
Contents lists available at ScienceDirect

Composites Part B

journal homepage: www.elsevier.com/locate/compositesb

Probabilistic crack bridge model reflecting random bond properties and
elastic matrix deformation

M. Vořechovskýa,∗, R. Rypla, R. Chudobab
a Institute of Structural Mechanics, Brno University of Technology, Czech Republic
b Institute of Structural Concrete, RWTH Aachen University, Germany

A R T I C L E I N F O

Keywords:
Microstructure
Bond strength
Micromechanics
Pull-out strength
Modeling

A B S T R A C T

A semi-analytical probabilistic model of an isolated composite crack bridge is presented in this paper. With the
assumptions of heterogeneous fibrous reinforcement embedded in an elastic matrix the model is capable of
evaluating the stress and strain fields in both fibers and matrix. In order to be applicable as a representative unit
in models at higher scales, the micromechanical response of the composite crack bridge is homogenized by using
a probabilistic approach. Specifically, the mean response of a crack bridge is obtained as the integral of the
response of a single fiber over the domain of random variables weighted by their joint probability density
function. This approach has been used by the authors in a recent publication describing a single crack bridge
with rigid matrix. The main extension of the present crack bridge model is the incorporation of elastic matrix
deformations and of boundary conditions restricting fiber debonding at the crack bridge boundaries. The latter
extension is needed to reflect the effects of interactions with neighboring cracks within a tensile specimen with
multiple cracks. The model is verified against three limiting cases with known analytical solutions (fiber bundle
model, crack bridge with rigid matrix, mono-filament in elastic matrix) and is shown to be in exact conformity
with all of these limiting cases.

1. Introduction

The toughening effect of fibers used as reinforcement in ceramics is
well known [2,16,17,34,42]. Provided that the interfacial layer allows
for debonding and sliding of the fibers along the matrix, the notch
sensitivity, thermal shock resistance and fracture toughness of fibrous
composites can be significantly increased. If matrices with rather low
tensile strength (e.g. cement-based matrices in textile reinforced con-
crete, ECC or SHCC) are reinforced with high-strength ceramic or
polymer fibers, the aim is not only to increase the toughness but also to
achieve a favorable quasi-ductile tensile behavior and increase the
strength [33,45,55,57]. The quasi-ductility is caused by multiple
cracking of the matrix and fiber debonding. In general, these compo-
sites, which are the focus of the present article, can be called (quasi-)
brittle-matrix composites (BMC).

If unidirectional BMCs loaded in tension are designed for structural
applications, it is imperative that a large redistribution capacity is
available before the ultimate failure due to localized fiber damage is
achieved [2,3,18,29,50]. The whole process of the composite tensile
response is accompanied by considerable stress redistributions both
between and within the composite constituents [21,35,47,48,64]. The

qualitative and quantitative characteristics of BMCs strongly depend
not only on the material and geometric properties of the constituents
and their interface [2,39,65,70], but also on the statistical variability of
these properties [37,55,62].

In order to avoid expensive numerical calculations, which are often
highly redundant, considerable effort has been devoted to the devel-
opment of multiscale models that employ homogenization techniques.
Caggiano et al. [8] recently proposed the use of zero-thickness interface
elements to reproduce the complex influence of fibers on the cracking
phenomena of the concrete/mortar matrix. The finite element method
[65–67,69], shear-lag analysis [48,51,66], Green's function method
[35,64,67] and the fiber bundle model with equal load sharing have
been used (among others) in the past for the analysis of the microscale
mechanics of RVEs (representative volume elements) in fibrous com-
posites [4,19,27,30,32,58,71]. In Refs. [25,26], unidirectional lami-
nates have been studied using analytical micromechanics (Mori-Tanaka
method) with elasticity in combination with a detailed calculation of
stresses at the fiber-matrix interface to determine maximum macro-
scopic far-field stress. With the RVEs, the behavior of larger scaled
domains can be extrapolated using appropriate analytical or numerical
methods that take into consideration the variability of the RVE
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properties and the related size-effects. With ever growing computa-
tional performance, the trend in recent years has been pointing towards
nanoscales. Molecular dynamics is now widely used for the simulation
of defects, dislocations and their interactions [10,38,59,68] and
quantum mechanics is being applied to obtain most accurate inter-
atomic interactions from first principles [22,46].

The influence of fibers on the stress level at the onset of matrix
cracking and criteria for crack propagation have been studied into de-
tail e.g. in Refs. [6,9,36,41,43,44]. The present work focuses more on
the detailed description of stress transfer from heterogeneous bundle of
bridging fibers into elastic matrix.

The present model belongs to the category of fiber bundle models
reflecting material heterogeneity using the statistical representation of
selected material parameters. The major difference of the present model
compared to the majority of existing models is the inclusion of random
bond strength τ and fiber radius r which introduce heterogeneity into
the reinforcement at the microscale. Although the problem of bond
heterogeneity has been addressed e.g. in Refs. [7,24,31,62,70], its ef-
fect on the tensile response of multiply cracked unidirectional compo-
sites has not yet been thoroughly analyzed by a probabilistic model. In
Ref. [7], the nonuniform stress state within a multifilament yarn in
textile reinforced concrete was modeled by variable filament lengths
bridging a matrix crack. The nonlinear behavior during yarn pullout
from the cementitious matrix was then assumed to be due solely to
ruptures of individual filaments and debonding was neglected.

The authors of the present article have published a new approach to
the micromechanics of an isolated discrete crack bridged by hetero-
geneous fibers in Ref. [55]. The main conclusion of the publication was
that a higher reinforcement heterogeneity reduces the crack bridge
strength and increases its toughness, which was also observed experi-
mentally in Ref. [62]. In the present article, the model previously in-
troduced by the authors in Ref. [55] is extended through:

1) the evaluation of the stress state of the matrix. In composites
with heterogeneous reinforcement, the debonded lengths of in-
dividual fibers are variable which results in a nonlinear effective
bond-slip law and thus a nonlinear matrix strain profile in the vi-
cinity of a crack bridge, see Fig. 1. Within the debonded zones, the
matrix stress is lower than its far field value, and as a result further
matrix cracks are less likely to occur here. These zones have been
called ‘shielded’ [50], ‘slip’ [1] or ‘ineffective’ [20] or ‘transmission’
[29] lengths in the literature. The size and form of the matrix stress

profile along the longitudinal axis in the vicinity of a crack bridge
determine important composite properties like the crack density,
crack widths, the overall form of the stress-strain response and the
matrix fragment length distribution.

2) the interaction of serially coupled crack bridges which plays a
significant role as the crack density in a multiply cracked composite
grows. Interactions are utilized by setting restrictions on fiber de-
bonding at the symmetry point between neighboring matrix cracks.
These debonding restrictions dictate the tensile stiffness of crack
bridges and are the cause for the strain-hardening behavior of
multiply cracked fibrous composites with continuous reinforcement.

Given these extensions, the representative crack bridge can be em-
ployed within a multiple cracking model [53,56] that utilizes e.g. the
random strength approach as criterion for the stochastic crack initia-
tion.

The paper is organized as follows: Sec. 2 introduces notation and the
model assumptions. The model is derived in two steps: the probabilistic
homogenization of the micromechanical response in Sec. 3 and the
micromechanical formulation of a fiber bridging action. In order to
verify the model's robustness, Sec. 5 provides three limiting cases with
known analytical solutions and investigates the ability of the present
model to reproduce them. Finally, conclusions and the demonstration of
the effect of elastic deformation of matrix are drawn in Sec. 8.

2. Notation and assumptions

A single crack bridge in an unidirectional fiber reinforced composite
with a constant cross-sectional area Ac and a volume fraction Vf of
continuous fibers loaded in tension with the far field composite stress σc

is considered. Both fibers and matrix are linear elastic with moduli of
elasticity Ef and Em, respectively, and the fibers fail in a brittle manner
upon reaching their breaking strain ξ. This breaking strain refers to the
fiber strain at the position of a matrix crack εf0 (see Fig. 2). Fibers are
assumed to have circular cross-section with radius r, cross-sectional
area Af and a constant frictional interface stress τ that equals the bond
strength so that the bond vs. slip law is assumed to be ideally plastic
with infinite initial stiffness. It follows that the terms bond stress and
bond strength are interchangeable when this type of bond vs. slip law is
used. This convenient assumption may be considered simplified.
However, the authors argue that for fibers in brittle matrices, the se-
lection of a constant interfacial shear stress is reasonable. The fibers
typically have rather low bond to the matrix. When debonding at the
interface occurs along part of the stress recovery region, shear stresses
after debonding may be much lower than the shear stresses before
debonding. However, these peaks get smoothed out as the frictional
component can be surprisingly large. It is because the fiber fragments
are, on average, very long and, also there are large normal stresses that
can develop from the differential contraction of the fiber and matrix
after elevated temperature curing and Poisson contraction effects due to
tensile loading [34]. The initial elastic part of the bond-slip law is
negligible and selection of the constant bond-slip law, used by most of
authors, captures the essential nature of the stress recovery, see e.g. Ref.
[34]. In cases of polymer matrices reinforced with fibers with much
stronger bond to the matrix, a more complicated bond-slip law may be
suitable [50,52]. The proposed crack bridge model is constructed such
that it can act as a representative crack bridge within a tensile specimen
with multiple cracks. The interaction between cracks is introduced by
defining boundary conditions that reflect the stress symmetry between
adjacent cracks bridges.

