 2D. (d) Characteristic length as a function of point count in various dimensions.

high enough and only slightly exceeds the point count needed for
a perfect regular pattern, systems tend to locally “squeeze” an addi-
tional point into the otherwise regular arrangement; see Fig. 5a, where
45 points form a regular pattern whereas 46 points enforce an addi-
tional point by locally rearranging the pattern.

» The reason this kind of directional preference is observed (see
Fig. 5 a,b) is that the periodic metric depends on the directions of in-
dividual variables even though it is based on the isotropic Euclidean
metric. Indeed, the min operation in Eq. (5) is performed in each in-
dividual direction. As a result, the distance between a pair of points
depends on the orientation of the vector that connects them.

« In some cases (selected combinations of N, and Ny,,), the designs
form regular patterns that are aligned with one or more hypercube
edges, see Fig 4c. In this case the design is collapsible, which may not be
desirable. To avoid this exhibition of collapsibility by dynamically op-
timized samples, we propose that the dynamical optimization be per-
formed as described above, with the possible collapsibility being post-
processed (rectified) afterwards. A convenient approach is to perform
the latinization of samples, meaning the sorting and rearrangement of
the coordinates of sampling points in the sense of the LHS method. In
other words, each sampling point is translated along each dimension to
the center (strata median, see [82]) of the closest LHS cell with the
coordinates: ths = (m; — 0.5)/Nsim, where the integer rank u; is a per-
mutation of i = 1, 2, ..., Ngim.

The problem with collapsible samples is that if multiple points occupy
an identical coordinate, ordering these identical numbers essentially
randomizes the design. Superior results can be obtained if the sample is
slightly pre-rotated along each axis. We propose an empirical value for
this rotation of about arctg(fchar)/4 in a random direction. By performing
such a rotation about each axis, the subsequent latinization yields well
distributed LH samples, see Fig. 4d. We remark that this latinization via
post-processing may not necessarily provide the best possible LH sample
for a given ¢, criterion. However, the latinization of a DYN design is
much faster than combinatorial optimization, which operates on
predefined coordinates by “shuffling” [82].

+ A different option for the removal of perfect regularity is to in-
troduce dry friction damping into the dynamical simulation.
Alternatively, use can be made of any other source of random error/
irregularity that makes the design pattern more “organic” and yet does
not violate the uniformity too much.

+ Another issue is the (in)ability to find a perfect configuration
corresponding to the global minimum of the potential energy in do-
mains highly saturated with particles. Fig. 5b and 5c¢ show almost
identical designs with Ny, = 560 points in two dimensions. The point
arrangement in Fig. 5b represents the perfect global minimum config-
uration. The arrangement on the right represents a near-optimal layout
according to potential energy. The amount of potential energy stored in
both systems (b) and (c) is nearly identical, as is their performance in
Monte Carlo integration. However, by comparing the amount of relative
radial stress acting upon each particle it is possible to reveal in-
homogeneities that divide regions with different directional alignments.

« Essentially, the problem is similar to, e.g. the annealing and con-
trolled cooling of optical glass to ensure the uniformity of its refractive

index [39]. At the beginning of a dynamical simulation with randomly
distributed particles there is more than enough of kinetic energy to
agitate the bodies and overcome any local potential energy minimum. It
is very desirable to set the overall damping low enough to provide the
moving bodies with enough kinetic energy and time to arrange them-
selves into the optimal steady-state layout corresponding to the global
potential energy minimum. In fact, there seems to be no lower bound on
minimum damping. The lower the overall damping is set, the lower the
probability of attaining a near-optimal, inhomogeneous, design. Natu-
rally though, lower damping induces a slower dissipation of energy,
resulting in greater simulation duration. The importance of this re-
quirement, nevertheless, only becomes pronounced for very high design
domain saturations. At that point, however, the emergence of irregu-
larities does not make much of a difference to the global minimum,
relatively speaking. During the optimization of the point samples used
in this work, it was found to be sufficient to use viscous linear damping
set to 0.025 only.

« The last remark deals with the average density of points in the unit
hypercube, . We quantify the saturation of the design domain by the
characteristic length

1
Opar =~
char Nva:\/ Nsim (1 5)

The physical meaning of £.,,, is the average distance between neigh-
boring points when they are uniformly spread over . Eq. (15) can be
illustrated well using a regular orthogonal grid with Ny, = N™ar, where
N is the number of equispaced 1D projections of the grid and
Cehar = 1/N. Uniformly distributed designs in various dimensions
achieve a similar saturation when {,,, is similar. It becomes increas-
ingly harder to achieve the required £, as the dimension, N, in-
creases because the space to fill becomes too large. Fig. 5d shows how
the characteristic length decreases with an increasing number of points
for various dimensions.

5. Numerical examples

In this section, the performance of designs obtained with the pro-
posed dynamical algorithm (DYN) is critically assessed and compared
to other existing sampling schemes. Several contexts are selected to
report the performance of the designs: estimation of the global extreme
of a function over %, estimation of an integral of a function (estimation
of the average), estimation of the standard deviation of a function of
a random vector, and estimation of the failure probability of a truss
using a combination with Importance Sampling (IS). The competing
reference approaches are crude Monte Carlo (MC), Quasi Monte Carlo
(QMC) sequences, randomized Quasi Monte Carlo (RQMC) sequences
and Latin Hypercube Sampling (LHS) with randomly ordered samples.

