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A B S T R A C T

The presented paper deals with possible approaches to parallel implementation of solution of a hyper-dimen-
sional dynamical particle system. The proposed implementation approaches are generally applicable for similar
particle systems of interest in various research and engineering fields. The original motivation for the present
work was a simulation of particles that represent a space-filling design to be optimized for further use in design
of experiments. Due to the underlying purpose of this particle system, the dimension of the particle system
of interest is considered to be entirely arbitrary. Such a hyper-dimensional space is further folded into a peri-
odically repeated domain.

The theoretical background of the proposed particle system is provided along with the derivation of equations
of motion of the dynamical system. As the complexity of the system is not limited by the number of particles nor
the number of dimensions, the possibilities of utilizing the GPGPU platform are more restricted in comparison
with today’s fast parallel implementations of common particle systems.

Two distinct approaches to parallel implementation are presented, one aiming at a generalized usage
of the fast on-chip resources, the other entirely relying on the GPU’s on-board global memory. Despite un-
ambiguous mutual differences in their performance, both parallel implementations deliver major speedup
compared to the single-thread CPU solution as well as a better scaling of execution time when increasing both
the number of particles and dimensions.

1. Introduction

During the recent decade, researchers dealing with simulation
of particle systems acquired a rather powerful computing platform
with the development of general purpose computing on graphic pro-
cessor units (GPGPU). With the great computational power offered
by the GPGPU architecture, increasing number of formerly non-cal-
culable problems are now being solved. Particle systems are nowadays
simulated in numerous engineering and research fields. Molecular dy-
namics, material and mechanical engineering or astrophysics are only
a few examples of these.

Namely the astrophysics simulations of vast scenarios of forming
galaxies with tens of thousands of planets-particles are now possible
to compute, see e.g. [1–3]. Unlike the systems of mutually attracting
celestial bodies simulated by the astrophysicists, there exist similar
particle models without a direct physical analogy to the purpose of their
simulation. This is also the instance of the dynamical particle system
as considered further in the presented paper.

The proposed system of mutually repelling particles is assembled

to serve as an optimization tool for obtaining uniformly distributed
point samples. Such optimized samples may find utilization in dozens
of research problems, an interesting instance of which is the statistical
sampling for numerical integration of an arbitrary function – Monte
Carlo sampling.

Numerical integration of the Monte-Carlo type requires sampling
of points that are uniformly distributed within a design domain. The
design domain is considered to be the domain of sampling probabilities
(values of the joint distribution function - the domain of copulas) which
is a unit hypercube [0, 1] ,Nvar where Nvar is the dimension of the design
domain and also the number of random variables of the integrated
function.

The problem of using an ideally distributed set of finite number
of integration points rises also in numerous engineering and research
fields. While sampling from a random vector or integrating an unknown
function, achieving a uniform layout of integration points is the only
possible way for minimization of the lower bound of the resulting error,
see e.g. the Koksma–Hlawka inequality [4–6].

Many criteria for “uniformity” have been put forth over the past
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years, aiming to serve for evaluation or optimization of distribution
of Nsimpoints within a unit hypercube of dimension Nvar. These criteria
often investigate mutual distances between integration points with
a tendency to prefer designs with points equally distant from each
other.

Some other criteria can be shown to have analogies with physical
problems. As an elegant instance of these, we consider the Audze-Eglajs
(AE) criterion [7] and the generalized ϕ-criterion [8], respectively.
The limiting case of the ϕ-criterion is the MaxiMin criterion [9] that
prefers designs maximizing the distance between the closest pairs
of points.

All of these criteria serve for evaluation of quality of point layouts
and can be reinterpreted as a potential energy of a system of charged
particles with repulsive forces. The objective of these criteria then lies
in minimization of potential energy of a particle system and the posi-
tions of the particles are considered to be the coordinates of sampling
points in the unit design hypercube.

During the recent years, it has been shown that the Audze-Eglajs
criterion suffers from existence of boundaries of the design space
[10,11]. A remedy of this behavior was proposed [10,11], assuming
periodically extended design hypercube and thus achieving a design
domain without boundaries, see Fig. 1b. Since then, it has been proved
that optimization of point layouts by the introduced Periodic Audze-
Eglajs (PAE) criterion leads to statistically uniform designs (from design
to design) and to well distributed set of points for every single point
layout.

This paper is based upon the conference paper [12], but the present
paper provides much broader context, complementing the already
proposed implementation (which relies on the GPU’s on-board
memory) by the recently assembled implementation utilizing the faster
but limited on-chip memory. The in-detail study of thread serialization
techniques along with the performance comparison of using atomic
operations is not part of this paper and remains as a reference
to the conference contribution [12].

