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A B S T R A C T

This paper concerns an algorithm for fast parallel approximation of selected attributes of hyper-dimensional
Voronoï cells in a unit hypercube. The presented algorithm does not require the construction of a corresponding
Voronoï diagram (usually by employing the Quick Hull algorithm) which typically is a highly computationally
demanding task, especially when performed in higher dimensions. The algorithm is suitable for both the clipped
and periodic variants of Voronoï tessellation and provides a significant speedup in a convenient range of
practical usage. For the purposes of approximation of selected scalar properties of Voronoï cells, only the dis-
tances of points in sample are evaluated using an adequately fine underlying orthogonal mesh. The algorithm
estimates e.g. the volumes and centroids of Voronoï cells, radii and coordinates of centers of the corresponding
Delaunay hyper-circles. The paper also provides quite accurate explicit error estimators for the extracted at-
tributes due to rasterization and thus the user is given a control over the accuracy by selecting an appropriate
discretization density. Among numerous fields in which Voronoï diagrams are being utilized, the authors are
concerned with optimization of point samples for the Design of Experiments and also with weighting of in-
tegration points in Monte Carlo type integration. In these applications, selected scalar topological descriptors of
Voronoï diagrams are being repeatedly computed. As the full Voronoï diagram is not of interest but the resulting
cell volumes or shape descriptions have to be repeatedly computed, the presented parallel solution seems highly
suitable for these applications.

1. Introduction

The Voronoï diagram has become a classical construct of compu-
tational geometry, see [2,67]. Consider a domain of a general integer
dimension, D, containing Ns points (“seeds”, “sites” or “generators”).
The task of the Voronoï tessellation is to divide the given space into

= …i N1, , s convex polyhedrons of dimension D that encompass regions
where all points are closer to ith point than to any other of Ns generating
points. A Voronoï tessellation emerges by uniform radial growth from
seeds outwards.

Applications of Voronoï diagrams can be found in numerous fields
of research and industry (for example biology [42], Thiessen polygons
in hydrology [12,59], chemistry, astrophysics, fluid dynamics [62],
computational physics [35], epidemiology [34], medical diagnosis
[57], engineering, geometry [70], informatics [46], etc.) The geometric
sense of Voronoï diagrams is used for solving tasks like searching for the
nearest neighbor, the largest empty circle or estimating the roundness
of an object. Technical applications include e.g. construction of meshes
in bordered or periodically repeated domains, see [73] and [72].

This paper is motivated by applications of Voronoï tesselation in the
field of Design of Experiments. There, the design domain (usually

transformed into a convex unit hypercube [0, 1]D) is being filled by a
set of Ns distinct points (a “sample” or “design”). The selection of op-
timal sampling points from a unit hypercube is an old problem that
finds many applications in science and industry
[5,11,18,19,21,24,25,29,36,40,43,50]. A Voronoï diagram can be used
for evaluation of uniformity of a point sample and possibly for further
optimization of the point layout, see [33,52,53]. Additionally, it has
been also proposed to use the volume of each cell in the Voronoï dia-
gram as the weight of the corresponding integration point as used in the
weighted numerical integration of Monte Carlo type [68,69]. There is a
large potential in these applications to utilize an accelerated extraction
of selected scalar descriptors of Voronoï diagrams.

The construction of the exact Voronoï diagram is a computationally
demanding task. In the worst cases, the solution complexity approaches

N( s
2), see e.g. the QuickHull algorithm [4]. Moreover, the computa-

tional time and the storage demands grow exponentially with the di-
mension of the design domain, D. On top of these computations, the
eventual enumeration of volumes of all D-dimensional cells, see [10],
has to be executed.

For many applications, the exact geometrical description of Voronoï
cells is not needed; only selected attributes of the regions are of interest.
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The authors of [48] proposed to solve the largest empty sphere problem
(a byproduct of Voronoï tessellation) in the multidimensional space by
using a popular stochastic search approach, evolutionary algorithm
(EA). They followed the path presented in [39]. In the present paper, a
different approach to approximation is selected. The presented con-
tribution proposes a fast parallelized implementation of approximation
of volumes of the Voronoï cells without the need of constructing the
Voronoï diagram itself. This approach turns out to be useful in cases
where the actual shape of the diagram is not of interest but its certain
scalar properties have to be repeatedly computed for optimization
purposes.

The presented contribution proposes to conduct a rasterization of
the hyper-dimensional design space using an underlying mesh of nodes.
Because a mesh of equal and independent nodes is highly suitable for
a kind of massively parallel execution, the Nvidia CUDA [51] platform
is utilized for implementation of the solution.

2. Discretization approach

The essence of the solution method is based on division of the entire
design space into evenly distributed sub-regions. Further used is the
division using a regular orthogonal grid of cells. The side of a single cell
of such a hyper-dimensional orthogonal grid is considered as 1/ng,
where ng is number of grid cells along each axis of the hypercubical
domain. The total number of grid cells Ng is then simply =N n( )D

g g .
Cells of a regular orthogonal grid exhibit advantageous properties of

equal hyper-volumes and center of gravity located in the middle of each
cell. Such a grid of equal cells is a convenient option in conjunction
with parallel execution. The center of gravity of each grid cell is further
considered to be a grid node within a regular orthogonal grid used in the

approximation process, see e.g. [56]. All of Ng created nodes are de-
fined with their spatial coordinates.