The problems are analyzed in various dimensions, Ny, and the
study is always performed for a series of different sample sizes, Ngim.
Since the designs are not unique (apart from QMC), the target esti-
mated values are viewed as random variables. As such, the results are
always obtained by running the problem N,,, times and reporting the
estimated results via their averages (ave) and sample standard
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deviations (ssd). This treatment enables the variance of the estimators
to be reported; it is preferred that this variance be minimized in prac-
tice. Plots of performance have the target parameter as ordinate and the
sample size, N, as abscissa.

Before presenting the results, a brief review of the techniques under
comparison is presented.

Quasi Monte Carlo sequences, which are sometimes named low-
discrepancy sequences or digital nets, have been developed for multi-
dimensional integration. Examples of these are the sequences by Halton
[23] (generalizations of the one-dimensional van der Corput sequence),
Sobol' [70,71], Niederreiter [46,47,49], Faure [17] and the general-
ization of the Faure sequence by Tezuka [76], and others. QMC
methods are called “number-theoretic methods” [14,15] by some au-
thors (e.g. “good lattice points”, etc.). QMC sequences have become
famous for their ability to decrease the variance of estimation of in-
tegrals in comparison with crude Monte Carlo integration, as well as to
increase the speed of convergence of the integral estimate [34,57]. The
central theorem of the classical part of the theory of uniform distribu-
tion, in connection with the Riemann integral criterion, is Weyl’s cri-
terion [84]. It is strongly connected to the notion of discrepancy. The
use of low-discrepancy sequences forms a cheap alternative to algo-
rithmic discrepancy minimization [48, Chapters. 3 & 4].

QMC methods may be thought of as derandomized Monte Carlo
samples. It has become apparent that QMC can be re-randomized
(RQMC) in order to obtain sample-based error estimates. Various re-
randomization methods have been developed (e.g. random shift modulo
one [9], scrambling by Owen [56], and others). These randomizations
are also known to have better projection properties then some digital
nets (e.g. Sobol) to the first few dimensions [34], see below. Surveys of
RQMC appear in [34,57].

Another method selected for comparison is Latin Hypercube sam-
pling. LHS is especially suitable for evaluating the expectation of func-
tions in computer experiments. LHS can be viewed as a stratified
sampling method as it operates by subdividing the sample space into
smaller regions and then sampling within these regions. This procedure
creates samples that more effectively fill the sample space. When the
analyzed transformation has suitable properties, the variance of the
LHS-based estimators is drastically reduced compared to simple
random sampling (LHS is a variance reduction technique). Indeed, LHS
has repeatedly been reported to provide a smaller asymptotic variance
for the sample mean compared with simple random sampling. Several
authors have focused on the characterization of sampling efficiency for
LHS. LHS have been found to be efficient especially in the statistical
analysis of functions of variables that are additive, have low interac-
tions and are monotonous transformations of individual variables
[43,54,68,72]. LHS has become very popular and has been applied to
nearly every type of probabilistic analysis: see, e.g. its application to the
estimation failure probability [50,53], coefficient estimation for poly-
nomial chaos [4], neural networks [51], and other types of surrogate
models [19,20]. The popularity of LHS has led to the invention of
numerous variants intended to improve space-filling
[3,6,12,18,29,31,44], optimize its projective properties [26,38], mini-
mize least square error and maximize entropy [58], and reduce spur-
ious correlations [6,27,55,75,80,82]. There are even variants providing
various ways to extend the sample size [64,69,77,81].

5.1. Extremes and averages of a moving mean — comparison with QMC and
RaQMC

In this numerical example a function is selected and defined over %.
The target is to estimate the extreme of this function and also the
integral over this function (an operation related to averaging). The
maximum over the design domain, E, is estimated as E using a single
design & € 7. Similarly, the exact value of the integral, I, is estimated
using the average, 7 , evaluated using a single design 2 € #
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The following testing function has been selected for the evaluation of
the performance of the designs in Ny, ~dimensional space

2 Nar (% 2
fe) = eXp[—(d(x’ c)) } = exp[-z (i) ]

Cehar v=1 Cehar (18)
where d(x, c) is the periodic distance between a point x € % and the
function “center”, ¢ € #. This periodic distance follows the definition
in Eq. (5), ie. the squared periodic distance reads
d*(x, ¢) = Z:fg (Aye)?, where the periodic projections of distance be-
tween x and c¢ are computed using the actual projections,
Axey = 1%, — ¢yl @8 Ayep = min(Ayy, 1 — Ayey). This function may be
usable as the autocorrelation function of a random field: in its present
form it is the squared exponential autocorrelation function, separable
(multiplicative) and isotropic, with {.,,, being the autocorrelation
length. The function (a smooth bell-shaped or “Gaussian” function) is
depicted in Fig. 6 bottom right. The length scale has been deliberately
selected so that it is dependent on the sample size. One may think of its
discretization by x € # as a crude and economical approximation of
the function. Any defect in the design (either a cluster of points or an
empty region) may cause the estimation to deteriorate.

The center of the bell-shaped function, c, is shifted randomly in all
possible directions. Thanks to the periodic distance, the part of the
function that “overlaps” the domain appears from the other side. In this
way, both the exact peak value and the integral remain constant in-
dependently of the random shift. The exact peak value of the function is
attained at the center ¢ and equals one. The exact value of the integral
can also be solved analytically

E=1 (19)
1 1 1 1 Nyar x 1/2 2] Nvar
I= - |2 dx
[l 2 ()] T
_1, \/_ f 1 Nyar
B char VAT EE (zgchar) (20)

where erf(-) is the error function related to the Gaussian cumulative
distribution function.