Since the initial motivation for simulation of such a particle system
was in optimization of point samples using the Audze-Eglajs criterion,
the criterion itself is presented in Section 2 and the paper follows with
derivation of equations of motion of the physically analogical system
of charged particles in Section 3.

A brief review of particle simulation algorithms is presented in
Section 4 and the particle system of interest is set into the context
of today’s GPGPU particle implementations and solution algorithms.
Section 5 follows with an analysis of requirements on the solution im-
plementation.

Hardware limitations rising from the unrestrained dimensionality
of the particle system at hand are discussed in detail and reasons
for both implementation approaches are justified, see Section 6. There,
two different ways of data storage and the associated algorithms
are presented.

Finally, the performance of both parallel implementations is pro-
vided and further compared to the single-thread CPU implementation
in Section 7.

2. Audze-Eglājs Optimization criterion

The value of the Audze-Eglājs criterion can be understood
as the amount of potential energy stored within a system of mutually
repelling particles. The potential energy accumulated in particle inter-
actions depends on distances between all pairs of particles.

The Euclidean distance between points i and j in Nvar-dimensional
space, Lij, can be expressed as a function of their coordinates:
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where = −x xΔij v i v j v, , , is the difference in their positions projected

onto the axis v. Let us assume that the points i and j with their mutual
distance Lij are repelled by the force Fij induced by the potential
energy Eij:
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By differentiating the energy potential with respect to the distance,
Lij, the repulsive force is obtained: = −F L L( ) 2ij ij ij

3. As the particle system
contains Nsim interacting particles, the total potential energy
of the system is a sum of contributions from all ( )N
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The total potential energy in Eq. (3) represents the value of the Audze-
Eglājs criterion to be minimized.

A simple and efficient improvement that considers a periodic ex-
tension of the design space has been proposed in [10]. After some
simplification, one can derive equations for periodic Audze-Eglājs cri-
terion (PAE) by replacing Δij, v in Eq. (1) with its periodic variant:

= −Δ min(Δ , 1 Δ ).ij v ij v ij v, , , (4)

With such a redefined projection, a new metric is obtained
and the distance between points i and j, called the periodic length L ,ij
becomes the actual shortest distance between point i and the nearest
image of point j [10], also see Fig. 1:
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We note that using the nearest image of point j with respect to point
i does not cover a true periodic repetition of the design domain. In
a complete periodic repetition, infinite number of images of the point j
would interact with the point i. The presented approach is a simplifica-
tion that can be shown [10] to yield identical results to the fully re-
peated system in case of sufficient point count, Nsim.

If the number of points in the original domain is too low for as-
sembly of the desired self-similar pattern1, considering additional per-
iodical images of particles is advised. As argued in [13], this is due
to an insufficient resolution between short and long-range forces in the
system. Another remedy is also to use stronger differentiation between
short and long-range forces, that is to rise the exponent upon the mutual
distance Lij in the energy potential, see Eq. (3), to a greater value. As
shown in [13], the exponent shall be no lower than +N 1var .

For greater particle systems, there is no practical need to consider
more than one image of each particle as long as the energy potential
uses a correct value of the exponent. Then, additional periodical images
are not considered as a true periodic extension is not necessary for
achieving an optimal space-filling design.

The AE criterion is originally meant for evaluation of uniformity
of a fixed set of particles by calculating the overall potential energy.
This potential energy is stored in all pairwise particle interactions
considered in a radial sense.

For the purposes of dynamical simulation, however, each vector
of the mutual repelling force =F ẍij ij induced by such an energy po-
tential needs to be decomposed into all of its Nvarorthogonal compo-
nents which then provide the information about the actual accelera-
tions ẍij v, in each of Nvar:directions. The derivation of equations
of motion of the particle system is discussed in what follows.

1 Simplest self-similar space-filling patterns can be assembled from simplest objects
which contain volume in the particular dimension Nvar: line in 1D (2 points), triangle in
2D (3 points), tetrahedron in 3D (4 points), etc.
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3. Physical analogy: a particle system

The (periodic) Audze-Eglājs criterion understands the layout of de-
sign points as a system of interacting (mutually repelling) particles
and evaluates the amount of potential energy stored within all inter-
actions, see Fig. 1 for illustration.

Instead of utilizing the AE/PAE criterion as a norm minimized using
combinatorial or heuristic optimization for a fixed set of coordinates
[14], we propose to solve the physically analogical problem by simu-
lating a discrete dynamical system of mutually repelling particles.
The coordinates of particles of the dynamical system, after reaching
the static equilibrium (after a minimization of potential and kinetic
energy), may be directly understood as coordinates of design points
within the unit hypercube, see Fig. 2.