From now on, we follow the definition of the Voronoï diagram
combined with Euclidean metric. Position of each node uj can be
compared with position of each site x(i) from the Ns input sites of the
Voronoï diagram. Their mutual Euclidean distance d(x(i), uj) is com-
puted as follows:

=
=

x u x ud ( , ) [ ( , )] ,i
j

v

D

v
i

j
( )

1

( ) 2

(1)

where Δv(x(i), uj) is the projection of the mutual distance between the
site x(i) and the grid node (center of the “pixel”) uj along axis v:

=x u x u( , ) .v
i

j v
i

j v
( ) ( )

, (2)

The particular node uj is deemed to belong to the Voronoï cell C(i)

associated with its corresponding site x(i) iff this is the closest of all sites
in the sample. The following condition is then met:

= u x u x uC k i d d{ IR | : ( , ) ( , )}.i D i
j

k
j

( ) ( ) ( ) (3)

Note that the square root operation in Eq. (1) can be omitted to save
computational time as it does not influence the result of distance
comparison. By conducting such a comparison of distances between
each of Ng grid nodes with each of Ns Voronoï sites, an array of Ng

integers is obtained, containing indexes of the closest site to each grid
node. Such a grid of nodes, if sufficiently dense, may approximate the
analytic description of the desired scalar properties of the Voronoï
diagram.

Fig. 1illustrates the results of approximation of a Voronoï diagram
of a Latin Hypercube (LH) point sample containing =N 16s sites. The
first three diagrams from the left show an approximated tessellation in a
bordered domain. This is sometimes called the clipped tessellation and it
is achieved by mirroring the sites with respect to all boundaries of the
design domain. The boundary Voronoï cells are then being bordered by
the boundaries of the domain.

Another option is the periodic tessellation: while comparing distances
between the grid nodes and Voronoï sites, it is easily possible to switch
to periodic boundary conditions, if desired. Then, the shortest distance

x ud ( , )i
j

( ) within the periodically repeated domain is measured, using
the minimum image convention:

=
=

x u x ud ( , ) [ ( , )] ,i
j
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where x u( , )v
i

j
( ) is the projection of the distance between grid node uj

and the closest of periodically repeated images of site x(i) along axis v:

=x u x u x u( , ) min[ ( , ), 1 ( , )].v
i

j v
i

j v
i

j
( ) ( ) ( ) (5)

The approximated Voronoï diagram using periodic boundary con-
ditions is illustrated in the rightmost plot in Fig. 1.

Nomenclature

• Generating points/sites (point sample): a set of points
that are an input for construction of its corresponding
Voronoï diagram,

• Voronoï diagram: a set of identified Voronoï regions/
cells belonging to each generating points,

• Voronoï region/cell: a continuous region that en-
capsulates all points within the design domain that,
according to a specific distance metric, are closer to the
corresponding generating point than to any other of
generating points,

• Grid cells/pixels: a square-shaped elements that are
utilized for discretization of Voronoï regions,

• Grid node: the centroid of a grid cell that is used for
comparison of the distance between generating points
and each grid cell,

• Tiles: chunks of data that are processed by blocks of
threads on GPU in parallel.

Fig. 1. The convergence of a rasterized Voronoï diagram towards an exact solution.
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3. Attributes extracted from the rasterized Voronoï diagram

As soon as the index of the closest site is obtained for each of the
grid nodes, it is possible to extract certain desired attributes of such a
rasterized Voronoï diagram. For purposes of the use case of sample
optimization employed by the authors, attributes discussed below are
approximated.

3.1. Cell volumes

The volumes of Voronoï cells are the most convenient scalar prop-
erty that can be extracted from the rasterized diagram. These are of
interest for many use cases. For example in weighted Monte Carlo in-
tegration [3,71], it has been proposed recently [68,69] to use volumes of
Voronoï cells as weights of individual integration points. Also, it is
known that equal (“uniform”) volumes of Voronoï cells may help in
selecting sites (integration points) for each cell in order to obtain
“uniformly” distributed sites in a domain.

The actual approximated volume V(i) of each Voronoï cell C(i) is then
a result of a simple summation of known volumes vj of all respective
sub-regions deemed to belong to each cell C(i). Moreover, since the grid
cell volumes are equal, =v n(1/ ) ,D

g the actual computation shrinks
merely to a sum of grid cell volumes of all N(i) grid cells belonging
to the Voronoï cell C(i):

= =
=

V V v N
n

^ .i i

j

N i

D
( ) ( )

1

( )

g

i( )

(6)

The error introduced by such an approximation is estimated in
Section 4.1.

3.2. Cell centroids

Another desired characteristic of a Voronoï diagram are the co-
ordinates of centroids, or centers of gravity, of all Voronoï cells. There
are many applications in which cell centroids are needed, e.g. in
Centroidal Voronoï tessellation (CVT) [20]. CVT finds applications in
optimal mesh generation, optimal quadrature, optimal quantization,
clustering and also in data compression. Also, many patterns seen in
nature are closely approximated by a CVT (cells of the cornea or the
breeding pits of the male tilapia). Along the lines of optimal sampling, it
has been proposed in [55] to employ CVT as a sampling method: in the
iterative Lloyd’s algorithm, the centroids of individual cells are used as
new sites for the next Voronoï tessellation. The iterations are halted
when the positions of sites and the respective cell centroids coincide. In
this application, repeated identification of Voronoï cells and computa-
tion of their centroids is necessary.

Coordinates of the centers of gravity of Voronoï cells,
=cg { ,cg , },i

v
i( ) ( ) = …v D1, , , can be rather efficiently approximated.