The numerical example features integration, a classical task for
which QMC and RQMC have been developed. The sequences, just as
with various improvements to MC such as stratification in LHS, are
designed to improve the accuracy of integration to favorable functions
while doing no harm for unfavorable ones. QMC methods are generally
assumed to be the most efficient integration tool for smooth functions
and are thought of as being the gold standard for numerical integration.
However, as pointed out e.g. in [34], QMC methods are successful due
to their clever choice of point sets in order to exploit the features of the
functions that are likely to be encountered (such as various symme-
tries). They cover the main effects, diagonals, etc. We claim that such
a “tuned” search must come at a price: the sequences may lose their
efficiency if the function does not possess simple symmetries, etc. To
test their robustness when integrating real-life functions, we evaluate
the integral for Ny locations of the center, c, arranged in a dense regular
orthogonal grid in an attempt to exhaust all possible mutual shifts. The
relative positions of the design points with respect to f() change and
therefore the (otherwise deterministic) results obtained with QMC can
be processed as random variables.

To assess the performance of each single design in estimating either
the integral I or the maximum E, the absolute difference between the
exact solution and its estimation is divided by the exact solution
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Fig. 6. Approximation of a bell-shaped function for N, = 102. Top row left: Error in approximation of the integral, e(I). Bottom row left: Error in approximation of
the maximum, €(E). Top right: depiction of the “moving” function in two dimensions. Bottom right: illustration of the testing function in one dimension.
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e(E) = 5

and

e(I) =

(21)

In particular, the errors e(E) and also e(I) in Eq. (21) are reported via
their averages, ‘ave’, and sample standard deviations, ‘ssd’. These
statistics are computed using Ny, X Ny realizations of an error (note
that in the case of QMC and RQMC sequences there is just one run:
Nun = 1.

The ave values are connected by a solid line in Fig. 7 and in Fig. 8
and plotted as functions of the sample size. Additionally, they are
surrounded by a scatterband of =+ one ssd in order to assess the
variance of the estimation. Fig. 7 displays the ave and ssd of the ab-
solute error value: |e(I)| for the error in integration. In an ideal situa-
tion, both errors in Eq. (21) are equal to zero, with no scatter. Varia-
tions in error result from either having a different shift or a different run
(sample set).

The graphs in Figs. 7 and 8 show that crude MC provides sample
sets that produce large errors and also exhibit large variance. The pic-
ture is similar for any of the four dimensions of the design domain.
Limiting the point sets to the LHS class improves the performance by
both decreasing the ave error and decreasing the variance. The QMC

(Sobol') sequences and also the RQMC (scrambled Sobol’) sequences
deliver a major improvement, as expected. These sequences, albeit re-
peatable (deterministic), still produce scatter due to the various shifts of
the center ¢ with respect to the point set. Note that keeping the center of
the symmetrical testing function in the center of # would help QMC
methods to show themselves in a better light, but the present example
aims at testing the robustness of the designs. Finally, the results obtained
with the proposed DYN samples greatly outperform those from all other
techniques. The point sets are very robust, meaning that that the error
has a small scatter and the ave error remains very small for any sample
size.

To visually support the claim of robustness, we have selected one of
many sample sizes for which the DYN technique delivers a perfect
pattern that can be built from a small tile: Ny, = 102 for Ny, = 2, see
Fig. 6. The point sets are visualized by empty circles. The pattern re-
sembles a “lattice point set”. The three figures on the left show the
dependence of both studied errors on the location of the center of the
testing function (a kind of “influence line” similar to that known from
structural analysis). The color at a certain location simply corresponds
to the error when the function is centered at that location. One can see
how much the QMC error is sensitive to the shifts while the DYN
samples are insensitive. The DYN method forms a pattern that always

Nyar =2 Nyar =3 Nyar = 4 Nyar =35
T
E=mc 0.5
—LHs '
QMC Sobol'
RQMC Scr. Sobol' 0.4
== DYN ¢, Periodic
= 0.3
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Fig. 7. Estimation error of the integral, e(I), of the testing function from Eq. (18) plotted as a function of sample size Ngn,. The solid lines represent the ave estimation

and are surrounded by a band of =

@

ssd. The vertical line at N,,; = 2 and Ny, = 102 indicates the designs studied in Fig. 6.
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delivers e(I) error which is orders of magnitude smaller than that pro-
duced by QMC and also RQMC. The reason is the simultaneous statis-
tical uniformity and sample uniformity of the DYN design.

We shall now comment on the ability to estimate the extreme of
a function, which is measured via error e(E), see Fig. 8. MC designs
have ave errors starting for Ny, = 1 at the level marked by empty
squares. These errors correspond to the random placement of a single
point within a hypercube domain, or the use of a regular orthogonal
grid as a point pattern (see Appendix B for the derivation for pattern
“#7”). As the sample size increases, the average errors of the MC
samples increase towards an asymptotic result. The same asymptote
also holds for errors obtained with LHS designs. QMC and RQMC de-
signs show better performance and the errors seem to be independent of
domain saturation. Finally, DYN designs have ave and ssd values
which are smaller compared to those of the other designs. The DYN
designs also have ave and ssd values which are constant functions
independent of domain saturation. This tells us that the designs form
self-similar patterns that can be characterized by a smaller number of
points (a small tile that effectively repeats throughout the domain). The
statistics for the error obtained with MC and LHS show a trend and
stabilize only after reaching a high degree of saturation. Theoretically,
the best possible pattern corresponds to centers of regular polyhedral
tessellation # (the points form a regular simplex grid), and the errors
corresponding to it are marked by empty diamonds. Derivations are
presented in Appendix B.