As argued in [13], a direct usage the (P)AE energy potential, see
Eq. (3), is not advised for it has been shown that the exponent upon
the mutual distances shall depend on the dimension of the design do-
main as well as, partially, on the number of particles. The formulation
of the potential energy of a system of charged particles will therefore be
generalized and from now on, the exponent qwill utilized for derivation
of equations of motion of the dynamical particle system, see Appendix I.

The resulting equations of motion of the dynamical particle system
are a system of independent equations. This awareness is of high im-
portance while considering the possibilities for solution method
and its computer implementation. This means that each acceleration ẍi v,
can be solved separately, without solving a system of equations. Each
undamped acceleration ẍi v, as resulting from the presented energy po-
tential, see Eqs. (A.2) and (A.3), can be computed as follows, see Ap-
pendix I for derivation:
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The damping of motion of particles also depends solely on the ve-
locity of each particle. Furthermore, each distance projection Δij v,
as well as each absolute distance Lij can be computed independently.
The above-mentioned properties lead to the possibility of utilizing

a parallel implementation.
As soon as the new accelerations of each particle in each dimension

are obtained, the equations of motion are numerically integrated using
the semi-implicit Euler method and the new velocities ẋi v, and co-
ordinates xi, v of each particle in each dimension in the new time

+t t( Δ ) are computed:

+ = +x t t x t t x t˙ ( Δ ) ˙ ( ) Δ · ¨ ( ),i v i v i v, , , (7)
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For reaching the static equilibrium of the dynamical system, im-
plementing of energy dissipation is desirable. Various types of damping
are typically combined. For solving the problem at hand, we add the
sum of velocity-dependent damping members into Eq. (7): ∑ c x t˙ ( ),p p i v

p
,

where cp are damping coefficients and p are various powers of the ve-
locity, ẋ ,i v, of ith particle in vth dimension. Note, that the damping part
is not derived from the energy potential of the particle system.

4. Particle simulation algorithms

The first simulation of a dynamical particle system was performed in
1960 by von Hoerner [15]. Since then, particle simulations in various
research fields were one of great driving forces of development of super
and parallel computing.

The O N( )2 complexity of the brute-force all-pairs solution (here
N≡Nsim is the number of particles) has been lowered to O N N( log )
by the Barnes-Hut Treecode algorithm [16] which lowers the com-
plexity by clustering the distant particles into larger groups and ap-
proximates their influence on the solved particle. The performance
of such an approximation algorithm is however suited dominantly
for particle systems where the distribution of particles is highly non-
uniform.

Further reduction to the complexity of O N( ) was achieved by the
Fast Multipole Method (FMM) [17]. The FMM-type algorithm assem-
bles hierarchical structures not only by clustering the remote particles
but also the nearby particles using local expansions. For large particle
systems, usage of the FMM algorithm also greatly reduces the number
of summands and thus reduces the resulting computation error. In case
of smaller particle systems with thousands of particles, the FMM can be
shown to yield an intermediate performance between the all-pairs
O N( )2 and the O N( ) complexity, see [18].

These are, nevertheless, approximation-based algorithms which do
not suffice for general research of particle systems such as the one
proposed above. The particle system of interest here is being a subject
of a constant investigation of influence of various interaction laws on
the resulting distribution of particles. This means that any premature
approximation of particle interaction might deliver confusing results.
Not to mention physical reasoning of clustering particles within a peri-
odically repeated domain. Therefore we consider the direct Nsim-body

Fig. 1. Illustration of periodically repeated planar domain. a) the original two-dimensional design domain with pale colored distances Lij (Eq. (1)). b) periodically
repeated design domain with eight additional images of each particle. Periodic distances Lij (Eq. (5)) are rich colored. c) folding the design domain into a torus
is another possible illustration of a periodical domain. Note that the computed distances are not defined on the toroidal surface.

Fig. 2. Illustration of the optimization process of Nsim=24, Nvar=2. a) initial
randomized sample, b) optimized sample.
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integration that involves the computation of all ( )N
2
sim forces between

all pairs of particles.
The direct all-pairs summation is also beneficial for further research

of the particle system at hand as we wish to study the evolution of
distribution of the potential energy among all mutual interactions. Also,
we aim to compute all mutual distances as their distribution is of our
interest.

4.1. GPGPU computing of particle systems

Since the very first release of the NVIDIA’s Compute Unified Device
Architecture (CUDA) in 2006, see [19], simulations of particle systems
were among the first applications to exploit the novelty architecture
of general purpose parallel computing.