Because all grid cells are of equal volume (weight), in a bordered do-
main (clipped tessellation), the coordinate in the vth dimension of a

center of gravity of the ith Voronoï cell Vi is simply estimated by the
average of coordinates of nodes belonging to the cell Vi:

=
=N

ucg cĝ 1 .v
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In the case of periodically repeated design domain, such plain
averaging is not possible. However, the desired centroid coordinates
can be still computed by a one-pass algorithm. The approximated co-
ordinates of Voronoï cell centroids need to respect the periodic
boundary conditions. This is ensured by evaluating provisional (current)
centroid coordinates after each of N(i) steps of averaging.

If there are N(i) grid cells belonging to the ith Voronoï cell, the
computation of the coordinate of the centroid of the ith Voronoï cell in
dimension v has to be conducted sequentially in N(i) steps in each of
which, one has to check whether there is a closer periodic distance
between the current approximated Voronoï cell centroid and the par-
ticular grid node. The (j)th step (1< j≤N(i)) of averaging must be
conducted as follows.

First, a decision must be made about possible update of the position
of the newly considered (current, (j)th) grid node uj v

i
,

( ) depending on its
relative position to the provisional centroid of all preceding j( 1)
nodes, i.e. jcg ( 1)v

i( ) :

+ < + =

< =

u j u

u j u
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(8)

Simply, if the newly considered node is far from the provisional cen-
troid, a peridic image that is closer ( ± 1) is considered instead. Then,
the current centroid coordinate jcg ( )v

i( ) in dimension v is obtained using
the following recurrence formula for average:

= +j
u j

j
jcg ( )

cg ( 1)
cg ( 1).v

i j v
i

v
i

v
i( ) ,

( ) ( )
( )

(9)

After the last step of such an averaging, it is needed to check
whether the resulting centroid coordinates appear within the original
design domain or their periodically repeated image has been obtained.
If so, such a coordinate is simply translated back into the design domain
by either adding of subtracting 1.

3.3. Center and radius of the largest delaunay hyper-circle

The search for the largest empty hyper-circle within a set of sites is a
classical task of computational geometry [1,14,16,17,22,32,45,65]. Its
position (coordinates of center) and radius are in applications used for
description of the emptiest region within a point sample. Particularly,
the miniMax optimization criterion in the field of Designs of Experi-
ments, see e.g. [33,52,53], utilizes the largest empty hyper-circle to
unveil the group of +D 1 points that shall be brought closer to each
other (towards the center of the circle), see Fig. 2 left.

A typical approach to obtain the position and radius of the largest

Fig. 2. Approximation of the center of the largest empty Delaunay circle and its radius.
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empty hyper-circle is by executing either the construction of Voronoï
diagram or the Delaunay triangulation that is its dual graph. Another
possibility is to find the largest from all +( )N

D 1
s empty hyper-circles

determined by any unique group of +D 1 sites.
For approximation of the largest of empty Delaunay circles be-

longing to each site, see Fig. 2 center, the algorithm analyses the dis-
tances between the site and its respective nodes. Based on the knowl-
edge of indices of nodes that form each Voronoï cell, their respective
coordinates are generated and mutual distances to the cell centroid are
compared. The furthermost node of all is then considered to be an
approximated center of the largest empty Delaunay circle and the dis-
tance between the centroid and the furthermost node to be its radius, as
shown in Fig. 2 right. For each generating point i, the radius is com-
puted as the most distant grid cell centroid:

= x ur d^ max ( , ).i

j N
i

j
i

max
( )

1
( ) ( )

i( ) (10)

In the periodic version, metric d is replaced by d . The grid cell that
maximizes this radius is the approximated vertex, u ,i

max
( ) see Fig. 2 right

for illustration. The value of the miniMax criterion, ϕmM, is then ap-
proximated by the largest radius of all Ns estimated radii:

rmax ^ .
i N

i
mM 1

max
( )

s (11)

The errors in these distance approximations are discussed in
Section 4.2.

4. Analysis of approximation errors

The proposed approximation of Voronoï tessellation by “raster-
ization” or “pixelization” of the domain introduces errors in the ap-
proximated properties. It is important to know the loss of information
and accuracy inherent in the grid, and its relationship to the grid cell
size. The grid cells form hypercubes of edge length =a n1/ g and their
volume is = =v a n1/D D

g . The maximum distance within a single grid
cell (sometimes referred to as the “pixel”) is its spatial diagonal:

= =l a D D
n

.d
g (12)

4.1. Errors in cell volumes

The error in the ith cell volume is defined as:

= = …V V i N^ 1, , ,V
i i( ) ( )

s (13)

where V(i) is the exact cell volume obtained using the QuickHull algo-
rithm (either clipped or periodic Voronoï tessellation) and V̂

i( )
is the

approximated solution obtained with a certain rasterization using
Eq. (6).

The problem of error in estimation of the area of 2D regions using
the dot-grid method (point-counting method) is known from the vector-
to-raster conversion of maps and it has received an attention mainly in
the70′s and80′s, [6,7,12,13,15,23,27,28,38,41,49,60,61]. In all these
publications, it was shown that the rasterization error in 2D is pro-
portional to the cell size, a, and therefore is inversely proportional to
the number of cells per edge, ng. Various approaches were employed to
estimate the influence of rasterization method, size of raster cell and
map complexity on this error. However, the solutions are limited only
to rasterization of 2D maps. The error in estimation of a volume of
a convex polyhedron by point counting in a fine orthogonal grid in
a general dimension, D, is somewhat more complicated. The proposed
derivation follows.