The strain is variable for individual fibers due to the parameters
which affect the fiber-matrix bond and are assumed to be of a random
nature. Due to the weak bond and high matrix stiffness characteristic of
cement-based and ceramic matrix composites, only the longitudinal
deformation of both fibers and matrix is considered and shear de-
formations [19,28,50] are ignored.

Fig. 1. Strain in fibers and matrix in the vicinity of a composite crack bridge: i denote
realizations of fiber properties from the sampling space X ; differential equilibrium within
a composite cross-section (frame).
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The matrix crack is assumed to be planar and perpendicular to the
loading direction. Any residual cohesive force transferred by the matrix
crack planes is ignored so that the force is transmitted solely by the
fibers. Between the crack planes, fibers bear the applied load and
transmit it into the matrix along a debonded length a which depends on
the constituent properties and the crack opening w so that

A=a w τ r E E V( ; , , , , ).m f f (1)

Throughout the paper, the parameters E E,m f and Vf are considered
deterministic and the dependence on them is not explicitly stated in the
equations. In the case of variable bond properties (heterogeneous re-
inforcement), the debonded length is a function of random bond and of
the constituent properties. The idealization of the composite can be
described as a set of parallel 1D springs (representing the fibers) with
tensile stiffness per unit length E Af f coupled to a single 1D spring
(representing the matrix) with the stiffness −E A V(1 )m c f through a
(possibly random) frictional bond with the shear flow per unit length
… πrτ2 An important deviation of the present model from the model
with rigid matrix presented in Ref. [55] and from fiber-bundle models
in general is the interaction of the fibers through the elastic matrix.
Fibers are therefore not mechanically independent which has to be
considered when their stress state is evaluated. It is implicitly assumed
that fibers interact solely through the matrix and that a direct inter-
action via friction at the fiber-fiber interface does not take place. In
Fig. 3a and Fig. 3b, the difference between independent and dependent
fibers (through the elastic matrix) is shown in terms of fiber strain vs.
crack opening and in Fig. 3c and 3d in terms of fiber strain along the
fibers within a crack bridge.

Each gray line shows the response of a crack, bridged by a single
fiber from the random domain with sampled parameters. Individual
lines are obtained with a fiber parameter sampled from the probabilistic

distribution of τ (samples are selected regularly with respect to prob-
ability – LHS sampling). The black lines in the top row of Fig. 3 re-
present an average response of the crack bridge reinforced by a bundle
of fibers. They are obtained by computing the average fiber strain – an
average from the responses for individual fibers for each value of the
crack opening.

3. Homogenized composite response

It was explained in the course of the derivation of the crack bridge
model with rigid matrix [55] that with the quasi-static crack opening w
set as control variable, the composite stress can also be kept track of
during the descending branch, while a force controlled model would
only be able to track the stress up to its peak value (the existence of a
descending branch implies that for a given force acting on the crack
bridge, there exist more than one crack opening, see e.g. Fig. 4).

In Ref. [55], it was also stated that the crack opening equals the far
field displacement u for rigid matrix. This statement is not true for the
elastically deformable matrix (see Fig. 4). Depending on the fiber and
matrix stiffness ratio and on the bond strength, the total displacement
of a tensile specimen u will be equal or larger than the crack opening w.
For some geometrical and stiffness configurations, the composite stress
σc vs. u will exhibit snap-back behavior resulting in an unstable (dy-
namic) damage process. This behavior occurs, when energy release rate
exceeded its critical value [5].

In such situations, the loading must be controlled by the crack-
opening displacement w or by the energy release rate to ensure a stable
loading process under all circumstances and to obtain a unique relation
between the composite stress σc and total elongation u (see the dashed
curve in Fig. 4). An example of the load control with monotonous in-
fluence of the control variable, w, on the response variable (pull-out
force or composite stress, σc) is provided in Fig. 4 using the solid line.

In real experiments, however, controlling the loading by crack
opening may be a difficult task and people tend to use loading con-
trolled by the displacement of the loading platens. If there is a snap-
back behavior related e.g. to an avalanche of ruptures of fibers, the
displacement-controlled experiment is not able to track the whole snap-
back curve, Fig. 4.

In composites with heterogeneous reinforcement individual fibers
have variable properties and the composite stress is the normalized sum
of their contributions to the bridging stress. It was derived in Ref. [55]
that as the number of fibers nf grows large, the normalized sum of all
fiber responses converges by the law of large numbers to their average
value. Thus, the composite response can be represented by the statis-
tical average of many individual fibers.

Let the fiber strain at the matrix crack position be introduced as
ε w X( , )Xf0, with w representing the crack opening and X standing for the
sampling space of the assumed random variables. The resulting formula
for the expected value of the composite stress σc (denoted as μσ X,c ) as a
function of a nonnegative crack opening w is given as

= ≥μ w E V ν r ε w wX( ) E[ ( ) ( , )], 0,σ X X, f f f f0,c (2)

where the average is denoted by the expectation operator ⋅E[ ] and the
variable ν r( )f is given by the expression

=ν r r
r

( )
E[ ]f

2

2 (3)

and can be viewed as a weight factor for fibers with respect to their
cross-sectional area (see Ref. [55] for details). The mean composite
strength is defined as

= ≥⋆ { }μ μ w wsup ( ); 0 .σ σX X, ,c c (4)

We remark that Eqns. (2) and (4) are valid generally and thus hold
also for the case of elastic matrix. In order to evaluate the mean values
given by Eqns. (2) and (4), the fiber crack bridge function ε w X( , )Xf0,

Fig. 2. Multi-scale modeling approach diagram.
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has to be resolved and the joint distribution function of the random
variables must be provided [12,55].

The variance of the composite stress at a given crack opening was
derived in Ref. [55] and explained to be decreasing inversely propor-
tional to the increasing number of fibers. Daniels [23] has derived that
the same rate applies for the variance of the composite strength. For
practical structural scales, the theoretical variability of both the com-
posite stress and strength stemming from randomness at the microscale
is negligibly small. Note that there are other sources of randomness at
the structural scale, which will cause variability in test results.

3.1. A note on the probabilistic approach

One may suggest to simplify the probabilistic approach by just
‘evaluating the analytical model with average values of the random
variables’. Such an approach would lead to incorrect conclusions be-
cause, in general, the expectation of a function of random variables
does not equal the function of the expectations of the random variables,
i.e.: ≠f fX XE[ ( )] (E[ ]). The equality is only given for the special case of
f X( ) being a linear combination of independent random variables.
Since in the present model, we are dealing with interacting random
variables governing nonlinear phenomena like fiber breakage and de-
bonding, the probabilistic approach presented in this work is the only
correct way to compute the effect of the random variables on the re-
presentative crack bridge response. In order to support our claim that

using the average properties in the model to obtain the average re-
sponse is inappropriate in the case of the crack bridge behavior, we
present Fig. 5. In this example, the only random variable is the fiber
breaking strain. Three values of variance of Weibullian random
breaking strain are used while keeping the mean value identical. The
line denoted as “deterministic” represents a response obtained with
variance approaching zero, which equals the case of representing the
random variable by its mean value. If the randomness of the breaking
strain is taken into account and the average crack bridge response is
evaluated correctly by probabilistic homogenization (as proposed in the
present model) the resulting behavior differs qualitatively for each
value of the breaking strain variance (response transition from brittle to
ductile behavior, strength reduction for higher variance).

4. The fiber crack bridge function

To derive the ‘fiber crack bridge function’ in a straightforward way,
we first assume that fibers have infinite strength and analyze the con-
tribution of a single fiber within a composite crack bridge to the total
transmitted stress. The aspect of finite fiber strength will be included at
the very end of this section.

We assume the bond strength τ and the fiber radius r to be random
variables so that the sampling space X spans two dimensions �2. These
variables are orthogonal if no statistical dependence is assumed be-
tween the random variables.