One of the first implementations of GPU solution of a 3D particle
system was the so-called Chamomile algorithm [20]. As used in the
CUNBODY library [20,21], the Chamomile algorithm considers paral-
lelization of the source particles (particles acting on the particles being
solved) between thread blocks, requiring a rather large final reduction.
Latency of such a reduction might be a challenge to hide.

A more efficient approach was later published by the NVIDIA itself
[22], proposing parallelization of the target particles (particles being
solved) among thread blocks. This implementation therefore does not
require large reductions to be performed. Extensive utilization of reg-
isters along with loop unrolling is also proposed in pursuit of maximal
performance.

The idea [22] of using the on-chip shared memory for circulation
of all source particles while keeping descriptions of the target particles
stored in registers/L1 cache is also used in the first of the two im-
plementations presented in what follows. Performance of such a solu-
tion algorithm depends dominantly on the arithmetic performance
of the GPU used and, consequently, on the ability to hide this arithmetic
latency.

Note that term latency hiding as used further in the paper is meant as
an effort to reach hardware’s maximum throughput, see [23] and also
Chapter 5 of [24]. Typically, the more limiting factor is the latency
of accessing the (global) memory rather than the latency of execution
of arithmetics. However, for each particular code, their actual ratio may
vary.

5. Requirements on solution implementation

Numerical simulation of the proposed particle system consists
of several sub-steps which can be, up to certain degree, executed
in parallel. This degree is limited dominantly by the nature of the
problem at hand and by the possibilities of the hardware used.
Currently, the Kepler architecture NVIDIA Tesla K20c (GK110)
and the NVIDIA GTX 1080TI driven by Pascal (GP102) are being uti-
lized.

A common problem of any parallel implementation is to control
writing requests of threads in a way that multiple requests for writing
into the same memory address cannot be executed simultaneously. This
scenario is known as the race condition. When writing, threads can
overwrite values computed and stored by other threads in an incorrect
order, which typically renders following computations over such data
incorrect. Handling such inconsistency in writing is of high importance
in implementations requiring large reductions. Commonly, manual se-
rialization of writing requests in code, parallel reductions or atomic
operations are used, see [25] and [26]. Possible ways of solving con-
current writing requests are in-detail discussed and their performance
compared in [12].

The result of a code exhibiting a race condition cannot be predicted
as the performance of threads is expected to be identical and the ex-
ecution time of the same instruction by identically powerful threads
depends on hardly predictable circumstances.

Furthermore, in case of the problem at hand, one has to bear in
mind that unlike most of the conventional particle simulations,
the complexity of the proposed system is not limited by the number
of dimensions, Nvar. As a matter of fact, the unknown number of parti-
cles, Nsim, and dimensions, Nvar, at the time of compilation call for a
quite general implementation.

With the theoretical size of the solved problem being arbitrary,
the fast on-chip resources of the GPU (registers, L1 cache, shared
memory) might not suffice. Therefore the second proposed im-
plementation, see [12] and Section 6.2, ignores the possibility of using
on-chip resources other than registers needed for conducting arithmetic
operations and storing intermediate results. Performance of such an
algorithm depends dominantly on the global memory bandwidth
and bus size of the GPU used and, consequently, on the ability to hide
this memory access latency.

6. Presented approaches to GPU solution

As has been indicated in what preceded, due to the essentially ar-
bitrary extent (number of particles Nsim and dimensions Nvar) of the
particle system at hand, we further present two fundamentally different
implementation approaches.

6.1. Implementation using on-chip resources

The first presented implementation of particle system simulation is
loosely based on the concept [22] that proposes to keep the descriptions
of target particles statically loaded in registers/L1 cache and circulate
the descriptions of source particles in the shared memory. In our case,
however, the term descriptions of particles differs for target and source
particles.

The target particles (particles, accelerations of which are to be com-
puted) do not possess only unknown values of accelerations but we also
wish to compute the radial stress each particle is experiencing and the
amount of potential energy stored in interactions of each particle at any
given time. This means that during solution, we need to keep stored the
following descriptions of target particles on chip:

• Nvar own coordinates of each particle,

• Nvar unknown accelerations of each particle,

• one unknown radial stress of each particle,

• one unknown value of potential energy belonging to interactions
of each particle.

It also appeared beneficial to store on chip the computed projections
Δij v, of the mutual distance, L ,ij between the current solved pair of par-
ticles. This means storing additional Nvar values on the chip. All this
data, exclusive to each thread in the thread block, may be stored either
in registers or the L1 cache/shared memory.