The volume of ith Voronoï cell is estimated as a sum of grid cells
that “occupy” the Voronoï region, see Eq. (6). The centroid rule is ap-
plied, i.e. “occupied by” is interpreted such that the cell is counted if its

centroid falls within the region. The estimated volume then involves
both (i) points belonging to grid cells (pixels) that are entirely inside the
Voronoï cell and, (ii) points that represent cells intersected by the exact
Voronoï boundary. The error in cell volume is affected only by the
boundary pixels. There are two possibilities: either the grid cell is
counted as a whole but part of it lies outside the Voronoï cell (it con-
tributes to overestimation of the volume) or, the grid cell is not counted
even though a part of it lies inside the Voronoï cell (it contributes to
underestimation). In the following, we disregard the rare cases where
the vertex connecting two or more boundaries of a Voronoï cell is inside
the grid cell (pixel). If one passes a random boundary through a grid cell
(e.g. a random line through a small square), then the average mis-
classified volume is zero. The maximum absolute error (overestimated
volume or underestimated volume) by a single grid cell j equals half of
its volume, i.e.

= =v
n2
1

2
.Db,max

g (14)

For a single grid cell, the distribution is generally a bimodal distribution
symmetrical with respect to zero and ranging between ± b,max . In the
present analysis, though, this distribution of volume error in a single
grid cell is not sufficient to capture the behavior of a cut through an
orthogonal grid of cells. The real Voronoï cell boundary is straight and
crosses many grid cells under the same angle. Therefore the error con-
tribution coming from a single boundary, b, is composed of many de-
pendent contributions from individual grid cells (pixels).

Indeed, it is plausible to assume that each Voronoï cell (a poly-
hedron) is bounded by a finite number, Nb, of boundary hyper-planes
(lines in 2D, planes in 3D, etc.). We also assume that these Nb bound-
aries are about the same extent (length, area, etc.), meaning that the
polyhedra are relatively regular geometrical objects resembling circles,
spheres, hyperspheres etc. Assume also that the number of pixels
crossing all the identical Nb boundaries is known, denoted as nb, see
Fig. 3. Then assume that each boundary crosses roughly the same
number of grid cells: nb/Nb. We now assume that each boundary is
sufficiently large (a long line in 2D, plane in 3D, etc.) to achieve
asymptotic properties. The error from such a single boundary is de-
pendent on the angle between the boundary and the grid. In the worst
possible situation, the boundary is aligned with the grid (see boundary
No. 1 in Fig. 3) and the error is proportional to the length of a
boundary. Then the error of a single boundary of a single Voronoï cell is
just a multiple of the error arising by such a single grid cell:

Fig. 3. Illustration of the volume error contributors for a 2D Voronoï cell with
=N 5b boundaries, = + + + + =n (10 5 10 10 8) 43b boundary grid cells.
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n
N

· ,b

b
b (15)

where ϵb is a random variable with an asymptotically uniform distribu-
tion varying between b,max and + b,max (see Eq. 14). The mean value
of ϵb equals zero and the standard deviation equals:

= =
n3

1 3
6

.Dmax
b,max

g (16)

If, however, the boundary is not aligned with the grid edge, the error
can also become zero, see boundary No. 4 in Fig. 3 where the same
amount of volume erroneously taken as the interior is balanced by the
rasterization in the cells that are considered outside the Voronoï cell
boundary. We assume that, in an average situation, the standard de-
viation is one half of the extreme standard deviation σmax, i.e:

= =
n

3
6

1 3
12

.Dave b,max
g (17)

One could argue that the error should rather be described as a sum of
contributions from individual cells. However, the fact that the
boundary is “straight” (a line, plane,...) gradually modifies the prob-
ability density of ϵb from a symmetrical bimodal distribution into uni-
form distribution for large enough boundaries because the contribu-
tions become highly dependent.

The total error in volume of a single Voronoï cell can be calculated
as:

=
=

n
N

· ,V

N

b 1

b

b
b

b

(18)

i.e. the error composes of Nb contributions weighted by boundary
“lengths” (nb/Nb is the number of boundary pixels per single boundary).
Taking the boundary “lengths” as equal for a Voronoï cell allows to
write:

= =
=

n
N

n V· 1 · .V
N

V

b
b b 1 b b b

b

b (19)

In this formula, averaging over Nb random variables is performed. We
can assume these variables to be independent as the real Voronoï cell
samples well all possible orientations of the boundary with respect to
the approximating grid. The result of this averaging is a random vari-
able Vb with the mean value and standard deviation given by:

=µ 0,b (20)

= =
N n N

3
·12·

.Db
ave

b g b (21)

The probability density of variable Vb is a generalized Bates distribution
varying between ± b,max . With an increasing number of Voronoï cell
boundaries, Nb, the variance decreases proportionally to 1/Nb and the
density gradually changes from uniform (for a single boundary)
through triangular (two boundaries) to a bell-shaped distribution (ul-
timately Gaussian for infinite Nb).