Fig. 3. Comparison of rigid matrix and elastic matrix: Fiber crack bridge function ε Xf0, ,i with = …i 1, , 30 samples from X and their average value εE[ ]Xf0, considering (a) rigid matrix (b)
elastic matrix; Fiber and matrix strain profiles along z considering (c) rigid matrix (d) elastic matrix. Bond strength τ is uniformly distributed between 1.0 N/mm2 and 4.0 N/mm2, i.e. the
notation in the legend statesU (location, scale).
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The pullout of individual fibers from the matrix is simulated by the
shear-lag model with infinite shear stiffness and a constant bond
strength τ with constant frictional stress τ acting at the debonded in-
terface [2,17,47]. When the far field stress σc is applied, the matrix
crack opens by the amount w, the bridging fibers debond along the
length a and transmit the force into the matrix. The transmitted force is
a monotonic increasing function of the crack opening w, bond strength τ
and the debonded length a, which depends on the random variables
spanning the sampling space X, i.e. A=a w X( , ). For any debonded
fiber, the differential equilibrium equation reads (see Fig. 2)

′ + =E ε z T z X( ) ( , ) 0,zXf f, (5)

with ′ε z( )Xf, denoting the derivative of the fiber longitudinal strain
ε z( )Xf, with respect to z:

′ = = −ε z
ε z

z
T z

E
X

( )
d ( )

d
( , )z

X
X

f,
f,

f (6)

and T zX( , )z the bond intensity given by

= ⋅T z T zX X( , ) ( ) sign( ).z (7)

Here, T is the shear flow per unit length normalized by the fiber cross-
sectional area

= =T πrτ
πr

τ
r

2 2 .2 (8)

In order to obtain the fiber strain at the crack plane, Eq. (6) is to be
integrated. The resulting fiber strain profile ε Xf, along z has its max-
imum, ε Xf0, , at the crack plane =z 0, and decays linearly with the dis-
tance from the crack with the slope − T E/ f .

4.1. Non-interacting crack bridges

Consider a crack bridge in which fibers can freely debond at both
sides without restrictions. At the end point of debonded lengths,

= ±z a, the fiber strain is identical to the matrix strain, i.e.
= ± = = ±ε z a ε z a( ) ( )Xf, m (see Figs. 1 and 2). At distances ≥z a, the

fiber strain equals the matrix strain ε z( )m so that fibers and matrix form
a compact composite cross-section with a unique longitudinal strain
shared by both constituents. The expression for the fiber strain within
the debonded range is obtained by integrating Eq. (6) and taking into
consideration the above mentioned boundary conditions

∫= − + ′
−

ε w z ε a ε x xX( , , ) ( ) ( )d
a

z
X Xf, m f, (9)

= − +
−

<ε a
T a T z z

E
z a

X X
( )

( ) ( , )
, .z

m
f

For the complete z domain, the fiber strain reads

=
⎧
⎨
⎩

+ <

≥

−

ε w z
ε a z a

ε z z a
X( , , )

( ) :

( ) :

T a T z z
EX

X X

f,
m

( ) ( , )

m

z

f

(10)

with − =ε a ε a( ) ( )m m due to the symmetry of the fiber strain about the
crack plane =z 0. Note that these formulas involve the debonded
length a which is a function of w and X (see Fig. 1). The dimension of
ε Xf, is thus � +n 2, which corresponds to the =n 2 dimensions of the
sampling space X, the dimension of the longitudinal position z and of
the crack opening w. By formulating the fiber crack bridge function as
the maximum fiber strain at =z 0, i.e.

= = = +ε w ε w z ε a
T a

E
X X

X
( , ) ( , 0, ) ( )

( )
X Xf0, f, m

f (11)

the dimensionality is reduced to � +n 1.
There are two unknowns in Eq. (11): the debonded length a and the

longitudinal matrix strain ε a( )m . Note that for composites with a stiff
matrix, − ≫E V E V(1 )m f f f , i.e. ≈ε z( ) 0m , both the debonded lengths a
and the fiber crack bridge function ε w X( , )Xf0, are simple analytical
functions of w and X [55]. However, if the matrix deformations are not
negligible, individual fibers are interconnected and the evaluation of
Eq. (11) is not trivial in general because it depends on the stress state of
all fibers. A simple solution is only possible in special cases, see Sec. 5.
To evaluate the unknowns a and ε a( )m , we have to consider a differ-
ential equilibrium of stresses in the matrix with a kinematic constraint.
The sought variables are then found as the solution of an initial value
problem, which is discussed in the remainder of this subsection.

With the assumption of negligible shear deformations of the matrix
(zero shear-lag thickness assumption), the differential equilibrium of
matrix stresses in the longitudinal direction can be stated as

Fig. 4. Composite tensile specimen as controlled by the far field composite stress σc,
displacement of the end point u and crack opening w.

Fig. 5. Effect of spread of a random variable (breaking strain ξ) on the crack bridge
performance in comparison with a deterministic approach.
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′ − =K z ε z t z( ) ( ) ( ) 0,mcs (12)

where ′ =ε z ε z z( ) d ( )/dm m is the derivative of the axial matrix strain with
respect to z, t z( ) is the longitudinal traction originating from the fric-
tion of debonded fibers at the fiber-matrix interface and K z( )cs is the
axial stiffness of the compact composite cross-section. It is to be ex-
plained that the compact composite stiffness K z( )cs includes the stiff-
ness of both matrix and bonded fibers, i.e. fibers with zero slip at the
position z. Considering the general case, where there are nf fibers in the
composite cross-section and they have variable debonded lengths due
to their random properties, K z( )cs at a particular crack opening w (the
dependency on w is not explicitly denoted in the following formulas)
and at the distance z from the matrix crack is derived as

⎛
⎝

∑ ⎞
⎠

= + − ⋅ −
=

K z E A E A A H a z( ) ( ) .
i

n

i ics m m f f,tot
1

f,

f

(13)

The longitudinal traction t z( ) at w and z is

∑= ⋅ −
=

t z T A H a z( ) ( )
i

n

i i i
1

f,

f

(14)

which equals the traction of the debonded fibers, i.e. fibers with <z ai,
see Fig. 2 bottom. The variables Ti, A if, and A=a w X( , )i i are respec-
tively the bond intensities, fiber cross-sectional areas and debonded
lengths of individual fibers denoted by the subscripts = …i n1,2, , f .
These variables depend on random parameters which can be considered
as sampling points Xi from the sampling space X. The deterministic
variables Am and Af,tot are the matrix cross-sectional area and the total
cross-sectional area of all nf fibers, respectively. The function ⋅H ( )
denotes the Heaviside step function defined as

= ⎧
⎨⎩

<
≥H x x

x( ) 0 : 0
1 : 0. (15)

The role of the Heaviside function in Eqns. (13) and (14) is to exclude
bonded fibers from the summations. Assuming a large number of fibers,
the sum in Eq. (13) can be approximated by statistical average as

∑ ⋅ − ≈ ⋅ −
=

A H a z n A H a z( ) E[ ( )]
i

n

i i
1

f, f f

f

(16)

and the sum in Eq. (14) can be approximated in a similar way as

∑ ⋅ − ≈ ⋅ −
=

T A H a z n TA H a z( ) E[ ( )].
i

n

i i i
1

f, f f

f

(17)

Substituting these expressions back into Eqns. (13) and (14) and
relating these approximations of K z( )cs and t z( ) to a unit composite
cross-sectional area provides the expressions for their mean, normalized
values

= + − ⋅ −μ z E A
A

E
A

A n A H a z( ) ( E[ ( )])K X,
m m

c

f

c
f,tot f fcs (18)

and

= ⋅ −μ z n
A

TA H a z( ) E[ ( )].t X,
f

c
f (19)

If Ac is now substituted by its asymptotic value for a large number of
fibers as ≈A n A VE[ ]/c f f f (see Ref. [55] for the derivation) and the
substitution given by Eq. (3) is applied, Eqns. (18) and (19) can be
rewritten as

= − ⋅ −μ z E E V ν r H a z( ) E[ ( ) ( )]K X, c f f fcs (20)

and

= ⋅ −μ z V Tν r H a z( ) E[ ( ) ( )].t X, f f (21)

with = − +E E V E V(1 )c m f f f being the composite stiffness given by the
rule of mixtures. Substituting these expressions into the original dif-
ferential equilibrium equation Eq. (12), the matrix strain derivative can

be asymptotically expressed as

′ ≈ε z
μ z

μ z
( )

( )
( )

.t

K

X

X
m

,

,cs (22)

With the initial value of zero matrix strain at the crack position,
=ε (0) 0m , we have an initial value problem, the solution of which is the

unknown matrix strain profile along z needed for the evaluation of the
fiber crack bridge function Eq. (11).

However, the differential equation still includes the unknown de-
bonded length of fibers a. The additional equation needed for solving
the unknown a is a kinematic constraint of the crack bridge problem
stating that the crack opening is identical for all fibers irrespective of
their random parameters from the sampling space X. The crack opening
is defined as the difference between the fiber and matrix strains, in-
tegrated over the whole debonded range:

∫= −
−

w ε z ε z zX( , ) ( )d
a

a
Xf, m (23)

which implicitly includes the debonded length a and relates it to the
control variable – the crack opening w. Note that for a particular
sampling point (vector of random parameters) Xi from the sampling
domain X, the crack opening given by Eq. (23) can be interpreted as the
shaded area in Fig. 2. With the substitution of the implicit expression
for a given by Eq. (23) into Eq. (22), a 2nd order ODE is obtained which
can be integrated using a suitable numerical method to yield the matrix
strain profile ε z( )m and, particularly, its value at ε a( )m needed for the
fiber crack bridge function given by Eq. (11).