We have, nevertheless, serious objections towards using registers in
this case:

• the number of dimensions, Nvar, is not known at the compilation
time, which might easily lead to uncontrolled register spilling
into GPU’s local memory,

• GPU’s registers are not indexable (at least not conveniently),
meaning they cannot handle indexed arrays and these are spilled
into the local memory right away,

• for an unknown dimension, Nvar, it is not even possible to arrange
the data into vector structures stored in registers,

• in case of further optimization of data reuse, registers are not ac-
cessible by other threads in the thread block. However, it is worth
noting that since the Kepler architecture (Compute capability
3.0+), the NVIDIA GPUs are capable of fast exchange of data in
registers of threads in the same warp using the Shuffle (shfl())
method.
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Because of the above stated, we propose using the L1 cache/shared
memory for storing descriptions of the target particles.

The descriptions of the source particles consist of their coordinates
only, i.e. Nvar coordinates of each particle. We much prefer to store
these coordinates in the shared memory as they are to be accessed by all
threads in each thread block.

It can be expected that at one point of the solution process, the
loaded part of the source particles will represent coordinates of the
target particles, which are already being loaded on-chip. In this case, it
is beneficiary to store Nvar coordinates of the target particles in the
shared memory as well for they can be accessed right away, without
requesting global memory accesses.

Obviously, the amount of the L1 cache/shared memory requested
also depends on the number of threads per block which can be tuned
up to certain degree. Nevertheless, it should be mentioned that even-
tually, for a large dimension, Nvar, the described implementation will
start spilling this data into local memory.

Moreover, the precision of arithmetics matters; empirically, we
observe that the float precision (32 bit values) is sufficient for solution
of the system at hand (not requiring a solution of a system of mutually
dependent equations of motion). This means requesting half the re-
sources otherwise needed for the double precision (64 bit values).

Before closing the subject of the on-chip resources, it should be
noted, that each of 13 streaming multiprocessors (SM) of the Kepler
Tesla K20c (GK110) possesses 64KB of configurable on-chip memory
to be divided between L1 cache and shared memory.

The GTX 1080TI (GP102) and all the GPUs of the Pascal archi-
tecture follow the concept of the previous Maxwell architecture, pro-
viding dedicated 96 KB of shared memory for each of its 28 SMs.
The functionality of the L1 cache has been merged with the texture
cache for Maxwells and Pascals. The L1 cache has been provided only
with dedicated 28 KB on GP100 and GP102 cores.

For the future, we aim to the usage of the Pascal Tesla P100
(GP100), therefore we lean towards exclusive usage of the shared
memory. To conclude on the on-chip memory allocation approach: we
store all +N[(4· 2)·threadsInBlock]var values in the shared memory
of each SM. The next section discusses the on-chip solution algorithm.

6.1.1. Solution algorithm
As has been already discussed above, the proposed on-chip algo-

rithm distinguishes the target particles (particles, unknown properties
of which are to be computed) and the source particles (particles acting
on the target particles).

Descriptions of the target particles are being held entirely in the
shared memory, as justified in the previous section. The target particles
are maintained by Nsim threads divided into = +tb N p( / 1)sim thread
blocks, where =p threadsInBlock. After loading p target particles
into the shared memory, tiles of source particles are consecutively
loaded into shared memory and their interaction with target particles is
solved.

The source particles are divided into n tiles, each containing de-
scriptions of m source particles. In our implementation, we prefer =m p
which leads to possibility of data reuse and also empirically seems
optimal for hiding arithmetic latency when good occupancy of GPU is
reached. Nevertheless, it might be beneficiary to set m< p to save the
on-chip memory in case of high dimension, Nvar, or when using values
of higher precision. A setting of m> p leads to longer arithmetic oc-
cupancy of thread blocks which might be useful to hide the latency
of global memory accesses if these are too expensive.

The described solution procedure as conducted by a generic thread
block is illustratively depicted in Fig. 3 and also further explained
by Algorithm 1. As can be seen, the part of solution of interaction with
individual tiles is serial for each thread (each particle). This might seem
inefficient at first, but keeping the executed thread blocks busy with
arithmetics helps to hide the latency of blocks waiting for global
memory accesses.

The newly gained accelerations are stored into global memory
and afterwards used for numerical integration using the semi-implicit
Euler method, see Eq. (7). Numerical integration kernel is executed
by Nvar ·Nsim threads, each of which updates its own velocity ẋi v,
and coordinate xi, v. The task of numerical integration therefore takes
only a negligible fraction of the total execution time.