We remark that in the worst possible situation of a Voronoï cell
having all boundaries aligned with a grid (a rectangle, hypercube, etc.),
and such a cell being randomly shifted with respect to the grid, the
standard deviation σb in Eq. (21) is doubled, i.e. one must plug in σmax

from Eq. (16) instead of σave from Eq. (17).
The number of boundaries of a single Voronoï cell, Nb, is, for

random positions of the generators, also a random variable. The reason
is that Voronoï tessellation may fill the space with various types of
convex polyhedra. The boundaries in 2D tessellations are formed by
“edges”, in 3D by “faces”, in 4D by “cells”, etc. The average count of
these boundary objects for Voronoï tessellation with randomly dis-
tributed generating points (Poisson point process) have been, along
with statistical distributions of other attributes, extensively studied by

many authors [2,8,9,26,30,31,37,44,47,54,58,63,64]. Based on these
studies, we take the average number of edges of polygons in 2D as

=N 6,b and the number of faces in 3D as = +N 48 /35 2 15.5b
2 (this

comes out from the Euler–PoincarÃ©characteristic stating that the
number of vertices plus faces minus edges equals two). The average
number of “cells” for 4-polytopes from Voronoï tessellation of random
point set is not known. There are known regular convex 4-polytopes that
have their numbers of “cells” varying between 5 (5-cell, pentachoron or
pentatope), to 8, 16, 24, 120 or even 600 “cells” (hexacosichoron or
tetraplex). We have made our own analysis of the average number of
boundaries per Voronoï region in QuickHull and we confirm the above
results for 2D and 3D domains. In 4D, we have found Nb ≈ 39 and, in
5D Nb ≈ 86. Linear regression suggests +N D N D( ) ( 1)·2.3 1.7b b .

The last step in the evaluation of the error is the determination of
the number of grid cells, nb, that intersect the Nb boundaries of a typical
Voronoï cell, C(i). The key is that the extent of a boundary can be es-
timated as a function of the total Voronoï cell volume. For simplicity,
we approximate the convex polyhedra by D-dimensional hyper-spheres
(balls) of radius R. It is known that topologically, a D-simplex is
equivalent to a D-ball – it is an D-dimensional manifold with corners.
The simplification helps to estimate the ratio between the D-dimen-
sional volume and D( 1)-dimensional boundary of the Voronoï cell. It
is known that the volume of D-ball with radius R equals

=
+( )V R R( )

1
,

D
D

2

D
2

(22)

where Γ is the Gamma function. The boundary of such an D-ball (a
“surface”) reads simply:

=S R D V R
R

( ) ( ) . (23)

This boundary intersects nb grid cells. We say that, on average, a grid
cell is cut by such a boundary in the half-way between the largest
possible cut (a diagonal of a 2D cell, a diagonal plane in 3D, etc.) and
just a vertex. Such an average cut has the size (length, area, volume, ⋯)
equal to l( /2) ,D

d
1 see e.g. the various cut lengths appearing in 2D in

Fig. 3. The number of cut cells is therefore estimated as

=n S R
l

D V R
R
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D

( )
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( ) 2
.b D

D

d
1

g
1

(24)

The only unknown remaining in this equation is the radius of an D-ball.
We know that the unit volume of [0, 1]D is partitioned into Ns Voronoï
cells. Therefore, on average, each Voronoï cell occupies a volume of 1/
Ns. Taking this volume equal to the volume of a sphere in Eq. (22) yields
the estimate:

=
+

=
+( ) ( )

R
N

1 1
,

D D
2

s
char

2
D

D

D

(25)

which is in accordance with the intuition that the radius must be pro-
portional to the characteristic length, ℓchar. The characteristic length is a
kind of typical distance between two closest points out of Ns uniformly
distributed points in a unit hypercube of dimension D [56]:

=
N
1 .char

sD (26)

This characteristic distance is the exact distance of neighboring sites
forming a regular orthogonal grid of Ns points in [0, 1]D.

Substitution of Eqs. (25) and (22) into Eq. (24) yields the final es-
timation of the number of boundary grid cells/pixels:

+( )
n n D( · ) ·2

1
.b

D
D

D
g char

1
( ) 1

2

D

D

3
2

(27)

Note the scaling expressed through the first parenthesis (ng · ℓchar): if the
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characteristic length (the distance between neighboring points) gets
multiplied by the same number as the pixel length, =a n1/ ,g the
number of intersected cells remains identical.

Finally, the error in volume, ϵV, can be estimated by evaluating
Eq. (19). The error in volume is a random variable (asymptotically
Gaussian). Its mean value is zero because the mean value of the random
variable Vb is zero:

=µ 0.V (28)

The standard deviation of the error is obtained simply by multiplication
of nb and the standard deviation of Vb:

= =n
n

M D· 1 · · ( ).D
b b

g
char

1
V (29)

where the third term is a function depending only on the dimension of
the problem:

=
+( )

M D D

N
( ) 3 · ·2

12· · 1
.

D

D

( ) 1

b 2

D

D

3
2

(30)

Despite the fact that Eq. (29) was derived as a rough approximation
based on several simplifying assumptions, the standard deviation of the
error fits very well with simulated data, see the blue dashed lines in
Fig. 4. If the standard deviation in Eq. (29) is multiplied by two, one
obtains the error for Voronoï cells that have all edges aligned with the
orthogonal grid (see Eq. 16). Such an extreme case is depicted by black
dotted lines in Fig. 4.

A closer look at Eq. (29) reveals three important facts: (i) the error
agrees with the intuition that it is inversely proportional to the number
of cells per edge, ng, independently of the dimension of the problem, (ii)
an increase in the number of sites, Ns, decreases the characteristic
length and therefore it decreases the absolute error in volumes, and (iii)
for a given grid density and number of points, the error decreases with
increasing dimension, D.

One might argue that a relative error in ith cell volume, defined as

V V V^ / ,i i i( ) ( ) ( ) is more suitable as the error is standardized by the

actual volume. The error in this measure is easy to evaluate: the mean

value remains zero and the standard deviation in Eq. (29) gets simply
multiplied by Ns.