5.2. Sum of exponentials of normal variables — comparison with LHS

In this numerical example the ability to estimate the standard de-
viation of g(X) — a deterministic function of a random vector, X, is as-
sessed. The standard deviation is estimated using Ng;,, points by a point

estimator — the classical sample standard deviation, i.e. the square root of
the average squared deviation from the mean value. The results of the
proposed DYN designs are compared to QMC and RQMC sequences,
and additionally to LHS.

The selected problem has been featured in [81] and also in [12] for
evaluating the performance of LHS samples optimized by combinatorial
optimization via the Audze-Eglajs criterion in a periodic design domain
(periodic Audze-Eglajs — PAE). The random vector is taken as a Gaus-
sian random vector with Ny, independent standardized marginals:
X, ~ N(0, 1). The marginal random variables can therefore be obtained
by component-wise inverse transformation of the cumulative distribu-
tion function (CDF), x, = ®'(u,) = 2 erf"'(2u, — 1), where u, are
coordinates of the points in % (sampling probabilities) and erf is the
error function. The studied example considers the function gey,(X)

Nyar

Gexp®) = D exp(—x))
i ugl 22)

The exact mean value reads Hexp = var/~/3 [81]. Since the function
gexp(X) represents a sum of independent marginals, any LHS sample
estimates the average with zero variance (the mutual ordering of LH-
coordinates becomes irrelevant). We focus on the estimation of stan-
dard deviation

Gexp = /Nvar V% - % ~ 0.337461/Nyar 23)
The convergence of this estimate is evaluated for sample sizes
Niim = (1,...,4096) in two and five dimensions. The results are presented
in Fig. 9. Again, we plot the ave and ssd obtained using Ny, = 400
runs — realizations of the design (note that N, = 1 in the case of the
QMC and RQMC sequences). All sampling techniques eventually tend

Nsim
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Fig. 9. Estimated standard deviation as a function of sample size (and characteristic length). Left: Two dimensions. Right: Five dimensions.
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to an exact solution. MC has the highest variance (notice the wide
scatterband around the average estimation). Restricting the designs to
LHS does not improve the results much. The proposed DYN samples
seem to provide a major improvement compared to the other sampling
schemes: they provide unbiased results for very small sample sizes and
yet their variance is very small. The reason for the absence of bias is
that the samples are statistically uniform, and the small scatter can be
attributed to the sample uniformity of the point sets. Additionally, the
results obtained with QMC sequences (namely the Halton and Sobol'
sequences) are presented. They have no scatter as there is always only
one realization for a given Ngm,. The zigzag profile of the estimation
nicely demonstrates how the sequences consecutively fill various parts
of the design domain. The comparable range for the behavior of DYN
samples in various dimensions begins at around &, = 0.6, which seems
to be the critical particle saturation for the dynamical system to as-
semble meaningful patterns. We remark that the DYN results are
comparable to the results obtained with LHS optimized via the PAE
criterion using combinatorial optimization [12]. This is because both
DYN and LHS-PAE use the same kind of distance-based criterion.
However, it is much more computationally demanding to use combi-
natorial optimization than it is to solve the N-body dynamics. Finally,
we remark that the results for latinized DYN samples are comparable to
those obtained with LHS, and thus an LH-type design can be obtained
relatively easily by postprocessing a DYN design.

5.3. Failure probability of a truss using a combination with IS

In this numerical example, the target is to estimate the failure
probability of a truss structure (numerical model) using Importance
Sampling (IS). The aim is to show whether there are differences in
performance when the IS density, centered at the design point, is re-
presented by various sampling schemes: DYN, LHS and MC.

The engineering application example is taken from [5,33,35], where
it served as one of the benchmark problems for comparison of methods
for estimating structural reliability. The setup of the numerical ex-
periment is illustrated in Fig. 10.

The input random vector of the model, X, consists of five random
variables: the properties of the horizontal members (Young’s modulus
E}, and cross-section area Ay), the properties of the diagonal members
(Young’s modulus E4 and cross-section area Aq4), and the magnitude of
the loading forces P in the top joints. The properties of the input
random variables are summarized in Table 1. Since the input random
variables are independent, their distribution functions form a multi-
variate uniform distribution defined in % = [0, 1]™ar. Therefore, from
now on we shall denote the variables of the real (physical) space by
X ={X;, ...Xn,,} and the corresponding probabilities by U € %, where
U ={U, ..,Uy,}. Transformation between U and X is particularly
simple as it is a set of component-wise transformations U, = F,(X,). The
realizations and arguments of functions are denoted by lower-case
letters.

The target is to estimate the failure probability of a truss structure.
Failure is defined as an event when the midspan deflection exceeds
a given threshold of 0.11 m.

The deflection can be computed using the method of virtual work
(unit load method). This method results in a simple expression for the
mid-span deflection, w(X)

P

VP

vP P yP yP

4m { 4m 77
—Ep An—FEq4Aq

Fig. 10. Truss structure constructed from two types of beams of properties Ej,
Aj, (top and bottom horizontal bars) and properties Eq, A4 (diagonals).
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Table 1
Five random variables featured in the truss example.
Variable Distribution Mean CoV
Ep, Eq4 Log-normal 210 GPa 0.10
An Log-normal 2000 mm? 0.10
Aq Log-normal 1000 mm? 0.10
P Gumbel-Max 50 kN 0.15
W) P( 552 50.9117) P( 552 50911
=Pl ——+ ——]| = —t —
AnEn  AdEqg Fn Aq 24)

The second expression features only three random variables instead of
the five basic variables defined above. The dimensional reduction is
made possible by the fact that the couples of variables E and A are
always featured together in a product: one can replace both products by
defining another variable, Z. The operation is particularly simple here
as the products feature two independent variables. The mean value and
standard deviation of a product of two independent variables can be
easily calculated from the mean values, y, and standard deviations, g, of
the two variables [22]

He = pape. 0= W20k + ok + okod 5
The mean value of £}, equals 420 MN and the mean value of £, equals
210 MN. The coefficients of variation are identical for both these
variables: 0.141 77. The product of two lognormal variables is again
a lognormal variable. Using this reduction the problem of a five-di-
mensional input vector boils down to an entirely equivalent problem
that has only three input random variables: the magnitude of forces, P,
and two normal cross-sectional stiffnesses, &y, and Z£g.