The authors propose a method for solving the differential equation,
which transforms it into a 1st order ODE with separable variables (see
Appendix A) and provides a solution in closed form. The resulting
formula for the matrix strain ′ε w ε( , )Xm f, is written as a function of the
crack opening w and the fiber strain derivative ′ε Xf, (Eq. (6)), which
directly links the matrix strain to the sampling space X. The resulting

′ε w ε( , )Xm f, equals the matrix strain at the position of the debonded
length of a fiber with the strain derivative ′ε Xf, and reads

∫′ = ′ ′
′

′
′

−∞

′
ε w ε ε ε

a w ε
ε

ε( , )
d ( , )

d
d

ε
Xm f, m f

f

f
f

Xf,

(24)

with the derivative

′
′

= −
′

′ + ′ ′
a w ε

ε
a w ε

ε ε w ε
d ( , )

d
( , )

2[ ( , )]
X

X

X

X X

f,

f,

f,

f, m f, (25)

and the debonded length given as

′ = ′a w ε F ε w( , ) exp[ ( )] ,X Xf, f, (26)

where ′F ε( )Xf, is the antiderivative of the function

′ =
′

′
= −

′ + ′ ′
f ε

F ε
ε ε ε ε

( )
d ( )

d
1

( )
.X

X

X X X
f,

f,

f, f, m f, (27)

Having derived the debonded lengths of fibers ′a w ε( , )Xf, and the
matrix strain ′ε w ε( , )Xm f, (which equals ε a( )m in Eq. (11)) by solving the
differential equilibrium Eq. (22) with the kinematic constraint Eq. (23),
the fiber crack bridge function ε w X( , )Xf0, can be easily computed for an
isolated crack by substituting these variables into Eq. (11).

4.2. Interacting crack bridges

Recalling that the actual goal of the probabilistic crack bridge model
(PCBM) is the simulation of a unidirectional composite with multiple
cracks in series [53,56], the PCBM has to be able to take into account
the interaction of neighboring cracks. At low tensile loads, few cracks
can be expected to have occurred and the debonded lengths of fibers are
rather short, so cracks can be considered as mechanically independent.
However, if the load increases, the crack density grows and so do the
debonded lengths of crack bridging fibers. When the debonded lengths
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of fibers from two neighboring cracks connect, further debonding is not
possible and the fibers act as if they are clamped to the matrix at the
point of connection of their debonded lengths – the fiber slip is re-
strained. The position of the contact between the debonded zones can
be with reasonable accuracy assumed to be halfway between two ad-
jacent cracks.

For the PCBM, the influence of neighboring cracks can thus be
adapted as zero slip boundary condition on fibers. This reflects the
stress symmetry between two cracks. In general, the distances to ad-
jacent cracks at both sides of a particular crack are different. The half
distance to the closer and more distant crack from the analyzed crack
shall be denoted ↓L and ↑L , respectively (see Fig. 6d).

When fibers debond up to the symmetry point between two cracks,
the compliance of the crack bridge function grows slower with growing
crack opening compared to free debonding on both sides. This is due to
the fact that debonding only takes place on one side of the crack bridge
where fibers are allowed to freely debond. As soon as all fibers debond
up to the symmetry points on both sides of a crack, the crack bridge
compliance becomes a constant with respect to further crack opening,
with the result that the composite stress becomes a linear function of w
(assuming that the damage of the constituents does not increase). In
order to include the effect of boundary conditions, the fiber crack
bridge function ε w X( , )Xf0, , given by Eq. (11) for fibers with free de-
bonding, has to be modified accordingly. Depending on the combina-
tion of adjacent crack distances and current debonded lengths, fibers
can either be clamped to the matrix on one side and freely debond at
the other side (Fig. 6b), or they have debonded up to the boundaries on
both sides and thus behave as if they are clamped at both sides (Fig. 6c).
These two cases are described in the following two subsections for fi-
bers with assumed infinite strength.

4.2.1. One-sided debonding
Considering a single fiber that is clamped to the matrix on one side

of the crack at the distance ↓L and freely debonds at the other side (see

Fig. 6b), the corresponding kinematic constraint defining the crack
opening (Eq. (23) for free debonding at both sides) has to be adapted as
follows

∫= − ′ >
− ↓

↓

↑w ε z ε z z a w ε LX( , ) ( )d ; ( , ) .
L

a
X Xf, m f, (28)

If these debonded lengths ′a w ε( , )Xf, , given by Eq. (26), exceed ↓L ,
the kinematic constraint Eq. (28) applies and the crack opening is de-
fined by the fiber and matrix strain difference integrated only within
− ↓L and the debonded lengths ↑a of the one-sided debonding fibers.

The corresponding modification in the fiber crack bridge function,
given by Eq. (11), affects only the function ′a w ε( , )Xf, , which is now
denoted as ′↑a w ε( , )Xf, for one-sided debonding. The full derivation is
described in Appendix A and results in

′ = + ′ −↑ ↓ ↓a w ε L F ε w L( , ) 2 exp[ ( )]2 .X Xf,
2

f, (29)

4.2.2. Clamped fibers
As soon as the debonded lengths also reach ↑L – the half distance to

the neighboring crack which is more distant (see Fig. 6c) – the kine-
matic constraint describing the crack opening becomes independent of
the debonded length. It reflects a state in which no debonding is taking
place, and has the following form

∫= − ′ >
− ↑ ↑

↓

↑w ε z ε z z a w ε LX( , ) ( )d ; ( , ) .
L

L
X Xf, m f, (30)

The fiber crack bridge function with this constraint has a different
form than Eq. (11). It can be solved directly by integrating Eq. (30) and
solving it for ε Xf0, , which turns out to be a linear function of w (see
Appendix A for the derivation)

=

′ >

⎜ ⎟+ ⎛
⎝

+ ⎞
⎠

+ +

+

↑

↑ ↓ ↓ ↑

↑ ↓
ε w

a w ε L

X( , ) ;

( , )

w T E L L u L u L

L LX

X

f0,

/ (2 ) ( ) ( )

( )

1 f,

f 2 2 m m

(31)

Fig. 6. Effect of boundary conditions on the fiber and matrix strain profiles (a–c). Composite crack bridge function with boundary conditions on fiber debonding (d).
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with u z( )m being the matrix longitudinal displacement relative to the
crack position.

4.2.3. The general form with infinite fiber strength
If all possible boundary conditions are taken into account, the fiber

crack bridge function can be expressed by the general formula

= ⎧
⎨⎩

< ′ <
< ′↓ ↑

↑

↑
ε w L L

a w ε L
L a w ε

X( , , , )
Eq. (11) : 0 ˆ ( , )
Eq. (31) : ˆ ( , ),X

X

X
f0,

f,

f, (32)

where

′ = ⎧
⎨⎩

< ′ <
< ′

↓

↓
a w ε

a w ε L
L a w ε

ˆ ( , )
Eq. (26) : 0 ( , )
Eq. (29) : ( , ).X

X

X
f,

f,

f, (33)

Note that since ε Xf0, is a function of ↓L and ↑L , the dependency is also
reflected in the matrix strain given by Eq. (24), i.e.

= ′ ↓ ↑ε w ε L LΣ ( , , , ).Xm m f, (34)

4.2.4. Finite fiber strength
If fibers reach their breaking strain, ξ, they experience brittle failure

and are assumed not to contribute to the total crack bridging force. As
pointed out by various authors studying the strength of composites
[20,50,60,63], broken fibers transmit a residual stress due to pullout.
However, this effect is ignored in the present PCBM and fibers are as-
sumed to break exactly at the crack plane. In other words, the ultimate
value of the interface slip is marked by the breakage of the fiber.
Quantitative results therefore represent a lower bound on strength and
global toughness (the integral of the force over the crack opening).

For random breaking strain, the sampling domain has three di-
mensions corresponding to the three random variables = τ r ξX { , , }.
Using the Heaviside step function, the possibility of fiber rupture at the
strain =ε ξf0 is introduced so that ε Xf0, is defined as

= ⋅ −ε w ε w H ξ ε wX( , ) ( ) [ ( )],Xf0, f0 f0 (35)

where εf0 is the strain at the crack plane of fibers with infinite strength.
Fiber ruptures, depending on εf0 and ξ, cause stress redistribution which
influences the matrix strain state. Since εf0, on the other hand, depends
on the matrix strain state as expressed in Eq. (11) for free debonding or
by Eq. (32) in general, the formulation is implicit and εf0 has to be
computed iteratively.