4.2. Distance errors

We now study the relative error in maximum radius for cell number
i defined as:

= = …r r
r

i N| ^ | , 1, , ,r

i i

i
max
( )

max
( )

max
( ) s

(31)

where r i
max
( ) is the exact solution obtained using QuickHull algorithm

(either clipped or periodic Voronoï tessellation) and r̂ i
max
( ) is the ap-

proximated solution obtained with a certain rasterization. The absolute
error is standardized by the exact value to get an idea about the relative
error.

Numerical simulations presented in Fig. 5 show the errors of esti-
mated radii of empty hyper-spheres. The thickness of the lines increases
with the exact maximum radius, i.e. the most relevant line to obtain
estimation of ϕmM, recall Eq. (11), is the thickest line. The top row of
Fig. 5 studies the decrease in error for a sample of =N 16s sites in di-
mensions =D 2, 3 and 4. Similarly, Fig. 5 bottom row studies the errors
for =N 50s sites. It can be seen that for an increasing number of pixels,
ng along each edge, the error quickly decreases and so does the scatter
in the errors.

There are two lines in Fig. 5 that represent plot of two formulas for
the error. A notable error in radius corresponds to the grid cell diag-
onal; it is the maximum error that can occur for regular-shaped Voronoï
cell:

=l
n

D N1 · .d

char g
sD

(32)

The numerator is the “diagonal error” in resolution, i.e. the deviation
between two pixels measured along the spatial diagonal, see the illus-
tration in Fig. 6 left for the meaning in 2D. Eq. (32) does not represent
the maximum possible error in radius, because the error is theoretically
unbounded: Fig. 6 right depicts the situation with an acute angle be-
tween the two edges where le > ld. There the cell diagonal error can be
exceeded. The exceedance probability grows with the number of sites in

Fig. 4. Convergence of volumes of Voronoï cells to the exact solution for =D 2, 3 and 4 dimensions. Evaluated for a single LH sample with Ns=16 (top row) and
Ns=50 (bottom row).
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a domain, see the peaks over the blue dashed line (Eq. 32) in Fig. 5
bottom left.

The average relative error in radii, depicted by the black dashed
lines, has been found to read:

= + =
+

µ l D
n

D
D

N/( 1) 1
1

· .d

char g
sr

D

(33)

The normalizing denominator in both Eqs. (32) and (33) is the char-
acteristic length.

The comparison between the numerically obtained relative errors
and the suggested formulas in Fig. 5 show that the average error for
a given grid density (ng) does not depend strongly on the dimension, D.
Indeed, for small to moderate dimensions (1 to 20), the product

D NsD does not vary considerably for reasonable pairs Ns and D, while
the numerically obtained errors seem to be well captured by Eqs. (32)
and (33).

By comparing the errors in volumes, ϵV, with the errors in radii, ϵr, it
becomes clear that for the same discretization density, the approx-
imation of volumes is more accurate. The reason is that ϵV is a kind of
average property while ϵr is related to the extremes. Therefore, to esti-
mate ϵr with a desired accuracy necessitates a finer discretization grid.
Similarly, one can also estimate the rasterization error in the estimated
centroid for a cell number i as the Euclidean distance between the exact
centroid and the approximated centroid: = cg cĝg

i i( ) ( ) . The nature

of the error is similar to the volume error: the only source is in the
boundary cells that might under-represent or over-represent the vo-
lumes of grid cells intersected by the true Voronoï cell boundary. Again,
it is a kind of average property and the errors are smaller than ϵr.

In order to measure the speedup of the proposed parallel solution
with respect to the exact solution of Voronoï diagram, a certain fineness
of the rasterization grid must be selected. Eq. (12) may suggest that the
maximum absolute error in distance increases with dimension and to
alleviate this dependency on the dimension, one should select the
number of pixels per edge as =n cN D ,g s where c is a constant in-
dependent of the dimension. However, for the sites selected from the
class of LH designs, the error analysis suggests that it is sufficient to use

=n cNg s. Based on the knowledge of the boundaries on maximum and
usual approximation errors, the user is provided with the option of
adjusting the mesh density accordingly. We suggest to take the number
of segments along each edge:

=n N3 ,g s (34)

as sufficient with respect to the errors. The implementation of the
parallel solution and the associated speedup is discussed in what fol-
lows.

5. Implementation of parallel solution

The actual parallel implementation consists of several steps for
which the approach to parallel execution differs to some extent.
Generally, however, solution of all tasks described in Section 3 does
exhibit a rather insignificant arithmetic workload. The dominant scale
of the problem is clearly the grid of nodes. The number of nodes in grid
rises steeply with (i) the side of grid, ng, that is considered as =n N3 ,g s
and more so with (ii) the dimension of the domain, D.

With the size of grid being =N N(3 )D
g s nodes, the description of the

grid consists of DNg coordinates. It is surely not convenient to store
these coordinates in global memory and load them each time these are
of interest. Instead, coordinates of grid nodes are generated on-the-fly
in GPU registers based on the knowledge of the index of each desired
grid node. This approach brings several advantages:

• does save the global memory from storing a large array that may
grow beyond control. Also, allocating such a large array would take
considerable time at the beginning of the solution,

Fig. 5. Convergence of maxRads of Voronoï cells to the exact solution for =D 2, 3 and 4 dimensions. Evaluated for a single LH sample with Ns=16 (top row) and
Ns=50 (bottom row).