We define the limit state function by exploiting the function defined
in Eq. (24) as

gX) =011 - w(X) (26)
The failure probability is then defined as the probability
pr = P[g(X) <0]. This translates into the following integral:

Dy = ‘/://I [g(X) < 0]fx (x)dx, where I[ -] is the indicator function which
equals 1 if [-] is true, and zero otherwise. The indicator function ef-
fectively limits the integration domain to combinations of input vari-
ables that lead to failure. Each failure event is weighted by the joint
probability density function of the input random vector, fx(x). Due to
the independence of input random variables, the joint density is the

product of the marginal probability density functions:
fx(x) = Hf:‘lr f,(x,). Using the crude MC method, the failure prob-

ability integral is estimated by an average that incorporates the number
of failure events, Nf, out of all N;,,, simulations

Nsim
s 3 Z\]f
> Ilgkx) < 0] = N

i=1 sim

~ pMC _
Pe =Py Nsim 27)
The Ngn, realizations x; must be sampled proportionally to fx(x). The
realizations of individual variables can be selected completely in-
dependently, taking the marginal densities into account. The individual
realizations of sampling probabilities in the unit hypercube are illu-
strated using blue crosses in Fig. 11 left. These samples are further
transformed by inverse distribution functions to the real space where
the limit state function is evaluated. Eq. (27) was used to estimate p¢
using five million MC simulations and the result of prC = 0.0404 was
taken as the exact solution.

The difficulty of using MC sampling lies in the fact that the limit
state function must be evaluated too many times. When the model is
computationally intensive and the failure probability is low, different
methods must be used. One possibility is to use the FORM method,
which solves the problem in Gaussian space, ¢. The input random
variables and the limit state function can be transformed into ¢, where
one can then identify the so-called design point, g*, which is the point on
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¢) Colored IS sample in U-space (3D)

Up
x
x

1 Uz, 0

Fig. 11. The process of the transformation of optimized samples (blue crosses) using the sampling density of the IS method to achieve sampling points centered at
the design point (highlighted). The color scale of the failure surface corresponds to the Gaussian density in ¢ space. Depiction of samples: (a) The design point u* and
the failure surface in % (2D projection only). (b) The design point g* and the failure surface in % (2D projection only). (¢) The design point u* and the failure surface
in 7 in 3D. The red color of the IS points signals failure, while the yellow color signals proximity to the failure surface. (For interpretation of the references to colour

in this figure legend, the reader is referred to the web version of this article.)

Table 2

Coordinates of the design point of the truss example in three spaces: x*, u* and g*. Left: original five-dimensional space. Right: reduced three-dimensional space.
Var. Physical space % space & space a sens. Var. Phys. space % space & space a sens.
Ey 195.3 GPa 0.2488 — 0.6783 — 0.3811 Ay 363 213 kN 0.1687 — 0.9592 — 0.5389
Ay 1 860 mm? 0.2488 — 0.6783 —0.3811
Eq4 206.6 GPa 0.4555 - 0.1117 — 0.0628 Ay 203 336 kN 0.4372 — 0.1580 — 0.0888
Ad 984 mm?® 0.4555 - 01117 - 0.0628
P 62.14 kN 0.9320 1.4910 0.8377 P 62.141 kN 0.9320 1.4910 0.8377

the failure surface g(X) = 0 with the highest probability in ¢ space (it
is the nearest point to the origin in #). One can simply perform the
linearization of the transformed limit state function in g*, i.e. the ap-
proximation of the actual boundary between the failure set and the safe
set by a tangent hyperplane (see the straight line in the 2D projection in
Fig. 11b). The estimation of p¢ is then made simple via the identification
of the distance of g* from the origin in ¢. This distance is denoted  and
is called the Hasofer-Lind [24] safety index. Using the g* coordinates,
gX, in Gaussian space listed in Table 2, the safety index reads

y:‘l‘ (g*)? =1.7799. With the safety index at hand, the co-
ordinates of g* can also be obtained by multiplying B with the direc-
tional cosines, i.e. the a sensitivities, see Table 2. By exploiting the
rotational symmetry of ¢, the failure probability can be approximated
using the univariate Gaussian cumulative distribution function as
prO™ = ®(—p) = 0.0375, a value that is approximately 7% less than
the exact solution. The reason for the underestimation is the dis-
crepancy between the approximating hyperplane and the actual failure
surface; see the projection in Fig. 11b. The analysis was performed
using FReET probabilistic software [52].