6.2. Implementation using global memory

The second presented implementation approach, as already briefly
discussed, aims to rely completely on usage of the GPU’s global
memory. The main reason is that the theoretical extent of the particle
system at hand is not limited in terms of the number of particles, Nsim,
nor in the number of dimensions, Nvar. Therefore the limited amount
of on-chip resources is not going to suffice in scenarios of very high
dimensions, Nvar, and more so if the double precision format is used.

The global memory implementation as further described, exhibits a
great global memory traffic, hiding the latency of which is a major task.
The approach here is to unfold the parallelism of the solution entirely
into global memory, executing the highest number of threads possible
for each computational step. This way keeps the SMs as busy with
simple arithmetics as possible. Of course, it is crucial to ensure that the
global memory accesses are coalesced and bus utilization is maximized.

Such an implementation requires rather large reductions into the
same global memory address. For handling these reductions, fast atomic
additions atomicAdd() are used, see [26].

Despite the fact that there exist ( )N
2
sim mutual interactions (pairs)

of Nsim particles in each dimension, it is necessary to realize that each
interaction between any two particles i and j results in computing
and writing two opposite accelerations, one for the particle i
and one for the particle j. This in fact means that it is needed to compute
and write (Nsim)2 (Nsim of which are zero) accelerations of particles
in each dimension.

It is indeed possible to compute only ( )N
2
sim of the unique accel-

erations. One can attempt to use the symmetry of repulsive forces
and mirror these known accelerations for the other particles in all re-
spective pairs. One has to be aware, however, that such mirroring
cannot be conducted between thread blocks on the chip and global
memory has to be used for data exchange. In fact, the action of writing
and reading in GPU’s global memory is much more time expensive than
on-chip parallel computing. Therefore it might be beneficiary to com-
pute seemingly redundant data instead of further increasing the global
memory workload without providing any other arithmetic tasks to hide
this memory latency.

The global memory implementation is divided into several sub-steps
(kernel functions):

• computation of Nvar · (Nsim)2 projections Δij v, of mutual distances
between all pairs of particles in each dimension v. Execution of this
step can be conducted by Nvar · (Nsim)2 active threads, each of which
stores its result into a unique global memory address,

• computation of (Nsim)2 absolute distances Lij between all pairs
of particles. For obtaining a single value L ,ij

2 it is needed to read
and add up Nvar projections Δij v,

2 . This sub-step therefore requires
serialization of Nvar writing procedures into each memory address
containing the total squared distance L ,ij

2

• computation of Nvar · (Nsim)2 repulsive accelerations ẍij v, between all
pairs of particles in each dimension. The result of this sub-step is a
vector of Nvar ·Nsim total accelerations of each particle in each di-
mension. Therefore, it is required to sum Nsim repulsive accelera-
tions for each particle in each dimension. Hence, this sub-step re-
quires serialization of Nsim writing requests into each of Nvar ·Nsim

global memory addresses.

• numerical integration of equations of motion using the semi-implicit
Euler method; updating Nvar ·Nsim velocities ẋi v, and coordinates xi, v

J. Mašek, M. Vořechovský Advances in Engineering Software 125 (2018) 178–187

182



of all particles in each dimension. Executed by Nvar ·Nsim active
threads, this sub-step does not require any serialization of writing
as each thread writes into its very own memory address.

6.2.1. Handling concurrent writing requests
In parallel computing, performance bottlenecks due to the need

of serialization of writing are fairly common. In practice, there exist two
most exploited approaches how to conduct serialization of writing
of multiple threads into identical memory address.

One way of avoiding the concurrent writing of multiple threads
into the same memory address is to eliminate such scenario entirely.
Whenever an encounter of n threads writing into a single memory ad-
dress is anticipated, it is instead possible to run a kernel function with
a substitute thread, executing a loop of n instructions (those which
would otherwise lead to thread collision in writing). A series of writing
into the particular memory address is thus provided without possible
code inconsistency.

A less firm approach how to avoid writing inconsistencies is to use
GPU’s atomic operations. Atomic (indivisible) operations are procedures
implemented directly by the hardware manufacturer. These provide the
possibility of conducting a read-modify-write task of a 32 or 64-bit
value as a single uninterruptible action.

The manufacturer guarantees that during an atomic operation, no
other threads can approach the memory address, or at least these
cannot change the value stored. Until the Pascal architecture, NVIDIA
GPUs were capable of executing fast atomic operations only with values
of the float precision. In case of the double precision values, the orders
of magnitude slower atomicCAS() (compare-and-swap) method had
to be manually implemented.

Approaches to handling concurrent writing requests are discussed in
detail in the conference paper [12] along with the speedup of using fast
atomic operations.

7. Performance of parallelized solution

The following section offers performance benchmark of the two
developed CUDA implementations when scaling the crucial parameters
of the problem; the number of particles, Nsim, and the number of di-
mensions, Nvar.