Fig. 6. Illustration of the errors in radius approximation when rasterizing 2D
Voronoï diagram (two possible extreme mutual positions of the grid with re-
spect to the boundaries of Voronoï cells denoted by the dotted lines).
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• because this major amount of data is never loaded from global
memory, the L2 cache hit rate is increased during all steps of solu-
tion,

• does not overly stress GPU registers for there is hardly any register
pressure induced by arithmetic instructions.

Nevertheless, the grid of nodes still remains to dictate the scale of
the problem. Because its extent is substantially larger than the number
of sites and, moreover, grid nodes are also independent entities, it is
desirable to select the grid to be the parallelized dimension of the
problem wherever possible.

In the numerical studies later presented, the required number of
threads reaches up to about 1014 threads (=grid nodes). A question
might arise about whether the hardware itself is capable of executing
such a number of threads. The currently used Nvidia GPU, GTX 1080Ti,
is theoretically able to execute a maximum number of
(231 × 216 ×216) ≈ 1018 thread blocks, each of which may contain up
to 1024 threads. The theoretical maximum number of executed threads
then may reach up to about 1021 threads. This theoretical value of
threads executed in maximum efficiency is typically decreased ac-
cordingly by requirements on register resources induced by each spe-
cific kernel function. Once the kernel requirements on register re-
sources exceed the hardware capabilities, the on-chip L1/L2 caches
start to be utilized. Ultimately, the local memory of the GPU would be
used for storing of the register data. During the presented simulations,
however, no such limitations have been encountered. Following is the
discussion of implementation of individual solution steps as motivated
in Section 3.

5.1. Comparison of distances between nodes and sites

The first task of the solution is also the most extensive. Initially, it is
always required to obtain the index of the closest site to each of Ng grid
nodes, recall Fig. 1. The actual implementation approach proposes to
understand the nodes of the mesh as target points which interact with
the source points which are here represented by the Ns sites of the ap-
proximated Voronoï diagram. As expected, the parallelized dimension
here are the grid nodes, i.e. each node is serviced by its own thread. In
total, the number of active threads is equal to the number of grid nodes,
Ng.

Coordinates of the grid nodes are held in registers, being generated
according to the node index (thread global index). Then, tiles of the
source points are consecutively loaded into shared memory and a
simple task of comparing mutual distances of target and source points
(nodes and sites) is executed. For the sake of distance comparison, it is
not necessary to evaluate the square root to get the actual Euclidean
distance. It is only sufficient to sum the squares of projections of the
distance along all dimensions as the square root is a monotonous op-
eration.

All threads (=nodes) compare their distance to the same site at each
time. This ensures that all threads access the same shared memory bank
simultaneously, thus avoiding bank conflicts for any D. For each target
point, index of its closest source point is stored. The result of such an
algorithm is an array gridClstIds of Ng unsigned short integer (2
byte) indices of the closest site to each grid node.

5.2. Summation of cell volumes

Right after the indices of closest sites to grid nodes are known, it is
possible to compute the approximated volumes of Voronoï cells as a
simple sum of volume of grid cells belonging to each site according to
Eq. (6). It is worth noting that the volumes of grid cells belonging to
each Voronoï cell are scattered all across the gridClstIdxs array in
global memory. Summing these by a parallel reduction for each Vor-
onoï cell is therefore not feasible at this point. Instead, an inverse im-
plementation approach to the preceding step is applied.

The Ns sites are here the parallelized dimension (target points), ser-
viced by Ns active threads. Threads represent the sites that correspond
with their global thread index. Tiles of Ng indices of closest sites from
gridClstIds (source points) are consecutively loaded into shared
memory. The threads proceed through the loaded closest indices and
check whether each particular index of the closest site is equal to any of
global thread indices in block. If so, the respective thread adds one to
the integer count of grid cells that belong to its respective Voronoï cell.

Again, all threads access the same gridClstIds element at each
time, thus avoiding shared memory bank conflicts. The result of the
described procedure is an array vorCellVols of Ns integers that re-
present the number of grid cells belonging to each Voronoï cell. The
resulting approximated Voronoï cell volume is then simply obtained by
multiplication of elements of this array by the constant grid cell vo-
lume, =v n(1/ ) ,D

g recall Eq. (6).

5.3. Averaging coordinates of nodes belonging to each Voronoï cell

During the single parallelized pass through tiles of gridClstIds
described above, it is also possible to compute the approximated
Voronoï cell centroids right along. Each site (=thread) maintains D
float coordinates of its centroid in shared memory.

In the intersite (non-periodic) variant, each time a thread recognizes
its respective grid cell, apart from adding one to its count of own grid
cells, it generates the coordinates of the grid node and adds these to cell
centroid coordinates in shared memory. At the very end of the routine,
centroid coordinates are merely divided by element in the
vorCellVols array respective to each site. This way, the averaging in
Eq. (7) is done.

If periodic boundary conditions are considered, Eqs. (8) and (9)
must be used instead of a plain average. However, as the parallel ex-
ecution is constructed so far, this does not represent a significant
drawback. If a thread recognizes its respective grid cell in a tile of
gridClstIds, it ensures that the closest image of the generated grid
node to the provisional centroid is considered in each dimension ac-
cording to Eq. (8). After that, the recurrence formula (9) for provisional
average is employed. The number j of the jth iteration step is simply
represented by the current integer count of respective grid cells in the
provisional integer Voronoï cell volume held in registers.

5.4. Keeping track of the furthermost node discovered

The last of the solution steps is the search for the furthermost grid
node to each site. As described in Section 3.3, such a most distant grid
node will be then considered as the center of the largest empty De-
launay hyper-circle of each site. Such a grid node can also be identified
during the single pass through the tiles of the gridClstIds array.