In this paper, the coordinates of the most probable failure point are
used as the center of the sampling density in Importance Sampling (IS).
Instead of sampling the points from the original density, fx(x), as per-
formed in Eq. (27), IS selects the samples x; from the sampling density,
fx ), in order to increase the “hit-rate”. The sampling density, defined
in Gaussian space, is represented by Ny, points selected by each of the
compared sampling methods. The estimation of failure probability then
re-weights the contribution from the “failing” samples using the ratio of
the original density to the sampling density

1 fx(xi)
~ Ig(x) <0
P Nom § g < ]f,? ) (28)

Since the process is performed in Gaussian space, both densities are
computed there simply using the products of univariate Gaussian den-
sities N(0, 1) and N/ (gv*, 1). In other words, the sampling density also
has unit dispersion and therefore the difference between the densities

11

lies only in the shifting of the sampling density center from the origin
(corresponding to the mean values of the physical variables) to the
design point; see the solid red circles Fig. 11 b. The position of the
design point in the unit hypercube is visible in Fig. 11, together with
DYN samples from the hypercube and those transformed via the shifted
sampling density. If the sampling density center is shifted to the design
point, we expect roughly half of the points to fall into the failure do-
main.

Indeed, the failure surface, which forms the boundary between the
safe and failure regions, contains all points that fulfill the condition
w = 0.11. Fig. 11 a and b show this boundary in a 2D projection and
Fig. 11c shows the failure surface for the reduced 3D problem in the #
space. The color of the surface corresponds to the probability
Hf}\’:’ #(g,), where ¢ is the standard univariate Gaussian density func-
tion. This density has its peak at the design point, u*. The figure also
shows the importance sample set, colored red in the case of failure,
green in the case of a safe structure and yellow when close to the failure
surface.

We shall now compare the performance of various sampling
schemes in estimating the failure probability using IS around the design
point. In particular, the target is defined so as to compare the sample
size needed to estimate p; within + 10% around the exact value. The
probability of failure has been analyzed using Eq. (28) in the full five
dimensional space and also in the reduced three-dimensional space,
using various sample sizes in both cases (and for each Ng;,, the analysis
has been repeated N, = 400 times to obtain variance in the estima-
tions). Only the points falling into the failure region are used. However,
distributing them well, i.e. proportionally with respect to the sampling
density, may help in improving the accuracy of the estimator in Eq. (28)
based on the failing points.

The results are plotted in Fig. 12. By bringing the sampling patterns
closer to the region of failure, the samples with optimized uniformity
tend to regain their advantage in comparison with estimation using
plain MC or LHS samples. Indeed, the graphs show that MC needs the
highest number of simulations to produce an estimation lying within
the 10% margin of error (N, = 223 and 580, respectively). Employing



M. Vorechovsky, et al.

Advances in Engineering Software 137 (2019) 102709

== DYN ¢, Periodic

Aghn
.10*25102 220 580 103 3-10°
I }
1 |
1 I
45 oel Tl _____
I
I
! ! = McC
L 4 | | F——LHS
: 1
35
3
0.4 0.35 0.3 0.25 0.2
echar

"0.4 0.3 0.2 0.1
echar

Fig. 12. Convergence of the truss p¢ estimation using IS for various sampling methods. Left: the original 5D problem. Right: The reduced 3D problem. Sample sizes

needed to estimate p; within the 10% error margin are highlighted.

LHS stratification along individual dimensions of the Gaussian sam-
pling density helps in reducing in the number of model evaluations, but
not much. The proposed DYN samples need approximately one third of
that amount of model evaluations to deliver acceptable results (see the
marks at Ny, = 82 and 220, respectively). We attribute this variance
reduction to the higher degree of uniformity achieved for DYN samples.

One can notice that the estimations in five-dimensional space have
a greater variance than those for the three dimensional model. This is
a property of IS; the difference in variance between the 5D to 3D de-
finition was noticed when any sampling method was employed in IS
(MC, LHS and DYN).

The authors also have tested the behavior of the methods for much
smaller failure probabilities (10~5). The comparisons look similar and so
do the conclusions: employing DYN sampling in IS around the mean
values improves accuracy by decreasing the estimator variance.

6. Conclusions

The paper presents a methodology for the construction of uniformly
distributed point sets in a hypercubic design domain. The methodology
exploits the analogy between a distance-based criterion for the point set
and a system of repulsive particles. By simulating the dynamical evo-
lution of a damped particle (N-body) system, a near-optimal or even
optimal distributions of the particles within the domain is obtained.
These final configurations can be readily used as points representing the
DYN design. By solving the interaction between pairs of particles in
a periodically repeated design domain, statistically uniform designs are
obtained. The distance-based criterion guarantees good sample uni-
formity, i.e. a uniform spread of points in each single design.

One can also use the family of distance-based criteria for design
preparation based on combinatorial optimization techniques [12,82].
However, the proposed dynamical simulation provides a much faster
solution to the point arrangements: all the points move in the optimal
direction in each time step. Moreover, the derived equations of motion
can be efficiently solved by using massive parallelization [41]. The
derivation of the equations of motion can be used as a template for

similar systems with different potentials.

The authors conject that the decrease in the value of a distance-
based criterion that occurs when using a proper metric automatically
leads to simultaneous increase of both sample and statistical uniformity
of the design. Additionally, it leads to excellent space-fillingness and
a decrease in discrepancy, and naturally guarantees a high degree of
orthogonality. Projective properties have been found to be excellent, i.e.
apart from specific combinations of sample sizes and domain dimen-
sions, the designs are not collapsible. If a design of the LHS type is
desired, stratification can be easily achieved by post-processing (lati-
nizing) the DYN sample.

The performance of the designs has been compared to that of other
existing designs in various contexts: the estimation of extremes, and the
integration and statistical estimation of higher order moments of a func-
tion of random variables. Also, an example of increased efficiency when
the designs are employed for importance sampling is reported. In all
these contexts, the designs perform very well on average: there is no
bias and they also exhibit low variance. The designs were found to be
superior to Latin Hypercube designs and also more robust than several
commonly used Quasi Monte Carlo sequences. The designs can be re-
commended as they provide good support points for initial screening
designs or the construction of a surrogate model to replace a computa-
tionally intensive model.