First, the performance of the massively parallel solution using
NVIDIA Tesla K20c and GTX 1080TI was compared with the single-
thread implementation in the C programming language executed by the
Intel i7-6700 CPU. All results presented in what follows are achieved
using the float precision.

Fig. 4 shows the computation time required when solving of 105

steps of the O N( )2 interaction while scaling the number of particles,
Nsim, and keeping the dimension constant, =N 2var . A significant
speedup was reached when utilizing massive parallelization. Crucial is
the qualitative difference of computation time rise when scaling
the number of particles, Nsim.

The implementation using the on-chip shared memory (SMem)

has shown very good performance in terms of execution time as well
as its mild linear dependence on the number of particles, Nsim. Also, if
the dimension, Nvar, is known at the compilation time, it is possible
to take advantage of partial usage of registers for storage of unknown
particle accelerations, stresses and energies (SMem + registers)
which leads to additional speedup.

The implementation relying on the use of the GPU’s on-board global
memory and fast atomic additions (GMem + atomicAdd) did not exhibit
as good results compared to the shared memory implementation. The
global memory solution performs worse both in execution time as well
as in scaling with the number of particles. The only exception are
scenarios up to around 200 particles, where the global memory im-
plementation performs slightly better, see the inset in Fig. 4. The reason
is that for such a low number of particles, the partially serial solution
in shared memory is not able to hide the arithmetic latency as well.

Next, we investigate the execution time when scaling both para-
meters of the problem; the number of particles, Nsim, as well as the
number of dimensions, Nvar. Fig. 5a compares the execution time
of solution of 103 steps of the O N( )2 interaction.

The CPU implementation is kept as a benchmark for shared memory
implementations executed by the GTX 1080TI. The CUDA im-
plementation delivers major improvement of performance
as well as weaker execution time growth with increasing Nsim. Fig. 5a
shows that the parallel execution starts with linear dependency on Nsim.
As the device starts to reach its peak bandwidth, the execution time
scaling tends to O N( )2 . As shown in Fig. 5b, in the expected range of
computation, the speedup in solution time by CUDA grows linearly with
the number of particles, reaching up to 200× .

7.1. Bounds on parallel solution

The limitations of execution of the shared memory implementation,
see Section 6.1, are primarily set by the on-chip resources as each SM
has to provide storage for +N[(4· 2)·threadsInBlock]var values for every
thread block it is scheduled to maintain (96kB limit for GTX 1080TI).

The shared memory needed per thread block depends on the
number of threads (warps) in each thread block. Therefore, the GPU
performance and utilization also depend on this parameter. However, if
tuned accordingly, the Pascal GPU approaches its peak bandwidth with
each of its 28 SMs busy with around 64 warps and more, depending on
the kernel function, see [23]. Roughly, this means approaching GPU’s
peak bandwidth since around 80,000 solved particles. This behavior
has been observed in dimensions, Nvar, from 2 to 10, see Fig. 5 c.
Switching to multi-GPU after reaching a performance peak of a single
GPU might be advised.

When increasing the dimensionality of the problem, the solution
latency becomes more dependent on global memory bandwidth, bus
size and also data structure. Total amount of shared memory requested,
however, ultimately sets the upper bound on the size of the problem
solved. Switching to a multi-GPU execution after reaching the shared
memory limit might be advised.

Fig. 3. Solution procedure of the on-chip memory implementation.
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In case of the global memory implementation, see Section 6.2, its
limits are set by the size of global memory (11GB on GTX 1080TI).
Register usage per thread in kernel functions is rather low (20 registers
at most) compared to the maximum of 255 registers per thread
on the GTX 1080TI.

8. Conclusion

The presented paper deals with a parallel implementation of a dy-
namical system of mutually repelling particles assembled as a physical
analogy of the Audze-Eglājs and ϕ optimization criteria for obtaining
space-filling designs. The unusual property of the particle system
of interest is the arbitrary dimension of the design space which stipu-
lates specific restrictions of utilization of GPU’s fast on-chip resources.
Two fundamentally different parallel implementations are therefore
developed and their performance is compared to the initial single-
thread CPU implementation.

The parallel implementation proposing utilization of the on-chip
memory for a serialized interaction of tiles of particles is built on the
concept [22]. The on-chip memory allocation is however a subject
of refinement due to the unknown dimensionality of the particle
system. The usage of registers for data storage is argued to be in-
appropriate as well as the utilization of L1 cache is avoided for it
has been unified with the texture cache since the Maxwell architecture.
Therefore, the usage of the shared memory is proposed for both

maintaining the computed data as well as for circulation of tiles
of particles.