The dependency of the matrix strain state on εf0 is introduced by
extending the differential equilibrium of matrix stress Eq. (22) by an
additional Heaviside term in the variables μK X,cs and μt X, , which takes
fiber rupture into consideration. The evaluation of the compact com-
posite stiffness then becomes

= −μ z ε E E V( , ) ,K ξX, f0 c f f,b,cs (36)

with

= ⋅ − ⋅ −V V ν r H a z H ξ εE[ ( ) ( ) ( )]ξf,b, f f f0 (37)

where the additional Heaviside term −H ξ ε( )f0 ensures the addition of
the fraction of broken fibers to the μ z( )K X,cs stiffness. Broken fibers are

thus assumed to form a compact cross-section together with the matrix,
on which the tractions of the intact debonded fibers are acting. Al-
though the interaction of broken fibers with the matrix could be theo-
retically evaluated more precisely (e.g. in a similar fashion as proposed
in Ref. [1] for the unloading stage of the hysteresis), the present sim-
plification will not cause considerable inaccuracies. The mean long-
itudinal traction transmitted by fibers into the matrix μ z( )t X, (given by
Eq. (21)) becomes, with the additional Heaviside term,

= ⋅ − ⋅ −μ z ε V T ν r H a z H ξ ε( , ) E[ ( ) ( ) ( )],t X, f0 f f f0 (38)

where −H ξ ε( )f0 ensures that only intact fibers contribute to the stress
transmission. Having extended μ z ε( , )K X, f0cs and μ z ε( , )t X, f0 by εf0, the
matrix strain derivative, given by Eq. (22), becomes

′ =ε z ε
μ z ε

μ z ε
( , )

( , )
( , )

.t

K

X

X
m f0

, f0

, f0cs (39)

The implicit formulation of εf0 is therefore written as

= +ε w ε a ε T
E

a( ) ( , )f0 m f0
f (40)

for freely debonding fibers. For general boundary conditions on fiber
debonding, Eq. (32) is applied with Eq. (39) substituted for the matrix
strain derivative. The implicit Eq. (40) can be solved by using standard
numerical algorithms and provides both εf0 and εm. With these quan-
tities, the crack bridge function can be solved in one simple step by
substituting the evaluated εf0 and εm into Eq. (35).

5. Model verification for limiting cases

The following sections demonstrate elementary examples of the
mean composite crack bridge functions (Eq. (2)) with limiting values of
particular parameters. These parameters are set in such a way that the
model yields results for which an exact analytical solution is known.
The analytical forms serve to verify the model. The following limiting
cases are considered: fiber bundle model (Sec. 5.1); crack bridge with
rigid matrix (Sec. 5.2); mono-filament in elastic matrix (Sec. 5.3).

5.1. The fiber bundle model

The strain based fiber bundle model describes the stress-strain be-
havior of a bundle of fibers with random strength. We show that this
case is inherently included in the probabilistic crack bridge model
(PCBM) when boundary conditions at finite distances ↓L and ↑L are set
and the fiber breaking strain is assumed random. In particular, for the
limiting case →τ 0, the PCBM reproduces the response of the strain
based fiber bundle model.

5.1.1. Analytical solution
The analytical expression for the mean stress of a fiber bundle with

random breaking strain was given e.g. in Refs. [15,49,54,61] as

= −μ ε L E ε G ε L( , ) [1 ( , )]σ ξfb (41)

with =ε u L/ being the bundle strain (see Fig. 7), u the total

Fig. 7. Limiting behavior of the probabilistic crack bridge
model as the bond strength decreases. The fiber strength has
two-parameter Weibull distribution with shape = 5.0 and
scale = 0.018.
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displacement and G ε L( , )ξ the distribution of the fiber breaking strain at
gauge length L.

5.1.2. Limit analysis of the PCBM
Under the conditions mentioned above, we study the behavior of the

mean composite crack bridge function Eq. (2) divided byVf yielding the
mean fiber stress which shall be denoted as μσ ξ,f

. The general form of
μσ ξ,f is

= ⋅ −μ w ξ E ε w H ξ ε w( , ) E[ ( ) [ ( )]]σ ξ, f f0 f0f (42)

with ε w( )f0 being the fiber crack bridge function with infinite strength
given by Eq. (35). As the bond strength approaches zero, the debonded
lengths of fibers a and ↑a alike approach infinity for any value of >w 0.
Since the boundary conditions ↓L and ↑L are finite, ε w( )f0 is given by Eq.
(31), which is the form of the fiber crack bridge function for >↑ ↑a L .
Substituting = =T τ r2 / 0 (zero bond strength), the equation simplifies
to

=
+ +

+
↓ ↑

↑ ↓
ε w

w u L u L
L L

X( , )
( ) ( )

( )
.f0

m m

(43)

Because of the lack of interaction between fibers and matrix, the
matrix displacements um vanish so that

=
+↑ ↓

ε w w
L L

X( , )
( )

.f0
(44)

With zero matrix deformation, the crack opening w equals the total
far field displacement u and Eq. (44) is the definition of constant tensile
strain =ε u L/ of a dry fiber of length = +↑ ↓L L L . Substituting Eq. (44)
into Eq. (42) and assuming the breaking strain of a fiber of the total
length L to be distributed with G ε L( , )ξ , where =ε εf0, the mean fiber
stress yields

∫

∫

= ⋅ −

= −

=

= −

−∞

∞

∞

μ w ξ E ε w H ξ ε w

E ε w H ξ ε w g ε L ξ

E ε w g ε L ξ

E ε w G ε L

( , ) E[ ( ) [ ( )]]

( ) [ ( )] ( , )d

( ) ( , )d

( )[1 ( , )],

σ ξ

ξ

ε
ξ

ξ

, f f0 f0

f f0 f0 f0

f f0 f0

f f0 f0

f

f0

(45)

∫= −
−∞

∞

E ε w H ξ ε w g ε L ξ( ) [ ( )] ( , )dξf f0 f0 f0

∫=
∞

E ε w g ε L ξ( ) ( , )d
ε

ξf f0 f0

f0

= −E ε w G ε L( )[1 ( , )],ξf f0 f0

with g ε L( , )ξ f0 being the density of the breaking strain at length L. This
result proves the equivalence of the limiting case →τ 0 with the fiber-
bundle model given by Eq. (41). Fig. 7 depicts the mean fiber stress
obtained numerically using the PCBM and demonstrates convergence to
the asymptotic fiber bundle model as τ decreases.

5.2. Crack bridge with rigid matrix

The crack bridge model with rigid matrix was derived in Ref. [55].
As the matrix stiffness increases, the predictions of the PCBM in-
troduced in this paper will converge to those evaluated by the crack
bridge model with rigid matrix. For the sake of simplicity, free de-
bonding and infinite fiber breaking strain are assumed throughout the
following derivation proving the convergence.

5.2.1. Analytical solution
With reference to [55], we recall that the mean composite crack

bridge function for a crack bridge with rigid matrix is given by an
equation that is identical to Eq. (2) in the present paper, but the single

fiber function (when infinite fiber strength is assumed) has the form

=ε w Tw
E

X( , ) .Xf0,
f (46)

Since the homogenization of the composite stress in terms of mean
values is identical for the present and the referenced model, it suffices
to prove that ε w X( , )Xf0, given by Eq. (11) for the model with elastic
matrix asymptotically converges to Eq. (46) as the matrix stiffness
grows large.

5.2.2. Limit analysis of the PCBM
Eq. (11) defines the fiber crack bridge function for free debonding

and elastic matrix in the form

= +ε w ε a
T a

E
X

X
( , ) ( )

( )
.Xf0, m

f (47)

The debonded length a is given by Eq. (26) as

′ = ′a w ε F ε w( , ) exp[ ( )] ,X Xf, f, (48)

with ′F ε( )Xf, being the indefinite integral

∫′ = −
′ + ′ ′

′F ε
ε ε w ε

ε( ) 1
( , )

dX
X X

Xf,
f, m f,

f,
(49)

derived in Appendix A. With the same argumentation as above, the
matrix strain derivative ′ ′ε w ε( , )Xm f, becomes zero for infinitely stiff
matrix so that

∫′ = −
′

′ = − ′F ε
ε

ε ε( ) 1 d ln( ).X
X

X Xf,
f,

f, f,
(50)

With the substitution of Eq. (50) into Eq. (48), a can be evaluated as
follows:

′ = − ′

= =
′

a w ε ε w( , ) exp[ ln( )]

,w

ε

E w
T

X Xf, f,

Xf,

f

(51)

where the substitution given by Eq. (6) was used for ′ε Xf, . After sub-
stituting this expression into Eq. (47) and assuming zero matrix strain
as its stiffness grows large, the fiber crack bridge function becomes

=ε w Tw
E

X( , )Xf0,
f (52)

which equals Eq. (46) and completes the proof of the asymptotic be-
havior. Fig. 8 depicts numerically evaluated mean composite crack
bridge functions demonstrating asymptotic convergence to the crack
bridge model with rigid matrix as the matrix modulus of elasticity Em

increases. Unlike in the analytical derivation, the fiber strength was
assumed finite and random in the numerical study. For the applied
fiber-in-composite strength distribution, we refer to [55] and only give
the parameters used for the study: Weibull modulus = 5.0; character-
istic breaking strain = ⋅ −6 10 3 relative to the reference volume 1 mm3.