The sample size can be easily extended, if needed, by preserving the
already evaluated points and adding new points in locations with
minimal “energy”. Evaluation of the local energy provides a hint on
positions that can be used to extend the sample size while maintaining
uniformity (basically the centers of the largest empty hyperspheres in
the periodic design domain). The energy distribution can also be
modified to exploit the knowledge about the variation of the function
that has been obtained so far, see e.g. [67].
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Appendix A. The miniMax criterion, its relaxation and analogy to an N-body system

We shall now return to distance-based designs and introduce another class of designs, as well as the possibility of defining the analogy to a system
of particles. The Maximin distance criterion (maximization of the minimum distance) and its relaxation into the “repulsive” ¢, criterion has been

described in Section 2.

Let us now consider designs that attempt to minimize the radius of the largest empty N,,-dimensional hypersphere circumscribed to Ny, +1
design points. By ‘empty’ it is meant that the hypersphere does not contain any point from £. The maximum radius is the value of the miniMax

criterion

¢ (Z) = maxmind (x, x;) Xi€EY, XEU
XEU X

(A1)

A design that minimizes this measure is said to be a miniMax (mM) distance design [29], denoted as %, (note that a more appropriate name would

12
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be miniMaximin). The miniMax design can be illustrated as a solution to the problem of the placement of a store: the maximum distance between any
customer (a point x € %) and their nearest store (a point x; € 2) should be minimized. One can imagine it as if the center of the largest empty Ny,
dimensional hypersphere attracts the design points (stores), see Fig. 1c.

The evaluation of the maximum radius in Eq. (A.1) can be performed via the construction of a Voronoi diagram in order to localize the center of
the largest empty hypersphere. Alternatively, one can approximate it by finding the center within a set of candidate points [42,60]. Regardless of the
solution method used, such an evaluation requires heavy computational effort when higher dimensions are involved.

The same type of relaxation that has been applied to the Mm criterion can also be applied to the mM criterion [61,63]. First, the distance from
a point x to the nearest design point (min,,d(x, x;)) is replaced by a distance from a point x to the whole design consisting of Ny, points:
¢ = (2, ld(x, x;)~9])~/4 with q > 0. This distance measures how well the design & covers the point x. Considering all points in % leads to an
integral that can be approximated by the average of a finite number N, of candidate points (e.g. a fine grid) x®, ...,x®

Nsim -p/q
(D) = 1 [ [ 2, d, x»"] dx

4 i

1/p

1 X [ Neim -p/q )1/
~ AN > [ > d(xo'),x,-)q]
g j=1 i (A.2)

with p, ¢ > 0. We remark that the evaluation of Eq. (A.2) can become rather cumbersome.

Both of the extreme distance-based criteria introduced in [29], namely the Maximin and miniMax criteria, were motivated by the need to select
an optimal design for Kriging. We argue that they can also be used to select statistically uniform designs, e.g. by employing the periodic metric. This
allows them to be used for designs suitable for Monte Carlo integration.

The question still remains as to which class of criterion is more suitable for exploiting the physical analogy proposed in this paper. While with the
Maximin criterion one can think of an equivalent to the problem of packing N;,, hard spheres, the miniMax criterion evokes an attempt to cover the
design domain # with N, balls of minimum radius. Both criteria probably yield a very similar, if not identical, point pattern. There are known
relationships existing between the Maximin and miniMax criteria, and also bounds on their optimal values, as explained in [60].

We shall now advocate our preference for the relaxed versions of potentials over the extremal potentials (Mm and mM) originally introduced in
[29]. In the case of the raw miniMax and Maximin criteria, repulsive or attractive forces are supposed to act upon the pair of closest points or
(Nyar + 1) most distant points, respectively. In this case the definition of the energy potential is not known in advance and changes abruptly during
the simulation with a dependence on mutual distances. Moreover, due to the absolutely uncompromising goal of the maximization or minimization
of selected distances, the forces applied to the bodies tend to infinity. This renders the raw Maximin or miniMax criteria quite unsuitable as templates
for the potential energy of a dynamical system. For such “binary” energy potentials, a more convenient type of simulation can be found in a quasi-
dynamic marching simulation that discretizes the translation of bodies rather than time. In such a simulation, the momenta and velocities of bodies
shall be omitted in order to obey the “on-off” nature of these criteria.

On the other hand, the relaxed variants, i.e. the relaxed generalized miniMax and especially the ¢, criterion, do exhibit desirable properties in
this regard. These criteria consider (i) all bodies to be affected by repelling/attracting forces and more importantly (although both are unrestricted
power laws) (ii) propose better-posed formulations of potential energy than their raw counterparts.

While the ¢, criterion has an analogy to mutually repelling bodies, the relaxed mM criterion is analogical to bodies attracted by the points in the
design domain, see Fig. 1. The major advantage of the ¢, energy potential, however, lies in the origin of the repulsive forces acting upon a finite
number of bodies. Unlike the attracting forces of the relaxed miniMax potential that are generated by the continuous volume of the entire design
domain, the ¢,-forces that mutually repel pairs of particles are generated by the “charged” particles themselves. Due to this, the actual formulations
of ¢, and the relaxed mM energy potentials differ significantly. A ¢,-repulsive force acting upon a particle is the sum of (Nsm — 1) discrete con-
tributions from all other repelling bodies. The mM-attractive forces, quite inconveniently, are integrated over the continuous volume of the design
domain itself. Considering the above, the ¢, criterion does seem to be the most convenient option. It produces an energy potential that inherently
provides a finite number (N, - Nyar) of equations of motion, each of which contains a finite number of Ny, — 1 known contributions. That is why
that criterion was selected for the derivation in the present paper.