Along with the on-chip solution, an entirely general implementation
has been developed, utilizing solely GPU’s on-board global memory. It
investigates the approach of unfolding all the possible parallelism
into the global memory and hiding the memory latency by computing
all possible data in parallel. Large reductions required are handled
by fast atomic additions.

Despite the shared memory resources being rather limited, the on-
chip implementation turns out to be the best performing solution for the
expected range of dimensionality, exhibiting mild linear dependency
of execution time on both number of particles, Nsim, and number of di-
mensions, Nvar.

Generally, however, both GPU implementations provide a major
speedup of such a generalized particle system solution compared to the
CPU. Although the actual GPU code is going to be a subject of further
optimization efforts, the parallelized solution is already capable
to serve its research purposes; to compute many runs of vast optimi-
zation scenarios.
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Fig. 4. Performance comparison of the all-pairs O N( )2 solution while scaling Nsim in constant dimension of =N 2var .

Fig. 5. a) Performance comparison of the O N( )2 solution as executed by CPU (dashed) and GPU (solid and dotted lines) while scaling both Nsim and Nvar. b) The
achieved speedup of solution. c) Comparison of performance in interactions solved per second.
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Appendix A. Derivation of equations of motion

The formulation of the potential energy of a system of charged particles as proposed by the (P)AE criterion, see Section 2, will further be
generalized and utilized for derivation of equations of motion of the undamped dynamical particle system. The derivation itself may be conducted
by using various approaches, all of which lead, of course, to identical results. Essential remarks about derivation using Lagrangian mechanics are
provided in what follows.

To begin, let us state that the dynamical behavior of a mechanical system with a finite number of degrees of freedom can be described by the
Lagrange’s function, or shortly Lagrangian, L . Sometimes also called a kinetic potential, the Lagrangian L is a functional; a sum of formulations
of kinetic and potential energy. In case of the PAE-conditioned dynamical system, the Lagrangian can be described as follows:

L = +E E ,k p (A.1)

with the kinetic energy of the particle system Ek being a simple sum of kinetic energies of all particles of equal mass m:

∑ ∑=
= =

E m x1
2

˙ ,k
i

N

v

N

i v
1 1

,
2

sim var

(A.2)

where =x x˙ i v t i v,
d
d , is the velocity of ith particle in dimension v.

We now consider a generalized formulation of the potential energy, Ep, employing an arbitrary value of the exponent, q, upon the mutual
distances, Lij. The potential energy of the model can be written as a sum of energies stored within all mutual inter-particle interactions:

∑ ∑=
=

−

= +

E
L
1 ,p

i

N

j i

N

ij
q

1

1

1

sim sim

(A.3)

where the power has been changed to a general integer, q, (similarly to the ϕ-criterion [8]) and the metric considered is the periodic length, L ,ij see
Eq. (5).

Further, it is needed to calculate the derivatives of LagrangianL with respect to all state variables. In the case at hand, the state variables are
the coordinates xi, v and velocities ẋi v, of all particles in each dimension. Obeying the Lagrange’s equations of the second kind:

L L
⎜ ⎟
⎛
⎝

∂
∂

⎞
⎠

= ∂
∂t x x

d
d ˙

,
i v i v, , (A.4)

one can start off with the assumption that, apart from the derivatives with respect to the time t, the kinetic energy Ek is further differentiable only
with respect to velocities ẋi v, and the potential energy Ep (Eq. (A.3)) is differentiable only with respect to coordinates xi, v. Therefore, the left-
hand side of Eq. (A.4) is rather easily obtainable:
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(A.5)

with =x x¨ ˙i v t i v,
d
d , being the acceleration of the ith particle in the dimension v.

The right-hand side of Eq. (A.4) becomes:

L ∑∂
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∂
= ⎛

⎝
⎜

⎞

⎠
⎟

≠
+x

E
x L L

1 Δ
.

i v

p

i v j i

N

ij
q

ij v
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,sim

(A.6)

The motion of the dynamical system is therefore described by a system of independent equations. This awareness is of high importance while
considering the possibilities for solution method and its computer implementation. This means that each acceleration ẍi v, can be solved separately,
without solving a system of equations.

The resulting equation of motion of ith particle in vth dimension as assembled from Eqs. (A.4)–(A.6) finally reads:

∑=
≠

+x
m L

¨ 1 Δ
,i v

j i

N
ij v

ij
q,

,
2

sim

(A.7)

which is identical to Eq. (6). Note that these are equations of motion of a conservative dynamical system as defined by the energy potential (A.1)
which does not cover any form of energy dissipation.
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