5.3. Mono-filament in elastic matrix

The third limiting case is the crack bridge with elastic matrix and
fibers with deterministic properties and infinite strength. This case has
an analytical solution which is derived next, and the PCBM will be
proved to yield this analytical solution for deterministic properties.

5.3.1. Analytical solution
For fibers with deterministic properties and infinite fiber strength,

analytical solutions to ε a( )m and >μ w w( ), 0σc exist. Considering free
debonding at both sides of the crack, the stress state in the crack bridge
is symmetric so that only the right hand side is analyzed in the fol-
lowing derivation. At a given crack opening w, all fibers have the same
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debonded length a. The matrix strain in the range ∈z a(0, ) is linear
and so is the strain of all fibers, see Fig. 9. The slope of the fiber strain is
defined by the force transmitted through the bond into the fiber per unit
length, − τrπ2 (with the minus sign because the fiber strain decreases
with growing distance z from the matrix crack), divided by the fiber
cross-sectional area πr2 and by the modulus of elasticity Ef

′ = − = − ∈ε z τrπ
πr E

T
E

z a( ) 2 , 0, .f 2
f f (53)

The slope of the matrix strain up to a, where all fibers are debonded
and transmit stress into the matrix, is given by

′ =
−

∈ε V T
E V

z a
(1 )

, 0,m
f

m f (54)

i.e. by the stress transfer V Tf acting on a matrix which has the stiffness
−E V(1 )m f . With the initial value =ε (0) 0m , meaning zero matrix strain

at the crack position, it can be directly integrated and results in a linear
matrix strain within the debonded range (see Fig. 9)

=
−

∈ε z V T
E V

z z a( )
(1 )

, 0, .m
f

m f (55)

The integration of the fiber strain derivative − T E/ f results in the fiber
strain profile

∫ ∫= ′ = − = − + ∈ε z ε z z T
E

z T
E

z C z a( ) ( )d d , 0, .f f
f f (56)

With the continuity condition =ε a ε a( ) ( )m f , the constant C is solved to
be = +C ε a Ta E( ) /m f , which substituted back into Eq. (56) results in

= + − ∈ε z ε a
T a z

E
z a( ) ( )

( )
, 0, .f m

f (57)

The fiber strain at the crack position thus becomes

= = +ε a ε ε a Ta
E

( ) (0) ( ) .f0 f m
f (58)

The remaining unknown – the debonded length a – can be solved by
utilizing its connection to the control variable w through the integral in
Eq. (23) that defines the crack width. With the substitution of Eq. (57)
and Eq. (55) for ε z( )Xf, and ε z( )m , respectively, the integral (the shaded
area in Fig. 9) has the form

∫

∫

= − =

= + − =

= ⎡
⎣

⎤
⎦

−
−

−

ε z ε z z

ε a z z

a

( ) ( ) d

( ) d

.

w a

a T a z
E

V T
E V

TE
E E V

X2 0 f, m

0 m
( )

(1 )

2 (1 )
2

f
f

m f

c
f m f (59)

The debonded length can now be solved as

= −
a

E E V w
TE
(1 )

.f m f

c (60)

Substituting this expression for a in Eq. (58) results in the analytical
form of the fiber crack bridge function:

=
−

ε w TE w
E E V

( )
(1 )

.f0
c

f m f (61)

5.3.2. Limit analysis of the PCBM
Since all parameters of the model are deterministic, the mean crack

bridge response equals the fiber crack bridge function. Therefore, in
order to prove the convergence of the model to the limiting case, it is
sufficient to show the equivalence of the fiber crack bridge function
given by Eq. (40) with the analytic expression Eq. (61).

Within the range ∈z a(0, ), all fibers are debonded and transmit the
stress V Tf into the matrix, which has therefore a constant strain deri-
vative in this interval. The debonded length as a constant for all fibers
can in this case be evaluated by Eq. (26) as follows:

′ = ′ =
′ + ′

a w ε F ε w w
ε ε

( , ) exp[ ( )] ,f f
f m (62)

where the integral ′F ε( )f can be directly solved as

Fig. 8. Limiting behavior of the probabilistic crack bridge
model as the matrix stiffness is increased.

Fig. 9. Limiting behavior of the PCBM with deterministic
parameters compared to the analytical solution.
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∫′ = −
′ + ′

′ = − ′ + ′F ε
ε ε

ε ε ε( ) 1 d ln( )f
f m

f f m (63)

because ′εm is a constant with respect to ′εf within the debonded length.1

The matrix strain ε a( )m is evaluated by Eq. (24) with the substitution of
Eq. (25) as

∫= −
′ ′

′ + ′
′

−∞

′
ε a

ε a w ε
ε ε

ε( )
( , ˆ )

2[ ˆ ]
dˆ .

ε
m

m

m

f

(64)

By substituting Eq. (62) for a ε(ˆ') we obtain

∫

∫

= − ⋅ ′

= − ′

′ ′
′

′ ′
′

′ ′

−∞

′

+ +

−∞
′

+

ε a ε

ε

( ) dˆ

dˆ

ε w
ε ε

ε
ε ε

ε w ε

ε ε

m ˆ 2[ ˆ ]

2
1

[ ˆ ]

f

m

m
m

m f

m
3/2 (65)

and after performing the integration

∫ ′ + ′
′ = −

′ + ′−∞

′

ε ε
ε

ε ε
1

[ ˆ ]
dˆ 2 ,

ε

m
3/2

m m

f

(66)

the matrix strain becomes

= ′
′ + ′

′ = ′ε a ε w
ε ε

ε ε a( ) ,m m
f m

m m
(67)

where the last equality results from Eq. (62).
Now, it remains to evaluate the constants ′εf and ′εm by using Eqns.

(6) and (22), respectively, as

′ = −ε T
Ef

f (68)

and

′ =
−

ε V T
E V(1 )

.m
f

m f (69)

The fiber crack bridge function, Eq. (35), with substitutions of Eq. (67)
for ε a( )m and Eq. (62) for a becomes

= + = ′
′ + ′

+
′ + ′

ε ε a Ta
E

ε w
ε ε

Tw
E ε ε

( )
( )f0 m

f
m

f m f f m (70)

and with the substitution of Eq. (68) for ′εf and Eq. (69) for ′εm its final
form is obtained as

=
−

ε w TE w
E E V

( )
(1 )

.f0
c

f m f (71)

Hence the equality with Eq. (61) is given. This proves the ability of
the model to reflect the analytical solution for this limiting case (see
Fig. 9).

6. Effect of matrix elasticity

The present formulation of the model is based on the crack bridge
model with rigid matrix introduced in Ref. [55] which is extended by
the elastic deformation of the matrix. In order to demonstrate the effect
of matrix elasticity, Fig. 10 depicts crack bridge strengths (solid lines)
and corresponding crack openings (dashed lines) as functions of the
fiber/matrix stiffness ratio.

Both the strength and the crack opening are normalized by their
counterparts obtained with a rigid matrix. In general, the crack bridge
strength increases with increasing matrix compliance. This effect is most
pronounced for higher variability in bond variability. For a bond strength
with a coefficient of variation 2.2, the strength increases by about 35%
when the stiffnesses of fibers and matrix are of the same order. The
strength increase can be explained by a stress homogenization among the
fibers which is apparent when comparing Fig. 3c and 3d.

At the same time, the crack opening at peak stress decreases as the
matrix stiffness decreases relative to the stiffness of the fibers. However,
this effect is most pronounced when the properties are deterministic
and diminishes with a growing bond variability. For a deterministic
bond, the crack opening drops by about 75% when the fiber and matrix
stiffness are of the same order. If the bond strength is variable with
coefficient of variation 2.2, the crack opening at peak stresses decreases
much slower over the studied range of fiber/matrix stiffnesses. This is
because the homogenizing and strength increasing effect of the matrix
elasticity leads to a much higher strength which goes along with a
wider crack opening. We can speculate that for a theoretically very high
scatter in bond strength, the crack opening at this peak stress could
even increase with increasing fiber/matrix stiffness.

7. Model validation and parameter calibration

Model validation of the present PCBM at the level of a single crack
bridge is difficult to realize. It is better to show the check the validity of
the model at the level of multiple cracking as it occurs in the tensile test
consisting of multiple crack bridges. Such a validation is left for a
subsequent paper by the authors. Here, only a brief description of the
procedure for calibration of model parameters is sketched.