Appendix B. Error e(E) for regular orthogonal and regular simplex grids

We now derive the average error in estimating the peak of the testing function in Eq. (18) in an N,,, dimensional periodic domain when the
design used for estimation forms two simple regular grids: a regular orthogonal grid and a regular simplex grid. Let us remember that the length scale
parameter in the testing function has been selected so that it depends on the average density of points (in point processes the intensity) via {cpar-

In order to calculate the mean error and also its standard deviation when sliding the center of the testing function over the regular point pattern,
one can reduce the problem of calculating these characteristics over a domain that belongs to one individual sampling point. A region belonging to
that point must be taken so that the points are closer to this point than to any other point in the pattern.

B1. Regular orthogonal grid

In the case of arrangement into a regular orthogonal grid, the region .#" nearest to a single point is simply a hypercube of edge length a = €y,
(the point spacing along each dimension is £ch,,), see Fig. B.13a. The mean value of error e(E), is denoted as u,,, and the standard deviation is denoted
oy . Their computation involves the integration of f raised to integer powers and weighted by a uniform density, and the integration domain is ..
With no loss in generality, we consider the characteristic length a = €4, = 1. Therefore, the volume of the integration region is: V,, = V7 = 1. Two
integrals are needed

1/2 1/2

) 1 NVﬂr
m = [ ff(x)dx=[ﬁ~erf(5)]

—1/2 -1/2 (B.1)
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Fig. B.13. Two-dimensional illustration of two regular point arrangements and the corresponding integration domains. (a) Regular orthogonal grid. (b) Regular
triangular grid.

Table B.3

Errors e(E) for two models of regular grids. Standard deviations must be multiplied by 1072
Nyar Orthogonal grid Simplex grid

12%% ar Hp o7

1 0.077 38 6.710 98 0.077 38 6.710 98
2 0.148 88 8.767 39 0.144 41 8.011 58
3 0.214 78 9.919 41 0.197 94 8.212 09
4 0.275 59 10.58 10 0.240 78 8.000 34
5 0.331 69 10.92 83 0.275 61 7.634 71

— Nyar
mz(ﬂ') — ffZ(x) dx = l: | erf(ﬁ):l
P V2 2 (B.2)
With these solutions at hand, the mean value and variance of the error e(E) read
m 2 mVz — mlz
=1- gy = ——
1% v, A V2 (B.3)

The umerical solutions are summarized in Table B.3. The mean values are marked by an empty square and the u,, + g, are marked by the error bars
around the squares in Fig. 8. It can be seen that this arrangement of points is not the most efficient one and that the DYN designs are able to identify
the extremes of f() more accurately; see the green lines.

B2. Regular simplex grid

We consider one of the best possible uniform arrangements of points with a given density to be a kind of “hypertriangular grid”: the design points
form regular simplexes. The regions around each point (centroids of the simplexes) are regular polyhedra, #, sketched as 2D honeycombs in
Fig. B.13b. The generalization of such a grid to a higher dimension is trivial. Unfortunately, this grid is not periodic.

Due to the regularity of the domain #, the integration can be limited to a typical fragment .#, see Fig. B.13b. This fragment is repeated
Nyar! [ (Nyar + 1)!] times within Z.

The volume of the fragment can easily be calculated with the help of a regular simplex, herein denoted as region .#. This regular simplex is
obtained by enclosing the nearest Ny, + 1 points with hyperplanes. The regular simplex takes the form of a triangle, tetrahedron, 5-cell, etc. This
simplex has also the region .# as its fragment, now repeated (Ny,r + 1)! times inside of it. By denoting the side of the simplex by a, which is the
smallest distance between points, the volumes of the regular simplex, the polyhedron around a point and its typical fragment for integration, read

1 [Ny+1
\%Z a, N, = anar_ ‘JL
,/’( var) Nvar! \) 2Nvar (B4)
Vyp = Ny !V (B.5)
Vs= Y
(Nyar + 1)! (B.6)

Once the volume of the polyhedron belonging to a point is known, one can calculate the characteristic (scaling) length for Eq. (18). It is the Ny, th
root of the volume associated with a point

“‘(Nvar + I)I/NVM
£ =Maly, =q, |2 2
char 4 \/ 2 (B.7)

All that remains is to perform integrals analogical to Eq. (B.1), weighted uniformly (divided by the fragment volume). The first two moments of the
function read:

X1 X2
% NE kyxy—1 Nyar
P
ml()=f f f f f(x)de,,
x1=0 x2=0 x3=0 Xp=0 v=1 (BS)
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m{” = [ f2(x) dx
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(B.9)

in both of which the domain of integration, .#, is identical: the first bound for x; is a constant, a/2, which is the middle distance to the nearest point,
see Fig. B.13a. All the remaining upper bounds are linear functions enclosing the fragment: k,x,_; = {/(v — 1)/(v + 1) x,_;. The integrals involve
error functions and are not obtainable in analytical form. Again, the first two raw moments can be used in Eq. (B.3), together with V, to obtain the
mean value, 1, and standard deviation, g, of the errors; see Table B.3.

We remark that these solutions cannot be obtained by any periodic design, i.e. the error of real designs must always be greater. Lattices

obtainable in practice usually resemble the regular simplex grid, but these are always somehow “stretched”, which results in greater errors. Indeed,
Fig. 8 shows that DYN solutions, which often form perfect lattices, have slightly greater errors than the theoretically derived limits here, which are

marked by empty diamonds with error-bars corresponding to u, + g,.
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