When a thread (=site) recognizes its respective grid cell, the gen-
erated coordinates of its node are used not only for computation of the
Voronoï cell centroid but the distance to the site is also computed. If
this distance is greater than the provisional maximum distance held in
registers, the node becomes the new provisional furthermost node.
Again, only the sum the squares of projections of the distance along all
dimensions is computed.

The output of this routine is an array maxRadIds of integer indices
of the furthermost node of each site. The actual distances to these nodes
(maximum radii) are computed afterwards in parallel.

6. Performance and speedup

The execution performance of the presented parallel approximation
is compared to the standard QuickHull algorithm [4]. The execution
times are compared in Fig. 7 left. The solution speedup attained by the
parallel solution is shown in Fig. 7 right.

The results are displayed in dependence on the number of sites, Ns,
and dimensions, D. In case of the parallel approximation, the side of
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grid is set as =n N3g s. Therefore the grid contains =N N(3 )D
g s cells.

In an average case, the complexity of the QuickHull algorithm is
known to be N N( log( ))s s . In its worst case, QuickHull approaches

N( )s
2 . In this contribution, LH point samples are exclusively con-

sidered. Therefore, the attained complexity of QuickHull solution is
lower than in an average case, reaching N N( log( ))s s for LHS random
samples (see Fig. 7 left).

As far as the presented parallel solution is considered, its complexity
is mainly guided by the grid size, =N N(3 ) ,D

g s which depends on the
number of sites, Ns, as well as the dimension D. The observed asymp-
totic complexity of the parallel solution is about N( ),D

s see the “fan” of
steep straight lines in Fig. 7 left. The curves obtained with the proposed
rasterization algorithm eventually intersect the corresponding curve
obtained with the QuickHull algorithm. From that number of sites on, it
becomes cheaper to switch to QuickHull algorithm. Note, however, that
the performance of QuickHull depends on the type of the sample. In the
case of studied LH designs, the QuickHull algorithm performs above
standard. The performance of the proposed parallel algorithm depends
on the required precision. For a random sample, it might be necessary
to use a finer discretization based on the shortest distance between
sites. In this work, the shortest mutual distance between sites is con-
trolled by assuming a certain regularity of the sample.

In the present case of LH samples, the peak solution speedup reaches
between 3×103 to about 3×106 depending on dimension, D, and
begins to fade down as the execution time of parallel solution ap-
proaches QuickHull curves. Nevertheless, for a solid range of practical
scenarios (frequent solution for small point samples up to moderate
dimension), the presented approximation algorithm does provide
a significant solution speedup. This solution speedup often becomes
decisive, especially when a repetitive execution of the solution in
thousands or millions of steps of sample optimization is needed (such as
in the combinatorial optimization algorithms [66]).

We remark that the algorithm still allows for a subsequent refine-
ment to achieve sub-pixel resolution, if needed. As the rasterization
errors stem only from the grid cells intersected by the boundaries of
Voronoï cells, the refinement may be limited to the boundary grid cells,
i.e. cells that are neighbored by at least one cell belonging to another
Voronoï region. The total number of boundary cells, roughly Ns · nb/2
(see Eq. 27), is considerably lower than the total number of the initial
grid cells, Ng.

7. Conclusion

The presented paper introduced a parallelized implementation of a
numerical approximation of selected scalar properties of a hyper-di-
mensional Voronoï diagram. The developed approximation algorithm

is motivated by the field of interest of the authors that is optimization of
uniformity of point samples for Design of Experiments.

The notion of parallel processing of an underlying raster of nodes
crucially relies on the use case of the algorithm. In the case of Latin
Hypercube (LH) point samples, one can estimate a lower bound on
mutual point distance. In this paper, a mild assumption regarding the
regularity of point distribution is exploited for prediction of errors of
approximated scalar descriptors of Voronoï diagram. The scalar prop-
erties approximated by the current algorithm are the Voronoï cell vo-
lumes, coordinates of Voronoï cell centroids and the maximum radius of
Delaunay hyper-circle associated with each Voronoï cell. These are the
values of interest when conducting sample optimization using the
miniMax optimization criterion [33]. Nevertheless, there are various
other characteristics that might be approximated, such as higher mo-
ments of Voronoï cells (moments of inertia and the principal moments)
that can be used for description of shape and directional distortion of
Voronoï cells.

A massively parallel implementation employing the Nvidia CUDA
platform is presented, aiming for an efficient processing of such a grid
of nodes that grows fast with its dimension. This disadvantage dis-
qualifies the presented algorithm to be a universally utilized approach.

This paper was motivated by the field of interest of the authors that
is optimization of uniformity of small sample point designs in low to
moderate dimension. The criteria of such an optimization utilize scalar
descriptors of Voronoï cells. In the optimization algorithms used, these
scalar descriptors have to be evaluated for many trial point configura-
tions (millions of steps or more). In these applications, the proposed
approach yields great savings in execution times. Should the number of
sites exceed the range of observed solution speedup, switching to e.g.
the QuickHull solution is advisable.

However, for a convenient range of the number of sites, Ns, and
dimensions, D, the parallel approximation offers a significant speedup
of solution. When employed as a part of a kind of a repetitive algorithm
such as in statistical optimization, Centroidal Voronoï tesselation or
weighted Monte Carlo estimation, the benefit of using such a fast ap-
proximation becomes even more pronounced.
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