The probabilistic distributions of the breaking strain, ξ, and radius
of fibers, r, can be obtained using tensile tests on single filaments or
eventually indirectly using tests on fiber bundles [13,14,61]. Once this
is information is obtained, the probabilistic distribution of random
bond properties (in this case the bond strength τ) can be obtained using
notched tensile specimens, see the validation used for rigid matrix in
Ref. [55]. The notched specimens behave like a single crack bridge and
it is easy to control the embedded length of fibers and the related
boundary conditions. Note that some authors propose to use single-fiber
pull-out tests [11,40] for determination of bond properties. However,
the parameters of heterogenous bond for reinforcing yarns used e.g. in
textile reinforced concrete depend mostly on irregular penetration of
the matrix into the yarns and therefore single-fiber pull-out tests are not
representative. Even though the calibration of bond properties can be
performed, a true validation of the present model considering elastic
deformation of the matrix is only possible using tensile test on the
whole composite specimens. Validation of the model involves not only
the match between computed and measured effective stress-strain
diagram, prediction of stress in deformed matrix but mainly correct
prediction of the initiation and widths of cracks. Crack spacings and
their widths may be critical parameters for durability considerations. In

Fig. 10. Effect of matrix elasticity: Normalized crack bridge strengths and normalized
crack openings at peak stress plotted over a range of fiber/matrix stiffness ratios. The
bond strength is assumed to follow the Weibull distribution with scale 1.5 N/mm2 and
shapes {0.2, 3.0} (thicker lines) and deterministic value the 1.5 N/mm2 (thin lines).

1 For the general form of ′F ε( )f see Eq. (A.19).
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the tensile experiment of the composite, parallel cracks progressively
appear at weak locations and saturate the whole length of the compo-
site. Their widths were measured by Digital Image Correlation system
(Aramis).

In the model, these cracks can be represented by the crack bridges
(PCBM) and they interact depending on the distances to adjacent
cracks. The only parameters to calibrate are related to spatially variable
random matrix strength. The subsequent paper introduces a model
called Probabilistic Multiple Cracking Model (PMCM) and allows for
validation of the present crack bridge model. Evaluation of the stress
state in both composite constituents is necessary for the PCMC derived
in the subsequent paper. The present probabilistic crack bridge model
(PCBM) serves as a representative unit at the microscale within a
multiscale model of strain hardening behavior of brittle matrix com-
posites (PMCM). For this purpose, the interaction of adjacent crack
bridges has been introduced into PMCM by setting boundary conditions
on fiber debonding based on the assumption of stress symmetry be-
tween adjacent cracks.

8. Conclusions and discussion

The paper presents the derivation of a probabilistic crack bridge
model (PCBM) of a composite with elastic-brittle matrix and hetero-
geneous fibrous reinforcement. It creates a link between the micro-
mechanical formulation of a single fiber bridging action and the re-
sponse of a multiply cracked composite specimen subjected to tensile
loading where the PCBM can be used as representative crack bridge
element.

• The single crack bridge behavior is represented by the homogenized
response of individual fibers using a probabilistic homogenization

approach suitable for a large number of parallel fibers.

• an earlier version of the model with a rigid matrix [55] is extended
by the elastic deformation of the matrix. This extension allows for
the evaluation of the stress state in both composite constituents,
which is necessary for algorithms evaluating multiple cracking re-
sponse of composites [53,56]. For this purpose, the interaction of
adjacent crack bridges has been introduced by setting boundary
conditions on fiber debonding based on the assumption of stress
symmetry between adjacent cracks.

• The interconnection of the stress state of individual fibers through
the elastic continuum of the matrix increases the complexity of the
PCBM compared to the crack bridge model with rigid matrix.
However, with the method the authors have introduced for the
evaluation of the fibers-in-elastic-continuum problem (see Appendix
A), the complexity is reduced to a reasonable level.

• The correctness of the model has been verified by comparing it to
three limiting cases with known analytical solutions: 1) the fiber
bundle model 2) a crack bridge with rigid matrix and 3) a mono-
filament in elastic matrix. It has been proved that the PCBM renders
the limiting cases exactly.
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Appendix A. Matrix strain and debonded lengths

This appendix presents the derivation of the two unknowns in the fiber crack bridge function Eq. (11): the matrix strain ε a( )m and the debonded
length a w X( , ). The derivation is based on the differential equilibrium equation Eq. (22) and the kinematic constraint given by the crack opening Eq.
(23).

With the assumption that fibers do not reach their strength, the sampling space includes two random variables = τ rX { , }. It has been derived in
Sec. 4 that the derivative of the matrix strain at the position z is, for a large number of fibers, given by

′ =ε z
μ z

μ z
( )

( )
( )

.t

K

X

X
m

,

,cs (A.1)

The variable μ z( )t X, is the mean bond intensity, i.e. the mean value of the force transmitted by debonded fibers into the matrix, given by Eq. (21)
and μ z( )K X,cs is the mean compact composite stiffness given by Eq. (20). Both variables include the longitudinal position z in the Heaviside term. This
ensures that the expected value is evaluated only for values from the sampling space X which satisfy the condition >a zX( ) . If <a zX( ) , the
Heaviside function is zero and so is the contribution to the integral. However, the debonded length a is unknown beforehand so that the Heaviside
term cannot be directly evaluated. A direct evaluation is only possible with a change of the control variable. Knowing that a increases monotonically
with decreasing absolute value of the fiber strain derivative, ′ε X( )Xf, , given by Eq. (6), it can be taken as control variable in Eq. (A.1) with the notation
′εf . The new control variable ′εf represents an iso-line in the sampling space = τ rX { , } with constant values =T τ r2 / . A higher absolute value of ′εf
corresponds to higher bond intensity which means that the debonded lengths are shorter and the corresponding peak strains higher (see Fig. 1). Eqns.
(21) and (20) with ′εf as control variable are redefined in the following way

′ = ⋅ ′ − ′μ ε V T ν r H ε εX( ) E[ ( ) ( ( ) )]t X X, f f f f, f (A.2)

and

′ = − + − ⋅ ′ − ′μ ε E V E V ν r H ε εX( ) (1 ) ( E[ ( ) ( ( ) )]).K X X, f m f f f f f, fcs (A.3)

The unknown debonded length a X( ) in the Heaviside term was substituted by the fiber strain derivative ′ε X( )Xf, , a continuous function spanning
the whole sampling space X given by Eq. (6), and the control variable z was substituted by ′εf . Note that the signs have to be switched.

Since the Heaviside terms in Eqn. (A.2) and (A.3) have the function of ‘cutting off’ the domain for integration by setting a part of it to zero, the
same effect can be achieved by appropriately setting the integration ranges. This is utilized by performing the integration over the subspace X̂ of the
sampling space X that satisfies the condition ′ > ′ε εXf, f

∫′ =μ ε T ν r g r τ X( ) ( ) ( , )d ,t rτX
X

, f f
(A.4)

and
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∫′ = − + ⎡

⎣
⎢ − ⎤

⎦
⎥μ ε V E E V ν r g r τ X( ) (1 ) ( ) ( , )d ,K rτX

X
, f f m f f fcs

(A.5)

where g r τ( , )rτ is the joint probability density function of the two random variables τ and r. Eq. (A.1) with the substitution of Eqns. (A.4) and (A.5)
becomes

′ ′ =
′

=
′
′

ε ε
ε ε

z
μ ε

μ ε
( )

d ( )
d

( )
( )

,t

K

X

X
m f

m f , f

, fcs (A.6)

which is the value of the matrix strain derivative with respect to z at the end debonded length of fibers with strain derivative ′εf .
In order to obtain the matrix strain profile εm at a position z, its derivative ′εm has to be integrated from 0 to z. With the change of the control

variable to ′εf , the zd differential is substituted by

=
′

′z a
ε

εd d
d

d
X

X
f,

f,
(A.7)

(note that a has the same dimension as z) and the integration is performed from − ∞ to ′εf .

∫′ = ′ ′
′

′
′

−∞

′
ε w ε ε ε

a w ε
ε

ε( , ) ( )
d ( , )

d
d .

ε
X

X

X
Xm f f f,

f,

f,
f,

f

(A.8)

This relates the variable a to ′ε Xf, . Note that the fiber with infinite strain slope ′ = −∞ε Xf, corresponds to an infinitely short debonded length =a 0.
The derived equation solves the first unknown in the fiber crack bridge function – the matrix strain value – but only as controlled by the fiber strain
derivative. To fully solve the problem, the relation between the debonded length a and the fiber strain derivative ′ε Xf, is further needed.

The differential in Eq. (A.8) is derived below in course of the evaluation of the second unknown, the debonded length a as a function of ′ε Xf, . Since
the definition of ′a ε( )Xf, depends on the boundary conditions for the debonding of fibers (see Fig. 6), it is derived for the respective cases separately in
the following sections.

Appendix A.1. Free debonding

If fibers are allowed to freely debond, i.e. their debonding is not restraint due to interaction with a neighboring crack, the strain fields are
symmetrical about the crack plane so that only one half of the filed can be considered (see Fig. 6a). In the following, the positive half-space is
considered (positive z values). Without loss of generality, Eq. (23), which defines the crack opening as the integrated difference between the fiber
and matrix strain, can be written in the form

∫= − =
′

+ −w ε z ε z z
ε a

ε a a u a
2

( ) ( )d
2

( ) ( ),
a

X
X

0 f, m
f,

2

m m (A.9)

where ε z( )Xf, and ε z( )m are the fiber and matrix strain, respectively, and u z( )m is the longitudinal matrix displacement given by the integration of εm

along z.
In order to obtain the function ′a ε( )Xf, which assigns debonded lengths to fibers with strain slope ′ε Xf, , Eq. (A.9) is differentiated with respect to

′ε Xf, :

′
=

′
′

+
′

−
′

w
ε

ε a
ε

ε a a
ε

u a
ε

d
d

d
2d

d ( )
d

d ( )
d

,
X

X

X X Xf,

f,
2

f,

m

f,

m

f, (A.10)

which, after applying the chain rule for derivatives and changing the control variable of ε a( )m to ′ε ε( )Xm f, , yields

= + ′
′

+ ′ ′
′

a ε a
ε

a ε ε a
ε

a0
2

d
d

( ) d
d

.X
X

X
X

2

f,
f,

m f,
f, (A.11)

This equation solved for ′a εd /d Xf, results in

′
′

= −
′

′ + ′ ′
a w ε

ε
a w ε

ε ε ε
d ( , )

d
( , )

2[ ( )]
,X

X

X

X X

f,

f,

f,

f, m f, (A.12)

which corresponds to the differential change of the debonded length a that goes along with a differential change in ′ε Xf, . Since it is a differential
equation in separable form, it can be directly integrated in the following way: Eq. (A.12) is written in the form

′
= ′a

ε
f ε g ad

d
( ) ( )

X
X

f,
f,

(A.13)

with

′ = −
′ + ′ ′

f ε
ε ε ε

( ) 1
( )X

X X
f,

f, m f, (A.14)

and

=g a a( )
2

. (A.15)

Derived from Eq. (A.13), the following equality can be stated
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= ′ ′
g a

a f ε ε1
( )

d ( )d .X Xf, f, (A.16)

Integrating both sides results in

= ′ +G a F ε C( ) ( )Xf, (A.17)

where G a( ) is the antiderivative of g a1/ ( )

=G a a( ) 2ln( ) (A.18)

and ′F ε( )Xf, is the antiderivative of ′f ε( )Xf,

∫′ = ′ ′F ε f ε ε( ) ( )d .X X Xf, f, f, (A.19)

The solution to ′a ε( )Xf, is then obtained by substituting Eq. (A.18) into Eq. (A.17) and solving it for a as

⎜ ⎟′ = ′ + = ⎛
⎝

′ + ⎞
⎠

−a ε G F ε C
F ε C

( ) ( ( ) ) exp
( )

2X X
X

f,
1

f,
f,

(A.20)

with the unknown constant C. The constant can be evaluated by stating that for ′ → −∞ε Xf, (fibers with an infinite strong bond), the debonded length
will approach 0 and can be in the limit described by the formula

′ → −∞ =
′ + ′

a ε w
ε ε

( ) .X
X

f,
f, m (A.21)

The reasoning behind this statement is that close to the matrix crack ( =z 0), the matrix strain can be assumed linear and its derivative constant,
which simplifies the relation between the debonded length and the crack opening w to the above equation (see Eq. (62) in Sec. 5 (limit case ’mono-
filament in elastic matrix’) for derivation). The function ′F ε( )Xf, , with the assumption of constant matrix strain derivative is

∫′ → −∞ = ′ ′ = − ′ + ′F ε f ε ε ε ε( ) ( ) d ln( ).X X X Xf, f, f, f, m (A.22)

Substituting Eqns. (A.21) and (A.22) into Eq. (A.20) yields

⎜ ⎟
′ + ′

= ⎛
⎝

− ′ + ′ + ⎞
⎠

w
ε ε

ε ε C
exp

ln( )
2

,
X

X

f, m

f, m

(A.23)

which solves the constant C as

=C wln( ). (A.24)

The resulting form of a for fibers with free debonding as a function of the crack opening w and ′ε Xf, is then

′ =
⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

= ′

′⎜ ⎟
⎛
⎝

⎞
⎠

+

a w ε

F ε w

( , ) exp

exp[ ( )] .

F ε w

X

X

f,

ln( )

2

f,

Xf,

(A.25)

This solves the second unknown in the fiber crack bridge function Eq. (11) for fibers with free debonding.

Appendix A.2. One-sided debonding

Fibers that have debonded up to the half distance ↓L between adjacent cracks at one side of the analyzed crack can further only debond at the
other side of the crack with debonded length that are denoted as ↑a for the one sided debonding. The kinematic constraint for such fibers changes to
Eq. (28) and corresponds to the shaded area in Fig. 6b. Note that in this case, the stress profiles are not symmetrical about the crack plane. Similar to
free debonding, this kinematic constraint can be written as

= ′ ⎛
⎝

+ − ⎞
⎠

+

+ + − −

↓ ↑

↑ ↑ ↓ ↑ ↓

↑ ↓w ε L a

ε a a L u a u L( )( ) ( ) ( )

a L
Xf, 2 2

m m m

2 2

(A.26)

and differentiated with respect to ′ε Xf, , which results in

⎜ ⎟= ⎛

⎝
+ − ⎞

⎠
+

′
+ ′ + ′↑
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↑ ↓
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L a
L a

ε
a L ε ε0

2 2
d
d

( )( ).
X

X

2 2

f,
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(A.27)

Solving this equation for ′↑a εd /d Xf, results in

′
′

= −
′ + ′ −

′ + ′ ′ +
↑ ↑ ↑ ↓ ↓

↑ ↓

a w ε
ε

a w ε a w ε L L
ε ε a w ε L
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( , ) 2 ( , )
2( )( ( , ) )

.X

X

X X

X X

f,

f,

2
f, f,

2

f, m f, (A.28)

(with explicit notation of the functional dependencies). The result is separable so that it can be directly integrated analogically to the section above
with the only difference that g a( ) now becomes
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2
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2 2

(A.29)

and the antiderivative of ↑g a1/ ( ) is solved analytically as

= + −↑ ↑ ↑ ↓ ↓G a a a L L( ) ln( 2 ).2 2 (A.30)

The solution of

= ′ +↑G a F ε C( ) ( )Xf, 1 (A.31)

for the debonded length a is obtained by inverting ↑G a( ) as

′ = ′ + =

= + ′ + −

↑
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a ε G F ε C

L F ε C L

( ) ( ( ) )
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2
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In order to find the unknown C1, the continuity condition for debonded lengths of double sided and one sided debonding at the transition length
↓L is applied. Thus, ′F ε( )Xf, which solves the equation = ↓a L is calculated using Eq. (A.25) as

= ′ → ′ =↓ ↓L F ε w F ε L wexp[ ( )] ( ) ln( / ).X Xf, f,
2

(A.33)

This expression substituted into Eq. (A.32) must solve also the equation =↑ ↓a L , which reveals the constant C1 as

= + + −

= +
=
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↓ ↓

L L L w C L

L L w C
C w

2 exp[ln( / ) ]

2 exp(ln( / ) )
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2 2
1

2 2
1

1 (A.34)

This substituted into Eq. (A.32) provides the formula for debonded lengths ↑a for one-sided debonding as a function of the crack opening w and ′ε Xf,

′ = + ′ −↑ ↓ ↓a w ε L F ε w L( , ) 2 exp[ ( )]2 .X Xf,
2

f, (A.35)

Appendix A.3. Clamped fibers

For fibers, which are debonded at both sides of the crack up to the boundaries at distances ↓L and ↑L , the kinematic constraint (the crack opening)
is defined by Eq. (30), which is the shaded area in Fig. 6c. Performing the integration, the following form is obtained

= + − + − −↑ ↓ ↑ ↓ ↓ ↑w L L ε T
E

L L u L u L( )
2

( ) ( ) ( )Xf0,
f

2 2
m m (A.36)

so that the fiber crack bridge function becomes

=
+ + + +

+
↑ ↓ ↓ ↑

↑ ↓
ε w

w T L L E u L u L
L L

X( , )
( )/(2 ) ( ) ( )

( )
.Xf0,

2 2
f m m

(A.37)

The matrix displacements u L( )m are defined by integrating the matrix strain given by Eq. (A.8)

∫= ′
′

′
−∞

′
u L ε ε a

ε
ε( ) ( ) d

d
d ,

ε
X

X
Xm m f,

f,
f,

L Xf, ,

(A.38)

where the differential ′a εd /d Xf, is a piecewise function given by Eqns. (A.12) and (A.28) for the respective ranges of the debonded lengths < ↓a L and
> ↓a L . The integration limit ′ε L Xf, , is the value of the fiber strain derivative ′ε Xf, , which solves Eq. (A.25) for ′ = ↓a ε L( )Xf, or Eq. (A.35) for ′ =↑ ↑a ε L( )Xf,

for the respective evaluations of either ↓u L( )m or ↑u L( )m .
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